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ABSTRACT 
We present the Message Bus (Mbus) [14], a lightweight, 
message oriented, infrastructure for ad-hoc composition of 
heterogeneous components. In this paper we describe the 
general Mbus architecture, the Mbus transport 
specification and higher-level services. It is shown how the 
Mbus fits into the multiparty multimedia conferencing 
architecture and can be used for decomposing conferencing 
applications.  

Keywords 
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INTRODUCTION 
Recent years have seen an explosion in the markets for re-
mote teleconferencing, mobile telephony, and streaming 
media, with wide deployment of a range of increasingly 
sophisticated devices (e.g. PDAs, mobile telephones, and 
“web-devices”). There has also been a significant change 
in the underlying communication medium for many of 
these systems with increased reliance on IP-based 
transport, at the expense of earlier standards such as ISDN, 
H.320, GSM, ATM, etc.  

These trends have resulted in a unique opportunity to de-
velop a common infrastructure for ad-hoc composition of 
heterogeneous components.  Such an infrastructure will 
leverage the increasing reliance of these devices on IP, to 
provide a common control and coordination channel, re-
sulting in a large amount of experience that has previously 
been lacking. 

This paper presents the Message Bus (Mbus): our vision of 
that common coordination infrastructure. 

The Mbus developed out of the desire to support local con-
ference control for multiparty multimedia conferencing in 
the Mbone community. In this community, a model has 
arisen whereby a set of loosely coupled tools is used to par-
ticipate in a conference. A typical scenario is that audio, 

video and shared workspace functionality is provided by 
three separate tools (although some combined tools exist). 

In [23] Henri ter Hofte introduces the notion of grouplet 
services that are the units of extension and composition in 
a groupware application. Grouplet services are used to im-
plement certain functions within a groupware system, so-
called groupware services. In the description of a reference 
architecture for component groupware the following guide-
lines for structuring groupware services into grouplet ser-
vices are proposed (amongst others):  

• Separate different media in different grouplet ser-
vices 

• Separate conference management services from 
other groupware services 

• Separate coordination services from other group-
ware services  

Multiparty multimedia conferencing is one specialization 
of groupware that is characterized by the use of 
synchronous collaboration between potentially large 
numbers of spatially separated particpants. 

The decomposition of a conferencing application into sepa-
rate media agents maps well onto the underlying media 
streams, which are also transmitted separately.  Given such 
an architecture, it is useful to be able to perform some 
coordination of the separate media tools that perform 
protocol functions and present media data to the user. For 
example, it may be desirable to communicate playout-point 
information between audio and video tools, in order to 
implement lip-synchronization [10]. In addition, it may be 
useful to implement some degree of coordination between 
sessions, e.g. to arbitrate access to hardware devices, such 
as framegrabbers and audio input/output channels. 

Usually, there also exist one or more user interface agents, 
which control the media engines, and provide a unified 
conferencing interface. This approach allows flexibility of 
user-interface, but clearly requires some inter-process 
communication channel by which a user-interface agent 
may communicate with the media engines. 

Although current practice in the Mbone community is to 
rely on a lightweight session model, with little in the way 
of explicit conference control [3] [8], there are some 

 

 

 

 



situations where this is not appropriate, and a more tightly 
coupled wide-area conference control protocol must be 
employed. In [13] the notion of vertical interoperability 
within a conferencing endsystem has been introduced, 
which relied on a dedicated conference management 
system (CMS) controlling the set of media tools, user 
interfaces etc. in a user’s conferencing system. The CMS, a 
conference controller, communicates with the local service 
entities and with controllers of other’s users and can, for 
exmaple, implement the enforcement of conference 
policies and inform local entities about status changes in 
the conference. 

Again, if a common local coordination channel is present, 
a separate conference control entity may be added to the 
session if desired to perform these functions that are 
required for tightly coupled conferencing. 

Note also that these entities need not reside on the same 
device: you may wish to initiate a call from your PC, but 
participate via a traditional looking telephone, which is 
possible once the phone and PC are networked and intelli-
gent. 

