
The Message Bus: A Platform for Component-based
Conferencing Applications

Jörg Ott & Dirk Kutscher
TZI, Universität Bremen

Postfach 330440
28334 Bremen, Germany

{jo|dku}@tzi.uni-bremen.de

Colin Perkins
USC Information Sciences Institute

4350 N. Fairfax Drive #620
Arlington, VA 22203, USA

csp@isi.edu

ABSTRACT
We present the Message Bus (Mbus) [14], a lightweight,
message oriented, infrastructure for ad-hoc composition of
heterogeneous components. In this paper we describe the
general Mbus architecture, the Mbus transport
specification and higher-level services. It is shown how the
Mbus fits into the multiparty multimedia conferencing
architecture and can be used for decomposing conferencing
applications.

Keywords
Message oriented middleware, coordination, conferencing,
conference control

INTRODUCTION
Recent years have seen an explosion in the markets for re-
mote teleconferencing, mobile telephony, and streaming
media, with wide deployment of a range of increasingly
sophisticated devices (e.g. PDAs, mobile telephones, and
“web-devices”). There has also been a significant change
in the underlying communication medium for many of
these systems with increased reliance on IP-based
transport, at the expense of earlier standards such as ISDN,
H.320, GSM, ATM, etc.

These trends have resulted in a unique opportunity to de-
velop a common infrastructure for ad-hoc composition of
heterogeneous components. Such an infrastructure will
leverage the increasing reliance of these devices on IP, to
provide a common control and coordination channel, re-
sulting in a large amount of experience that has previously
been lacking.

This paper presents the Message Bus (Mbus): our vision of
that common coordination infrastructure.

The Mbus developed out of the desire to support local con-
ference control for multiparty multimedia conferencing in
the Mbone community. In this community, a model has
arisen whereby a set of loosely coupled tools is used to par-
ticipate in a conference. A typical scenario is that audio,

video and shared workspace functionality is provided by
three separate tools (although some combined tools exist).

In [23] Henri ter Hofte introduces the notion of grouplet
services that are the units of extension and composition in
a groupware application. Grouplet services are used to im-
plement certain functions within a groupware system, so-
called groupware services. In the description of a reference
architecture for component groupware the following guide-
lines for structuring groupware services into grouplet ser-
vices are proposed (amongst others):

• Separate different media in different grouplet ser-
vices

• Separate conference management services from
other groupware services

• Separate coordination services from other group-
ware services

Multiparty multimedia conferencing is one specialization
of groupware that is characterized by the use of
synchronous collaboration between potentially large
numbers of spatially separated particpants.

The decomposition of a conferencing application into sepa-
rate media agents maps well onto the underlying media
streams, which are also transmitted separately. Given such
an architecture, it is useful to be able to perform some
coordination of the separate media tools that perform
protocol functions and present media data to the user. For
example, it may be desirable to communicate playout-point
information between audio and video tools, in order to
implement lip-synchronization [10]. In addition, it may be
useful to implement some degree of coordination between
sessions, e.g. to arbitrate access to hardware devices, such
as framegrabbers and audio input/output channels.

Usually, there also exist one or more user interface agents,
which control the media engines, and provide a unified
conferencing interface. This approach allows flexibility of
user-interface, but clearly requires some inter-process
communication channel by which a user-interface agent
may communicate with the media engines.

Although current practice in the Mbone community is to
rely on a lightweight session model, with little in the way
of explicit conference control [3] [8], there are some

situations where this is not appropriate, and a more tightly
coupled wide-area conference control protocol must be
employed. In [13] the notion of vertical interoperability
within a conferencing endsystem has been introduced,
which relied on a dedicated conference management
system (CMS) controlling the set of media tools, user
interfaces etc. in a user’s conferencing system. The CMS, a
conference controller, communicates with the local service
entities and with controllers of other’s users and can, for
exmaple, implement the enforcement of conference
policies and inform local entities about status changes in
the conference.

