
Energy-aware Job Assignment in Server Farms
with Setup Delays under LCFS and PS
Esa Hyytiä

Department of Communications
and Networking

Aalto University, Finland

Rhonda Righter
Department of Industrial Engineering

and Operations Research
University of California Berkeley

Samuli Aalto
Department of Communications

and Networking
Aalto University, Finland

Abstract—We consider the job (or task) assignment problem
to heterogeneous parallel servers, where servers can be switched
off to save energy. However, switching a server back on involves
a constant server-specific delay. We will use one step of policy
iteration from a starting policy such as Bernoulli splitting, in
order to derive efficient job assignment (dispatching) policies
that minimize the long-run average cost. In our earlier work, we
assumed FCFS scheduling at the servers. In this paper, we focus
on LCFS and PS, where the latter in particular serves as an
important model, e.g., for server farms where jobs are processed
concurrently. LCFS, on the other hand, is a robust policy that
works especially well when service times are highly variable,
and is easier to implement than the standard alternative policy
for high variability, LAS (least attained service time). Our costs
include energy related running costs, as well as performance
related mean response times. The efficiency of the resulting
operating policies is illustrated with numerical examples, where
we also compare FCFS to LCFS and PS.

Index Terms—setup delay, routing, insensitivity, LCFS, PS

I. INTRODUCTION

Many Internet services are now provided by data centers
and (web) server farms, and their performance and energy con-
sumption are receiving increasing attention. A straightforward
way to control the energy consumption is to switch off idle
servers during the off peak periods when they are not needed.
However, switching them back on typically takes time and thus
it may not be cost effective to switch a server off whenever
one becomes idle.

In this paper, we consider an elementary model for a server
farm comprising k parallel servers. The scheduling discipline
of jobs in each server is often assumed to be first-come-first-
served (FCFS). In contrast, we consider last-come-first-served
(LCFS) and processor sharing (PS) [1], which are insensitive
to the service time distribution for standard M/G/1 queues.
In particular, LCFS is a robust policy that works especially
well when service times are highly variable, and is easier
to implement than the standard alternative policy for high
variability, LAS (least attained service time).

Before considering the complete system of parallel queues,
we first study a setup delay in single-server queues. Our aim
is to derive the value functions with respect to the response
time (sojourn time). This was done for M/G/1-FCFS in [2].
We focus first on M/G/1-LCFS, and then we move to the
processor sharing (PS) scheduling discipline and study M/D/1-
PS, because M/G/1-PS is beyond our means. Additionally, we

show that the mean response time in an M/G/1-PS is no longer
insensitive to the service time distribution when a setup delay
is introduced, whereas with LCFS the insensitivity property is
preserved. The insensitivity property is generally desired as it
enhances robustness [3], [4].

We then utilize the single-server results to assign jobs
in a server farm modelled as a system of parallel queues.
The optimal decisions take into account both the (expected)
response times as well as the energy consumption. Additional
complications arise from the setup delays when some server
has been switched off in order to preserve energy.

The main contributions of this work are as follows:
1) We derive the mean response time for M/G/1-LCFS

and M/D/1-PS queues with random setup times S, and
consequently, we show that the mean response time with
LCFS remains insensitive to the job size distribution,
whereas with PS the setup delay breaks the widely
celebrated insensitivity property of PS.

2) We derive value functions for the size-aware M/G/1-
LCFS and M/D/1-PS queues subject to setup delays,
which enable efficient job assignment policies.

3) We also derive the so-called Lookahead policy for
LCFS with setup delays, which outperforms all reference
policies in the numerical examples.

We also evaluate example server farms under different schedul-
ing policies and experiment with the variability in the job sizes.

A. Related work

In the basic problem, jobs are processed in FCFS order,
there is no setup delays and one is interested in minimizing
the mean response time. Under different settings, Join-the-
Shortest-Queue (JSQ) has been shown to be optimal, e.g.,
in [5], [6], Least-Work-Left (LWL) in [7]–[10], Round-Robin
(RR) in [11]–[13], and Size-Interval-Task-Assignment (SITA)
in [14]. Such simple policies are no longer optimal when
there is a setup delay. The job assignment problem has been
approached also within the Markov decision problem (MDP)
framework, see, e.g., [15]–[17]. The idea is to start with
an arbitrary static policy, and then carry out the first policy
iteration (FPI) step.