Similar needs may be discovered when considering the 
kinds of distributed end-points that may become common 
with the increasing spread of technologies such as IrDA 
and Bluetooth that provide short-range wireless 
communication. For example, a PDA may wish to 
communicate with a cellular phone to dial a number from 
an address book, or the phone may wish to coordinate with 
your personal CD player to arbitrate access to your headset.  
Products that provide some of these features are already 
beeing developed [24]. 

• These applications point to the need for a local 
scope coordination protocol, yet this is an area 
where standards are lacking. For example 
(adapted from [7]) the tasks required for 
conference control can be broken down into five 
categories: 

• Coordination and control of applications and com-
ponents: tools need to be started with the correct 
initial state, but also may need to cooperate and be 
re-configured during the course of a session (e.g. 
lip-synchronization, voice switched video). 

• Reporting and control of conference membership: 
who is currently in the conference, which media 
types they can receive. This may also incorporate 
admission control. 

• Floor control: who may transmit at a particular 
time. 

• Network management: comprising resource 
reservation, if required, reception quality 
reporting and congestion control. 

• Meta-management: announcement, advertisement, 
initiation and teardown of conferences. 

The Internet multimedia conferencing architecture 
provides protocol support in three of these five areas: 
membership reporting and control [17], network 
management [1] and meta-conference management [4] [6] 
[5] [18].  

There is currently no provision within this protocol suite 
for distributed floor control, or for application control. It is 
this latter aspect, application coordination and control, that 
is addressed in this paper. 

Roadmap 
This paper is structured as follows: The next section pro-
vides an overview of the Message Bus infrastructure, fol-
lowed by a detailed description of the transport services 
considering message structure, data transport, entity aware-
ness and Mbus security. 

Subsequently, we present a set of  higher layer services that 
are used to realize more structured communication inter-
actions and demonstrate the use of the Mbus by presenting 
a short example. 

Finally, we provide a classification of the Mbus concepts 
comparing to related work followed by a final evaluation. 

THE MESSAGE BUS INFRASTRUCTURE 
Requirements 
The Mbus provides an infrastructure for local coordination 
based upon mechanisms for inter-component communi-
cation. It is designed to satisfy the following needs: 

• simplify the composition of building blocks from 
different sources through well-defined interfaces, 
thus supporting a modular system design; 

• allow for simple, uncomplicated, and ad-hoc co-
operation between dynamic groups of 
applications; 

• be easy to implement and integrate into existing 
applications while enabling efficient independent 
development and testing; 

• maximize re-usability of components in different 
systems as well as different system types; 

• support separation of user interfaces from compo-
nents providing protocol (or other) functions; 

• provide easy system extensibility (at run time); 

• be independent of programming language choices 
without prescribing system design or mandating 
certain components; 

• allow for efficient and low-overhead communi-
cation; and  

• be robust against partial system failures. 

The Mbus infrastructure logically consists of two compo-
nents: a transport infrastructure that provides message 
transfer, addressing, basic bootstrap and awareness 
mechanisms; and a semantic layer that is defined through 



the abstract services of the communicating modules. The 
following sections describe these in more detail. 

TRANSPORT SERVICES 
As its basic service, the Message Bus provides local (intra-
system) exchange of messages between components that 
attach to the Mbus (Mbus entities). A system is typically 
expected to comprise exactly one host, but a may also ex-
tend across a network link and include several hosts 
sharing the tasks; a local system does not extend beyond a 
single link – the Mbus is not intended or designed for use 
as a wide-area conference control protocol. Wide-area 
conference (and device) control has significantly different 
requirements regarding trust-models and scalability and 
must deal with different problems regarding reliability and 
message transport delay. 

The message transport service provides group- and point-
to-point-communication. It does not offer all the features 
that are frequently found in protocols for coordinating dis-
tributed applications in general such as guaranteeing a 
global or causal ordering of delivered messages. 

Given these deliberate restrictions in functionality it is im-
portant to note that the Mbus implies a component model 
where communication between components can be realized 
without services from a full-featured infrastructure for dis-
tributed applications. 