Again, if a common local coordination channel is present,
a separate conference control entity may be added to the
session if desired to perform these functions that are
required for tightly coupled conferencing.

Note also that these entities need not reside on the same
device: you may wish to initiate a call from your PC, but
participate via a traditional looking telephone, which is
possible once the phone and PC are networked and intelli-
gent.

Similar needs may be discovered when considering the
kinds of distributed end-points that may become common
with the increasing spread of technologies such as IrDA
and Bluetooth that provide short-range wireless
communication. For example, a PDA may wish to
communicate with a cellular phone to dial a number from
an address book, or the phone may wish to coordinate with
your personal CD player to arbitrate access to your headset.
Products that provide some of these features are already
beeing developed [24].

• These applications point to the need for a local
scope coordination protocol, yet this is an area
where standards are lacking. For example
(adapted from [7]) the tasks required for
conference control can be broken down into five
categories:

• Coordination and control of applications and com-
ponents: tools need to be started with the correct
initial state, but also may need to cooperate and be
re-configured during the course of a session (e.g.
lip-synchronization, voice switched video).

• Reporting and control of conference membership:
who is currently in the conference, which media
types they can receive. This may also incorporate
admission control.

• Floor control: who may transmit at a particular
time.

• Network management: comprising resource
reservation, if required, reception quality
reporting and congestion control.

• Meta-management: announcement, advertisement,
initiation and teardown of conferences.

The Internet multimedia conferencing architecture
provides protocol support in three of these five areas:
membership reporting and control [17], network
management [1] and meta-conference management [4] [6]
[5] [18].

There is currently no provision within this protocol suite
for distributed floor control, or for application control. It is
this latter aspect, application coordination and control, that
is addressed in this paper.

Roadmap
This paper is structured as follows: The next section pro-
vides an overview of the Message Bus infrastructure, fol-
lowed by a detailed description of the transport services
considering message structure, data transport, entity aware-
ness and Mbus security.

Subsequently, we present a set of higher layer services that
are used to realize more structured communication inter-
actions and demonstrate the use of the Mbus by presenting
a short example.

Finally, we provide a classification of the Mbus concepts
comparing to related work followed by a final evaluation.

THE MESSAGE BUS INFRASTRUCTURE
Requirements
The Mbus provides an infrastructure for local coordination
based upon mechanisms for inter-component communi-
cation. It is designed to satisfy the following needs:

• simplify the composition of building blocks from
different sources through well-defined interfaces,
thus supporting a modular system design;

• allow for simple, uncomplicated, and ad-hoc co-
operation between dynamic groups of
applications;

• be easy to implement and integrate into existing
applications while enabling efficient independent
development and testing;

• maximize re-usability of components in different
systems as well as different system types;

• support separation of user interfaces from compo-
nents providing protocol (or other) functions;

• provide easy system extensibility (at run time);

• be independent of programming language choices
without prescribing system design or mandating
certain components;

• allow for efficient and low-overhead communi-
cation; and

• be robust against partial system failures.

The Mbus infrastructure logically consists of two compo-
nents: a transport infrastructure that provides message
transfer, addressing, basic bootstrap and awareness
mechanisms; and a semantic layer that is defined through

the abstract services of the communicating modules. The
following sections describe these in more detail.

TRANSPORT SERVICES
As its basic service, the Message Bus provides local (intra-
system) exchange of messages between components that
attach to the Mbus (Mbus entities). A system is typically
expected to comprise exactly one host, but a may also ex-
tend across a network link and include several hosts
sharing the tasks; a local system does not extend beyond a
single link – the Mbus is not intended or designed for use
as a wide-area conference control protocol. Wide-area
conference (and device) control has significantly different
requirements regarding trust-models and scalability and
must deal with different problems regarding reliability and
message transport delay.

The message transport service provides group- and point-
to-point-communication. It does not offer all the features
that are frequently found in protocols for coordinating dis-
tributed applications in general such as guaranteeing a
global or causal ordering of delivered messages.