Results with setup delays are scarce. Artalejo et. al [18] give
steady-state results for an M/M/k, where at most one server
can be in an exponentially distributed setup phase. Gandhi



and Harchol-Balter [19] consider a similar M/G/k with an
exponential setup delay. In [20], [21], Gandhi et. al consider
an M/M/k with different power saving policies. Maccio and
Down [22] study different switching on/off extensions to an
M/G/1 and then apply random routing.

II. PRELIMINARIES

A. Arrival process and model for the server farm

We assume that jobs arrive according to a Poisson process
with rate λ. The job sizes are i.i.d. random variables, Xj ∼ X .
Jobs are processed by a system of k parallel servers. Each
server has its own queue, and new jobs are assigned upon
arrival. Server i processes the jobs at rate νi according to a
local scheduling rule (e.g., LCFS, or PS).

We assume that Server i incurs energy costs at rate ei
whenever it is running, either processing jobs or in the setup
phase. When the server is idle and switched off, the cost rate is
zero. When a server becomes idle, it is switched off to preserve
energy. However, it takes time si to switch it back on before it
can start processing jobs. (In Section V-B we consider systems
where some servers are never switched off).

Next we review some earlier results for M/G/1 queues that
are necessary for our analysis in Sections III and IV. In the
next few sections we consider only one queue so we drop the
subscript i.

B. Busy periods in M/G/1

Our primary interest in this paper is server systems with a
fixed known setup time s. However, some results we give in
more general form for arbitrary i.i.d. random setup delays.

Consider first an arbitrary M/G/1 queue with i.i.d. setup
delays Si ∼ S. That is, the first arrival to an empty queue
initiates a setup phase with a random duration S before the
service starts. Evolution of such a system consists of three
phases, (i) an exponentially distributed idle time with mean
1/λ, (ii) a setup phase with length S, and (iii) the working
phase of length B; the cycle of three phases repeats sequentally
as illustrated in Fig. 1, which shows a sample path of the
backlog process. An empty system corresponds to a renewal
point, and B clearly depends on S. The mean duration of the
whole cycle is

E[`] := 1/λ+ E[S] + E[B].

Moreover, the fraction of time a stable system works is equal
to the offered load ρ = λ · E[X], i.e.,

E[B]

1/λ+ E[S] + E[B]
= ρ,

and solving for E[B] gives

E[B] =
E[X]

1− ρ
+

ρ

1− ρ
· E[S] =

(1 + λE[S])E[X]

1− ρ
, (1)

and

E[`] =
1/λ+ E[S]

1− ρ
. (2)

Exp(λ)

empty working

S B

setup

Fig. 1. One busy cycle consists of three phases: an empty system, a setup
phase of s, and a working phase during which jobs are actually processed.

Note that the above holds for any work conserving scheduling
discipline. The mean duration of the busy period including the
initial setup phase is

E[B∗] = E[S] + E[B] =
E[S] + E[X]

1− ρ
,

whereas the mean number of jobs served in a busy period is

E[NB ] =
1 + λE[S]

1− ρ
.

The probability that an arriving job finds the system empty
and starts a setup period is (1/λ)/E[`] (PASTA), which gives

P{empty} =
1− ρ

1 + λE[S]
=

1

E[NB ]
,

where the latter is due to the fact that exactly one job per busy
period sees the system empty.

C. State description
Let z be the current (size-aware) state of the system, z =

(δ;x1, . . . , xn), where δ is the remaining setup delay and the
xi the remaining service times of the n jobs. The ordering of
the jobs in z depends on the scheduling discipline:
• With LCFS, Job 1 receives service first and Job n last.
• With PS, xi+1 ≤ xi; Job n departs first and Job 1 last.