Message exchange takes place using UDP (User Datagram 
Protocol): datagrams are sent either via unicast to a single 
entity or multicast to a host- or link-local group. For 
unicast communications, message delivery is optionally 
performed reliably, with acknowledgements and 
retransmissions taking place at the Mbus transport layer. 
All multicast communication is performed unreliably.  

For unicast communications, message delivery is 
optionally performed reliably, with acknowledgements and 
retransmissions taking place at the Mbus transport layer.  
Point-to-point and multicast communication is in general 
not distinguished by the transmission mechanism 
employed at the IP layer but rather by the qualification of 
the Mbus destination address. There is however the 
possibility to use IP-unicast for messages that are directed 
to a single receiver. (See section Entity Awareness.) 

Mbus Addressing 
A key concept of the Mbus is its flexible and extensible 
addressing scheme.  Mbus entities are identified by n-
tuples with each component of the tuple represented as an 
attribute-value pair. The addressing scheme for conferenc-
ing applications includes address elements like conference 
(“conf”), media (“media”), module type (“module”), 
application name (“app”), and application identifier (“id”). 
For example: 
(media:audio module:engine app:rat id:1035-
0@134.102.218.67) 

Each Mbus entity responds to messages addressed to any 
subset of its own address. For example, the entity with the 

address illustrated above will respond to messages pro-
viding the following target addresses: 
(media:audio module:engine app:rat id:1035-
0@134.102.218.67) 

(app:rat id:1035-0@134.102.218.67) 

(media:audio) 

() 

A fully qualified address (with all components of the tuple 
present) indicates a unicast Mbus address. Messages with 
incomplete addresses have the potential to be received by 
multiple entities. 

Entity Awareness 
An entity on the Message Bus can learn the existence of 
other entities (and their complete addresses) by listening to 
the self-announcement messages that all entities send 
periodically. The rate at which these periodic heartbeat 
messages are sent is adapted dynamically depending on the 
number of entities in a Mbus session, thus allowing the 
Mbus to scale to larger groups of entities. 

This mechanism is used to locate entities and to monitor 
their liveness during a session but also to build a complete 
set of the addresses of all available entities – Mbus layer 
addresses and transport layer addresses. The latter infor-
mation can be used for optimization strategies, e.g. for de-
ciding whether a message can be sent via IP-unicast. 

Based upon these awareness functions, a bootstrap proce-
dure is defined that allows entities to determine whether all 
other entities they depend on are present (without bearing 
the risk of deadlocks). 

Group Communication Mechanisms 
Each entity has a unique Mbus address that can be used to 
identify it and that is composed of any number of named 
address elements. The types and values of address elements 
are application-specific and can be used to aggregate enti-
ties into address groups. 

Address element names may be associated with semantics: 
by providing certain address elements, entities can signal 
the type of service functionality they are able to supply. 
The Mbus specification itself does not impose any 
restrictions on application specific address elements. The 
semantics are provided by application specific profiles. For 
example, the address element set for conferencing 
applications defines elements for distinguishing entities by 
the media type that is assigned to them allowing a local 
conference controller to address one or more audio, video 
and other media tools. 

A message that is to be sent via the Mbus has a target ad-
dress – at the application level – that is used to determine 
how to deliver the respective message. This allows for sub-
ject-based addressing-like message delivery semantics and 
different communication models represented by the 
different group addressing features: 



Broadcast 

When a target address list is empty the message is 
broadcast to all entities on the Mbus. 

Unicast 

A message that contains a target address that is a unique 
Mbus address of another entity will be processed by this 
entity only. The Mbus defines mechanisms allowing such 
messages to be sent directly via unicast to the specific en-
tity. 

Multicast 

As mentioned above target addresses can be used to iden-
tify groups on a per-message basis. All entities that match 
the given target address will receive and process cor-
responding messages: In situations where a certain module 
requires a specific service functionality, that can be pro-
vided by more than one other module, it can use a 
multicast address specifying the group of service providers 
to locate the desired entity. This may facilitate the imple-
mentation of service clients significantly: addresses of ser-
vice providers do not need to be hardcoded and the com-
munication model can accommodate many different spe-
cific scenarios regardless of the number of potential 
service providers. 