Given these deliberate restrictions in functionality it is im-
portant to note that the Mbus implies a component model
where communication between components can be realized
without services from a full-featured infrastructure for dis-
tributed applications.

Message exchange takes place using UDP (User Datagram
Protocol): datagrams are sent either via unicast to a single
entity or multicast to a host- or link-local group. For
unicast communications, message delivery is optionally
performed reliably, with acknowledgements and
retransmissions taking place at the Mbus transport layer.
All multicast communication is performed unreliably.

For unicast communications, message delivery is
optionally performed reliably, with acknowledgements and
retransmissions taking place at the Mbus transport layer.
Point-to-point and multicast communication is in general
not distinguished by the transmission mechanism
employed at the IP layer but rather by the qualification of
the Mbus destination address. There is however the
possibility to use IP-unicast for messages that are directed
to a single receiver. (See section Entity Awareness.)

Mbus Addressing
A key concept of the Mbus is its flexible and extensible
addressing scheme. Mbus entities are identified by n-
tuples with each component of the tuple represented as an
attribute-value pair. The addressing scheme for conferenc-
ing applications includes address elements like conference
(“conf”), media (“media”), module type (“module”),
application name (“app”), and application identifier (“id”).
For example:
(media:audio module:engine app:rat id:1035-
0@134.102.218.67)

Each Mbus entity responds to messages addressed to any
subset of its own address. For example, the entity with the

address illustrated above will respond to messages pro-
viding the following target addresses:
(media:audio module:engine app:rat id:1035-
0@134.102.218.67)

(app:rat id:1035-0@134.102.218.67)

(media:audio)

()

A fully qualified address (with all components of the tuple
present) indicates a unicast Mbus address. Messages with
incomplete addresses have the potential to be received by
multiple entities.

Entity Awareness
An entity on the Message Bus can learn the existence of
other entities (and their complete addresses) by listening to
the self-announcement messages that all entities send
periodically. The rate at which these periodic heartbeat
messages are sent is adapted dynamically depending on the
number of entities in a Mbus session, thus allowing the
Mbus to scale to larger groups of entities.

This mechanism is used to locate entities and to monitor
their liveness during a session but also to build a complete
set of the addresses of all available entities – Mbus layer
addresses and transport layer addresses. The latter infor-
mation can be used for optimization strategies, e.g. for de-
ciding whether a message can be sent via IP-unicast.

Based upon these awareness functions, a bootstrap proce-
dure is defined that allows entities to determine whether all
other entities they depend on are present (without bearing
the risk of deadlocks).

Group Communication Mechanisms
Each entity has a unique Mbus address that can be used to
identify it and that is composed of any number of named
address elements. The types and values of address elements
are application-specific and can be used to aggregate enti-
ties into address groups.

Address element names may be associated with semantics:
by providing certain address elements, entities can signal
the type of service functionality they are able to supply.
The Mbus specification itself does not impose any
restrictions on application specific address elements. The
semantics are provided by application specific profiles. For
example, the address element set for conferencing
applications defines elements for distinguishing entities by
the media type that is assigned to them allowing a local
conference controller to address one or more audio, video
and other media tools.

A message that is to be sent via the Mbus has a target ad-
dress – at the application level – that is used to determine
how to deliver the respective message. This allows for sub-
ject-based addressing-like message delivery semantics and
different communication models represented by the
different group addressing features:

Broadcast

When a target address list is empty the message is
broadcast to all entities on the Mbus.

Unicast

A message that contains a target address that is a unique
Mbus address of another entity will be processed by this
entity only. The Mbus defines mechanisms allowing such
messages to be sent directly via unicast to the specific en-
tity.

Multicast

As mentioned above target addresses can be used to iden-
tify groups on a per-message basis. All entities that match
the given target address will receive and process cor-
responding messages: In situations where a certain module
requires a specific service functionality, that can be pro-
vided by more than one other module, it can use a
multicast address specifying the group of service providers
to locate the desired entity. This may facilitate the imple-
mentation of service clients significantly: addresses of ser-
vice providers do not need to be hardcoded and the com-
munication model can accommodate many different spe-
cific scenarios regardless of the number of potential
service providers.