This choice is for convenience of notation. We let z⊕x denote
the state after an arrival of a job with size x. The virtual
backlog, denoted by u, is the time until the system becomes
idle given no additional jobs arrive,

u = δ + x1 + . . .+ xn,

i.e., u includes also the remaining setup delay, if any. Thus,
the virtual backlog after an arrival is given by

u′ =

{
u+ x, if the server was running, (u > 0)
s+ x, if the server was off. (u = 0)

The latter case includes the setup delay.

D. Value functions and admission costs
The central notion in this paper is the value function,

vz := lim
t→∞

E[Vz(t)− r · t], (3)

where Vz(t) denotes the costs incurred during (0, t) when ini-
tially in state z, and r is the mean cost rate. We have implicitly
assumed a stable and ergodic system (λE[X] < 1). Moreover,
in this paper we consider size-aware state information. The
important quantity is actually the difference, vz′ − vz , which
describes how much more or less it costs to start an ergodic
system from state z′ instead of state z.



E. First policy iteration and Lookahead
Policy improvement is a standard technique of Markov

decision processes [23]. At every step, one first computes the
value function for the current policy αi, and the policy iteration
step yields a new policy αi+1. Under certain assumptions, αi
converges to the optimal policy.

In our case, actions correspond to job assignment decisions.
We start from a static basic policy α0, which assigns jobs
independently of the state of the queues. With such policies,
the system decomposes to k M/G/1 queues and the value
function of the whole system is the sum of the queue-specific
value functions,

vz =
∑
i

v(i)zi .

The first policy iteration (FPI) step reduces to

αFPI(z, x) = arg min
i

ai(zi, x),

where ai(zi, x) is the marginal admission cost to Queue i,

ai(zi, x) := v
(i)
zi⊕x − v

(i)
zi . (4)

In the following we often omit x and simply write a(z). Note
that vz and a(z) depend on the cost structure (response time,
energy consumption, etc.).

With FPI, we deviate from the basic policy for a single
action and estimate the future costs by assuming that the
subsequent decisions are by the basic policy. With Lookahead
(LH), we deviate for two consecutive actions; for the current
job and (tentatively) for the next. Lookahead thus gives cost
estimates for such decions as “this job to Queue 1 and the
next (currently unknown) job to Queue 2”. We return to LH
in Section III-A. See also [24].

F. Running costs in M/G/1
The running costs depend only on the lengths of busy and

idle periods, and not on the scheduling discipline as long as it
is work conserving. The following results, given in [2] for a
fixed setup delay s, hold for all the M/G/1 queues we study.
Here we generalize the results for a random setup delay of S.

The mean running cost rate in a work conserving M/G/1
queue with setup delay S is

rR =
ρ+ λE[S]

1 + λE[S]
· e. (5)

The size-aware running cost value function for M/G/1 is

vR(u)− vR(0) =
u

1 + λE[S]
· e. (6)

Using (4), the admission cost of a job with size x is

aR(u, x) =
x+ 1(u = 0) E[S]

1 + λE[S]
· e.

Note that even though here we assume the elementary cost
structure of running costs only for energy consumption, we
can include, e.g., switching costs and processing costs, along
with our results on response times in the sequel, to develop
more general energy-related cost structures for LCFS and PS
models. We refer the interested reader to [2] for further details.

III. PREEMPTIVE LCFS WITH A SETUP DELAY

Let us next consider the response times for the preemptive
LCFS scheduling discipline with a setup delay. First we sup-
pose that the setup delays are i.i.d. random variables Si ∼ S.

Theorem 1 (Mean response time): The mean response time
in an M/G/1 with preemptive LCFS is

E[T ] =
E[X]

1− ρ
+

E[S] + (λ/2) E[S2]

1 + λE[S]
. (7)

Proof: The mean response time for an arbitrary job with
size x arriving to a busy period where the setup delay is S = s
can be obtained using PASTA,

E[T |x, s] = 1/λ

E[`]
· x+ s

1− ρ +
s

E[`]

s∫
0

1

s
· x+ δ

1− ρ dδ +
E[B]

E[`]
· x

1− ρ

=
x

1− ρ +
s(2 + λs)

2(1 + λs)
.