It is not necessary to know the exact addresses of all poten-
tial receivers of a message. Instead a sufficiently unam-
biguous address list can be used. For example, in order to 
reach all audio engines in a session the address list (me-
dia:audio module:engine) might be appropriate.  

Mbus Messages 
Mbus messages are text-encoded and consist of a header 
with protool information and a payload section that can 
carry several textual commands with parameter lists. Com-
mand names are hierarchical and a set of basic data types 
for command parameters is defined, including numeric 
types, character strings, lists and opaque data. 

Message authentication and encryption are supported as 
inherent transport features to prevent malicious attacks and 
to provide privacy for the communication within an Mbus 
domain. This allows the Mbus to accommodate multiple 
sessions of a user per host (including cross-session 
coordination) as well as any number of users on the same 
host or link (preventing accidental cross-user interaction). 

HIGHER LAYER SERVICES 
Since the specification of the transport mechanisms does 
not include application-specific Mbus commands, these are 
expected to be defined in independent profiles. Mbus pro-
files normally do not only consist of a set of command 
definitions but also of the specification of the use of Mbus 
address elements, message interaction schemes and the de-
scription of message semantics. 

In addition to the basic transport mechanisms, interaction 
schemes on a higher level of abstraction have been defined 

to support the creation of useful profiles. This includes ab-
stractions like remote procedure call, event notification and 
publish/subscribe mechanisms that provide more 
structured communication schemes while still allowing for 
simple and straightforward messaging. 

Furthermore, different types of control-relations between 
peers are provided. This allows for scenarios where entities 
need a dedicated control relation to another entity in order 
to operate properly. Again, mechanisms are provisioned 
that allow both the simple ad-hoc communication scenario 
without manual configuration and explicit control 
relations. 

These higher layer services are defined in a description of 
guidelines for specifying Mbus profiles. One of the 
features of these services is the notion of a default target 
address that can be assigned to event notification 
commands. In an application without a tight coupling 
between entities the default target address is used to notify 
other entities of certain events. Interested application 
modules have to know this address and configure their 
Mbus interface accordingly in order to be able to receive 
notifications. By the means of entering an explicit control 
relation with an event generating entity, a controlling entity 
can redirect the target address. Depending on the type of 
the selected control relation, this also affects the right to 
send commands to the entity and may exclude other 
entities from concurrently controlling it. 

These mechanisms allow for re-using the same application 
module in different scenarios with different requirements 
for the strictness of the control relations: In an ad-hoc 
Mbus session, say for prototyping a distributed system, an 
entity can accept commands from arbitrary entities and use 
a default target address for event notifications. In a tightly 
coupled setting, different levels of control can be employed 
in order to achieve a more formalized and structured com-
munication style.  

EXAMPLES 
Reliable Audio Tool (RAT) 
RAT [25] is an example for a media tool that is itself 
decomposed into several funtional units: 

• a media-engine that is responsible for media 
transport and rendering; 

• a user-interface-component that provides a 
graphical user interface; and 

• a controller that coordinates the two other 
components. 

Usually RAT is invoked by starting the controller that in 
turn starts new processes for the media-engine and the 
user-interface. On startup, the three entities synchronize by 
using the corresponding Mbus mechanisms and the audio-
engine starts to report its capabilities and its status to the 
user-interface that uses this information to build 
appropriate menus etc. for the options that can be 
configured. 



After this setup-phase, the user interface reacts to user-
interaction by sending appropriate Mbus commands to the 
audio-engine and the audio-engine reports events to the 
user-interface. 

The components that constitute the RAT application are 
implemented as independent programs and can be re-used 
for other applications. For example the media-engine can 
be used in integrated conferencing applications, where the 
RAT-user-interface is replaced by another, probably 
application-specific user-interface. 

Another example is an IP-Telephony-gateway that employs 
the RAT-media-engine for receiving and sending audio. 

These examples highlight the way that components of 
originally standalone applications can be re-used in new 
scenarios without having to re-configure or even re-
compile them. 