It is not necessary to know the exact addresses of all poten-
tial receivers of a message. Instead a sufficiently unam-
biguous address list can be used. For example, in order to
reach all audio engines in a session the address list (me-
dia:audio module:engine) might be appropriate.

Mbus Messages
Mbus messages are text-encoded and consist of a header
with protool information and a payload section that can
carry several textual commands with parameter lists. Com-
mand names are hierarchical and a set of basic data types
for command parameters is defined, including numeric
types, character strings, lists and opaque data.

Message authentication and encryption are supported as
inherent transport features to prevent malicious attacks and
to provide privacy for the communication within an Mbus
domain. This allows the Mbus to accommodate multiple
sessions of a user per host (including cross-session
coordination) as well as any number of users on the same
host or link (preventing accidental cross-user interaction).

HIGHER LAYER SERVICES
Since the specification of the transport mechanisms does
not include application-specific Mbus commands, these are
expected to be defined in independent profiles. Mbus pro-
files normally do not only consist of a set of command
definitions but also of the specification of the use of Mbus
address elements, message interaction schemes and the de-
scription of message semantics.

In addition to the basic transport mechanisms, interaction
schemes on a higher level of abstraction have been defined

to support the creation of useful profiles. This includes ab-
stractions like remote procedure call, event notification and
publish/subscribe mechanisms that provide more
structured communication schemes while still allowing for
simple and straightforward messaging.

Furthermore, different types of control-relations between
peers are provided. This allows for scenarios where entities
need a dedicated control relation to another entity in order
to operate properly. Again, mechanisms are provisioned
that allow both the simple ad-hoc communication scenario
without manual configuration and explicit control
relations.

These higher layer services are defined in a description of
guidelines for specifying Mbus profiles. One of the
features of these services is the notion of a default target
address that can be assigned to event notification
commands. In an application without a tight coupling
between entities the default target address is used to notify
other entities of certain events. Interested application
modules have to know this address and configure their
Mbus interface accordingly in order to be able to receive
notifications. By the means of entering an explicit control
relation with an event generating entity, a controlling entity
can redirect the target address. Depending on the type of
the selected control relation, this also affects the right to
send commands to the entity and may exclude other
entities from concurrently controlling it.

These mechanisms allow for re-using the same application
module in different scenarios with different requirements
for the strictness of the control relations: In an ad-hoc
Mbus session, say for prototyping a distributed system, an
entity can accept commands from arbitrary entities and use
a default target address for event notifications. In a tightly
coupled setting, different levels of control can be employed
in order to achieve a more formalized and structured com-
munication style.

EXAMPLES
Reliable Audio Tool (RAT)
RAT [25] is an example for a media tool that is itself
decomposed into several funtional units:

• a media-engine that is responsible for media
transport and rendering;

• a user-interface-component that provides a
graphical user interface; and

• a controller that coordinates the two other
components.

Usually RAT is invoked by starting the controller that in
turn starts new processes for the media-engine and the
user-interface. On startup, the three entities synchronize by
using the corresponding Mbus mechanisms and the audio-
engine starts to report its capabilities and its status to the
user-interface that uses this information to build
appropriate menus etc. for the options that can be
configured.

After this setup-phase, the user interface reacts to user-
interaction by sending appropriate Mbus commands to the
audio-engine and the audio-engine reports events to the
user-interface.

The components that constitute the RAT application are
implemented as independent programs and can be re-used
for other applications. For example the media-engine can
be used in integrated conferencing applications, where the
RAT-user-interface is replaced by another, probably
application-specific user-interface.

Another example is an IP-Telephony-gateway that employs
the RAT-media-engine for receiving and sending audio.

These examples highlight the way that components of
originally standalone applications can be re-used in new
scenarios without having to re-configure or even re-
compile them.

Multimedia Conferencing Application
The following example illustrates how the Mbus can be
used to extend the functionality of a stand-alone IP-Tele-
phony system to an audio/video conferencing application
by integrating the telephony box and re-using its functional
components as Mbus entities in a new application.

Figure1 shows a Mbus based IP-Phone that is used as an
audio component in an audio/video conferencing system:
The additional components on the left-hand side run on a
co-located workstation and extend the functionality of the
phone system by taking-over the control of some sub-com-
ponents. The “Endpoint Controller” registers with the
“Phone Controller” and coordinates the new application.
The Mbus communication model allows for plugging-in
the new components without prior re-configuration of the
system. For example the events that are generated by the
audio engine and visualized by the phone display can be
received and processed by the new GUI running on the
workstation. This can be accomplished by the Mbus group
communication facilities and/or by registering the GUI as
an additional controller at the audio engine.

It can be noticed that decomposing applications using the
Mbus mechanisms yields a certain level of tailorability of

the final applications as well as the individual components
that is achieved by

1. decomposing the application into independent, re-
usable funtional units;

2. specifying Mbus interfaces for the components;

3. using the Mbus group communication
mechanisms for potential extensions; and

4. deploying the higher level services in order to al-
low for structured extensibility and possible
transition between uncoordinated and controlled
operation modes.

Example Message

Figure 2 shows an example Mbus message that is sent
unreliably to the group of user interface modules in a
components-based application.

RELATED WORK
Concepts similar to those of the Mbus have been proposed
on a number of occasions in the past. In this section, we
review those proposals to show how they differ from our
proposal, and highlight the relative advantages and disad-
vantages of each.

LBL Conference Bus
The most widely deployed local conference coordination
protocol in the Mbone community is the LBL conference

bus, used by the media tools vat [9] and vic [11] for
arbitration of access to hardware devices (e.g.: framegrab-

GUI

SIP
Engine

User
Preferences

Audio
Engine

Workstation

Call control

User control & configuration

Media engine configuration

Keypad &
Display

Phone
Controller

IP Telephone

Endpoint
Controller

Video
Engine

Figure1: Extending an Mbus-based IP-Telephony system

mbus/1.0 1 342545638 U (media:audio \
module:engine app:rat id:1035- \
0@134.102.218.67) (module:ui) ()
rtp.source.name (“54e3” “unknown”)
rtp.source.codec (“54e3” “GSM”)
rtp.source.active (“54e3” 1000)

Figure 2: Sample Mbus Message

ber, audio hardware), voice switching of video, and other
simple inter-process coordination.

The LBL conference bus protocol is simple, yet effective
for the limited use to which it is put. Messages have a type
field, which does not appear to be used, and a process-ID
as the destination address. A single, free form, text
command sent in each message (and interpreted directly as
a Tcl command string by the recipient).

Messages on the LBL conference bus are sent using IP
multicast, with zero time-to-live (restricting the multicast
to a single host). Each process listens on two multicast
groups, one for messages affecting all sessions, and one
specific to the individual session. There is no reliability
included in the LBL conference bus protocol.

The key features of the LBL conference bus are the use of
IP multicast for local communication, and the use of mul-
tiple communication channels.

Conference Control Channel Protocol
The Conference Control Channel Protocol (CCCP) [7] is
more ambitious in its scope, and is “intended for
controlling conferences ranging from small, tightly
coupled meetings, to extremely large loosely coupled
seminars”.

CCCP does not only provide a local coordination channel
but is also targeted at conference wide control. Since IP-
Multicast is used at the transport layer for both local and
conference wide communication, CCCP has to address the
problem of reliable multicast transmission. It therefore in-
troduces different reliability and message ordering classes.

The addressing scheme provides address tuples (of fixed
cardinality) and the possibility of “wildcarding” certain
address elements in destination addresses. Although the set
of address elements is fixed, CCCP still provides a mecha-
nism for extensibility: the type element of an address can
be hierarchical, so that the type of an CCCP entity can be
very specific while the entity can be still be addressed by
the major type prefix.