Multimedia Conferencing Application 
The following example illustrates how the Mbus can be 
used to extend the functionality of a stand-alone IP-Tele-
phony system to an audio/video conferencing application 
by integrating the telephony box and re-using its functional 
components as Mbus entities in a new application. 

Figure1 shows a Mbus based IP-Phone that is used as an 
audio component in an audio/video conferencing system: 
The additional components on the left-hand side run on a 
co-located workstation and extend the functionality of the 
phone system by taking-over the control of some sub-com-
ponents. The “Endpoint Controller” registers with the 
“Phone Controller” and coordinates the new application. 
The Mbus communication model allows for plugging-in  
the new components without prior re-configuration of the 
system. For example the events that are generated by the 
audio engine and visualized by the phone display can be 
received and processed by the new GUI running on the 
workstation. This can be accomplished by the Mbus group 
communication facilities and/or by registering the GUI as 
an additional controller at the audio engine. 

It can be noticed that decomposing applications using the 
Mbus mechanisms yields a certain level of tailorability of 

the final applications as well as the individual components 
that is achieved by 

1. decomposing the application into independent, re-
usable funtional units; 

2. specifying Mbus interfaces for the components;  

3. using the Mbus group communication 
mechanisms for potential extensions; and 

4. deploying the higher level services in order to al-
low for structured extensibility and possible 
transition between uncoordinated and controlled 
operation modes. 

Example Message 
 

Figure 2 shows an example Mbus message that is sent 
unreliably to the group of user interface modules in a 
components-based application. 

RELATED WORK 
Concepts similar to those of the Mbus have been proposed 
on a number of occasions in the past. In this section, we 
review those proposals to show how they differ from our 
proposal, and highlight the relative advantages and disad-
vantages of each. 

LBL Conference Bus 
The most widely deployed local conference coordination 
protocol in the Mbone community is the LBL conference 

bus, used by the media tools vat [9] and vic [11] for 
arbitration of access to hardware devices (e.g.: framegrab-
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Figure1: Extending an Mbus-based IP-Telephony system 

 

mbus/1.0 1 342545638 U (media:audio \ 
module:engine app:rat id:1035-      \ 
0@134.102.218.67) (module:ui) () 
rtp.source.name (“54e3” “unknown”) 
rtp.source.codec (“54e3” “GSM”)   
rtp.source.active (“54e3” 1000) 

 

Figure 2: Sample Mbus Message 



ber, audio hardware), voice switching of video, and other 
simple inter-process coordination. 

The LBL conference bus protocol is simple, yet effective 
for the limited use to which it is put. Messages have a type 
field, which does not appear to be used, and a process-ID 
as the destination address. A single, free form, text 
command sent in each message (and interpreted directly as 
a Tcl command string by the recipient). 

Messages on the LBL conference bus are sent using IP 
multicast, with zero time-to-live (restricting the multicast 
to a single host). Each process listens on two multicast 
groups, one for messages affecting all sessions, and one 
specific to the individual session. There is no reliability 
included in the LBL conference bus protocol. 

The key features of the LBL conference bus are the use of 
IP multicast for local communication, and the use of mul-
tiple communication channels. 

Conference Control Channel Protocol 
The Conference Control Channel Protocol (CCCP) [7] is 
more ambitious in its scope, and is “intended for 
controlling conferences ranging from small, tightly 
coupled meetings, to extremely large loosely coupled 
seminars”. 

CCCP does not only provide a local coordination channel 
but is also targeted at conference wide control. Since IP-
Multicast is used at the transport layer for both local and 
conference wide communication, CCCP has to address the 
problem of reliable multicast transmission. It therefore in-
troduces different reliability and message ordering classes. 

The addressing scheme provides address tuples (of fixed 
cardinality) and the possibility of “wildcarding” certain 
address elements in destination addresses. Although the set 
of address elements is fixed, CCCP still provides a mecha-
nism for extensibility: the type element of an address can 
be hierarchical, so that the type of an CCCP entity can be 
very specific while the entity can be still be addressed by 
the major type prefix. 

CCCP messages have a plain text addressing scheme and a 
plain text, free format text payload that usually consists of 
a function name and parameters. 

Pattern Matching Multicast 
The MInT toolset [19] uses a communication protocol 
named “pattern matched multicast” (PMM) [16] for 
coordination of media agents by a local controller. PMM 
supports three different transport methods: a centralized 
architecture with a message replicator that distributes 
messages to registered entities via UDP/IP or TCP/IP and a 
de-centralized model using host-local IP-Multicast without 
a central message replicator. The replicator process can 
also act as a message filter by sending certain messages 
only to entities that are interested. 

PMM messages simply consist of the name of an object 
and a operation to be applied to the object. Object names 

are hierarchical descriptors containing identifiers for the 
conference, media, media instance and (optionally) the 
media session member. Operations are textual commands,   
“directly interpretable by a standard Tcl interpreter”. 

Applications can register for messages with the central re-
plicator by sending a message with a wildcarded object and 
operation name. 

The receiver directed filtering is only available in the pres-
ence of a central replicator. 

Jini 
Jini [21] is a Java based architecture enabling users to 
share services and resources over a network within the 
scope of a workgroup. Jini provides the concept of 
federating services and clients of services. 

Services can be located using lookup services that serve as 
repositories of services – objects in the Java programming 
language that can be downloaded to clients during a lookup 
operation and act as proxy stubs to the service module.  
Services deploy a location server discovery and join proto-
col in order to become part of a Jini system. The discovery 
protocol relies on IP-Multicast. It is possible to distinguish 
types of services by a group identifier within in a lookup 
service. These identifiers are arbitrary strings that services 
can choose upon registering with a lookup service. 

Jini uses Java remote method invocation (RMI) to imple-
ment the basic inter-services protocols but service proxies 
can employ other protocols to communicate with service 
entities. 

Jini provides the model of leasing services: Resources are 
allocated using a renewable, duration-based scheme. Fur-
thermore Jini offers an event and notification interface and 
a transaction interface that enables Jini application to coor-
dinate state changes. 

The main focus of the Jini architecture is on resource and 
service localization and not on the area of client-service-
interaction. Due to the use of RMI Jini is a Java-only solu-
tion that cannot interoperate with non-Java components. 

CORBA and DCOM 
CORBA [12] and DCOM [2] provide mechanisms for 
transparent invocation and accessing of remote distributed 
objects. Both require interface definitions and provide the 
usual object oriented features such as encapsulation, 
inheritance, and polymorphism for remote objects. 
Different techniques are used to achieve programming 
language and platform independence: CORBA provides 
abstract class definitions that are mapped to 
representations in concrete programming languages while 
DCOM, relying on the Component Object Model (COM), 
provides a per-platform binary standard. 

The applications that both CORBA and DCOM are 
targeted at usually require a tighter coupling of 
components and fall into a different category than the 
Mbus-based component system we have presented. 



Both approaches offer elaborate solutions for the creation 
of type-safe distributed features that go beyond the services 
of a message-oriented coordination infrastructure. By 
requiring a significant amount of static information and/or 
further management components like naming services, 
interface repositories and Object Request Brokers 
(respectively Service Control Managers) both techniques 
do not appear adequate for simple, flexible ad-hoc 
cooperation. Besides, they are both not universally 
available and particularly easy to implement for small, 
limited platforms. 

CONCLUSIONS 
It has been shown that the Mbus is a simple lightweight 
message-oriented coordination protocol that is useful for 
decomposing applications into components that are dis-
tributed across a local network link. Although the Mbus 
does not provide complete support for distributed applica-
tions it can be used in systems, where components are rela-
tive independent and can cope with the message oriented 
coordination services. 

The group communication mechanisms add a valuable de-
gree of flexiblity that allows to plug-in components into a 
running system in a uncomplicated way. This result in 
tailorable systems that are open for future extensions. 

The higher layer services allow for structured communica-
tion interactions while still preserving the simple and 
flexible message exchange paradigm. 

Given these benefits and considering the platform-
neutrality the Mbus is an interesting alternative to the 
presented existing solutions. 

FURTHER INFORMATION 
Detailed information and implementations for different 
platforms are available at http://www.mbus.org/. 
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