CCCP messages have a plain text addressing scheme and a
plain text, free format text payload that usually consists of
a function name and parameters.

Pattern Matching Multicast
The MInT toolset [19] uses a communication protocol
named “pattern matched multicast” (PMM) [16] for
coordination of media agents by a local controller. PMM
supports three different transport methods: a centralized
architecture with a message replicator that distributes
messages to registered entities via UDP/IP or TCP/IP and a
de-centralized model using host-local IP-Multicast without
a central message replicator. The replicator process can
also act as a message filter by sending certain messages
only to entities that are interested.

PMM messages simply consist of the name of an object
and a operation to be applied to the object. Object names

are hierarchical descriptors containing identifiers for the
conference, media, media instance and (optionally) the
media session member. Operations are textual commands,
“directly interpretable by a standard Tcl interpreter”.

Applications can register for messages with the central re-
plicator by sending a message with a wildcarded object and
operation name.

The receiver directed filtering is only available in the pres-
ence of a central replicator.

Jini
Jini [21] is a Java based architecture enabling users to
share services and resources over a network within the
scope of a workgroup. Jini provides the concept of
federating services and clients of services.

Services can be located using lookup services that serve as
repositories of services – objects in the Java programming
language that can be downloaded to clients during a lookup
operation and act as proxy stubs to the service module.
Services deploy a location server discovery and join proto-
col in order to become part of a Jini system. The discovery
protocol relies on IP-Multicast. It is possible to distinguish
types of services by a group identifier within in a lookup
service. These identifiers are arbitrary strings that services
can choose upon registering with a lookup service.

Jini uses Java remote method invocation (RMI) to imple-
ment the basic inter-services protocols but service proxies
can employ other protocols to communicate with service
entities.

Jini provides the model of leasing services: Resources are
allocated using a renewable, duration-based scheme. Fur-
thermore Jini offers an event and notification interface and
a transaction interface that enables Jini application to coor-
dinate state changes.

The main focus of the Jini architecture is on resource and
service localization and not on the area of client-service-
interaction. Due to the use of RMI Jini is a Java-only solu-
tion that cannot interoperate with non-Java components.

CORBA and DCOM
CORBA [12] and DCOM [2] provide mechanisms for
transparent invocation and accessing of remote distributed
objects. Both require interface definitions and provide the
usual object oriented features such as encapsulation,
inheritance, and polymorphism for remote objects.
Different techniques are used to achieve programming
language and platform independence: CORBA provides
abstract class definitions that are mapped to
representations in concrete programming languages while
DCOM, relying on the Component Object Model (COM),
provides a per-platform binary standard.

The applications that both CORBA and DCOM are
targeted at usually require a tighter coupling of
components and fall into a different category than the
Mbus-based component system we have presented.

Both approaches offer elaborate solutions for the creation
of type-safe distributed features that go beyond the services
of a message-oriented coordination infrastructure. By
requiring a significant amount of static information and/or
further management components like naming services,
interface repositories and Object Request Brokers
(respectively Service Control Managers) both techniques
do not appear adequate for simple, flexible ad-hoc
cooperation. Besides, they are both not universally
available and particularly easy to implement for small,
limited platforms.

CONCLUSIONS
It has been shown that the Mbus is a simple lightweight
message-oriented coordination protocol that is useful for
decomposing applications into components that are dis-
tributed across a local network link. Although the Mbus
does not provide complete support for distributed applica-
tions it can be used in systems, where components are rela-
tive independent and can cope with the message oriented
coordination services.

The group communication mechanisms add a valuable de-
gree of flexiblity that allows to plug-in components into a
running system in a uncomplicated way. This result in
tailorable systems that are open for future extensions.

The higher layer services allow for structured communica-
tion interactions while still preserving the simple and
flexible message exchange paradigm.

Given these benefits and considering the platform-
neutrality the Mbus is an interesting alternative to the
presented existing solutions.

FURTHER INFORMATION
Detailed information and implementations for different
platforms are available at http://www.mbus.org/.

REFERENCES
1. Braden, R., Zhang., L., Berson, S., Herzog, S., and

Jamin, S., Resource ReSerVation Protocol (RSVP) –
Version 1 Functional Specification, RFC 2205,
September 1997

2. Brown, N., Kindel, C., Distributed Component Object
Model Protocol -- DCOM/1.0, draft-brown-dcom-v1-
spec-03.txt, January 1998

3. Handley, M., Crowcroft, J., Bormann, C., and Ott J.
The Internet Multimedia Conferencing Architecture.
draft-ietf-mmusic-confarch-03.txt. July 2000

4. Handley, M., Schulzrinne, H., Schooler, E., and
Rosenberg, J. SIP: Session Initiation Protocol. RFC
2543. March 1999

5. Handley, M., and Jacobsen, V. SDP: Session
Description Protocol. RFC 2327. April 1998

6. Handley, M., Perkins, C., and Whelan, E., Session
Announcement Protocol, draft-ietf-mmusic-sap-v2-
06.txt, March 2000

7. Handley, M., and Wakeman, J., CCCP: Conference
Control Channel Protocol – A scalable base for
building conference control applications, 1995

8. Jacobsen, V. Multimedia conferencing on the Internet.
SIGCOMM’94 Tutorial. August 1994

9. Jacobsen, V., McCanne, S., vat – LBNL Audio
Conferencing Tool, http://www-nrg.ee.lbl.gov/vat/

10. Kouvelas, I., Hardman, V. and Watson, A., Lip
Synchronisation for use over the Internet: Analysis and
Implementation, In GLOBECOMM’96, 1996

11. McCanne, S., and Jacobsen, V., Vic: A flexible
Framework for Packet Video, In ACM Multimedia’95,
pp. 511-522, November 1995

12. Object Management Group, A Discussion of the Object
Management Architecture,
http://www.omg.org/technology/documents/formal/obje
ct_management_architecture.htm, January 1997

13. Ott, J., Bormann, C., and Bormann, U., Service
Interoperability in Teleconferences, published as
Common Functional Specification L313 of the RACE
Industrial Consortium, February 1994

14. Ott, J., Perkins, C., and Kutscher, D., A Message Bus
for Local Coordination. draft-ietf-mmusic-mbus-
transport-02.txt. July 2000

15. Ott, J., Perkins, C., and Kutscher, D., The Message Bus:
Messages and Procedures, draft-ietf-mmusic-mbus-
semantics-00.txt, 1999

16. Schulzrinne, H., Dynamic Configuration of
Conferencing Applications using Pattern-Matching
Multicast, In NOSSDAV’95 (5th International
Workshop on Networks and Operating System Support
for Digital Audio and Video), 1995

17. Schulzrinne, H., Casner, S., Frederick R., and Jacobsen,
V. RTP: A Transport Protocol for Real-Time
Applications. RFC 1889. January 1996

18. Schulzrinne, H., Rao, A., and Lanphier, R., Real Time
Streaming Protocol (RTSP). RFC 2326. April 1998

19. Sisalem, D., and Schulzrinne, H., The Multimedia
Internet Terminal, Journal of Telecommunication
Systems, vol. 9, no. 3, pp. 423-444, September 1998

20. Stiemerling, O., Component-based Tailorability,
Dissertation, Bonn, May 2000

21. Sun Microsystems, Jini Specification,
http://www.sun.com/jini/specs/jini1_1spec.html, 2000

22. Szyperski, C., Component Software – Beyond Object-
Oriented Programming, Addison-Wesley, 1999

23. ter Hofte, H., Working Apart Together – Foundations
for Component Groupware, Telematica Instituut,
Enschede, 1998

24. 3Com, 3Com SIP PDA Phone Control Application,
http://www.3com.com/products/sip/sip_solutnpda.html,
2000

25. University College London, Robust Audio Tool,
http://www-mice.cs.ucl.ac.uk/multimedia/software/rat/,
2000