Thus E[T |x, s] = E[X]
1−ρ + s(2+λs)

2(1+λs) , and from PASTA,

E[T ] =

∫
E[T |s]π(s) dFS(s),

where FS is the distribution function of S and π(s) dFS(s) is
the proportion of time the system is in a busy cycle where the
setup delay is s. From (2),

π(s) =
E[`|S = s]

E[`]
=

1 + λs

1 + λE[S]
,

which yields (7).
The latter term in (7) corresponds to the penalty due to the
setup delay, and is the same as the FCFS delay penalty (see,
e.g., (8.3.64) in [25]), so we have:

Corollary 2 (Setup delay penalty): The penalty due to
setup delay in LCFS is the same as with FCFS,

pS :=
E[S] + (λ/2) E[S2]

1 + λE[S]
. (8)

Corollary 3 (Insensitivity): The mean response time in
M/G/1-LCFS with an i.i.d. setup delay is insensitive to the
service time distribution.
The fact that the penalty due to a setup delay is the same for
FCFS and LCFS makes one wonder if this is a general property
that holds for an arbitrary scheduling discipline. Later, in
Section IV, we will show that this is not the case. Note also
that the setup delay penalty (8) varies between E[S2]/(2 E[S])
and E[S] as a function λ. With a fixed setup delay of s, the
delay penalty for each job ranges from s/2 to s. In this case,
regardless of λ, the increase in the mean response time is order
of s. On the other hand, if S has high variance, the effect of
the delay penalty increases with λ. Of course, as long as the
variance is finite, the relative penalty (the cost rate due to setup
delays) will still approach 0 as ρ→ 1 because of the long busy
periods. In a system of parallel queues, we can minimize the



penalty by controlling the routing of jobs to modify the arrival
process to each queue.1

Little’s result then gives the mean number in the system,
which will also be the mean cost rate with respect to the
cumulative response time,

r := E[N ] = λE[T ] =
ρ

1− ρ +
λE[S] + (λ2/2)E[S2]

1 + λE[S]
=: r0 + rs,

(9)

where r0 is the mean cost rate for an M/G/1 queue with no
setup delay, and rs is the additional mean cost rate due to the
introduction of the setup delay S.

Next we limit ourselves to the case of deterministic setup
delay S ≡ s. We let z denote the size-aware state, z =
(δ;x1, . . . , xn), where δ is the remaining setup delay and the
xi denote the remaining service times. Job 1 receives service
first and Job n is at the end of the queue. Then

yj := δ + x1 + . . .+ xj

denotes the sum of the job’s own (remaining) service time,
the (remaining) service time of the jobs that have arrived
after it and the remaining setup time, i.e., yj is the (tenta-
tive) remaining response time of Job j. The mean remaining
response time of Job j is yj/(1−ρ) and the virtual backlog is
u = yn = δ+x1 + . . .+xn. For the size-aware value function
we have to following result:

Theorem 4 (Value function): The value function w.r.t. the
response time in an M/G/1-LCFS with setup delay s is

vz − v0 =

n∑
i=1

yi
1− ρ +

λ δ2

2(1− ρ) −
uλs(2 + λs)

2(1− ρ)(1 + λs)
. (10)

Proof: The mean response-time cost rate is r = E[N ] =
r0 + rs given in (9). We assume response time costs are
incurred continuously. Then

vz = E[Vz(Rz)]− (r0 + rs) E[Rz] + v0,

where Rz is the length of time until the system empties starting
in state z, for which E[Rz] = u/(1 − ρ), and Vz(Rz) is the
total cumulative response time cost incurred during Rz . For
all jobs that arrive during Rz , once they enter service, they are
unaffected by the setup delay, so their expected response times
starting at time δ are the standard M/G/1 LCFS response
times of E[X]/(1− ρ). That is,

E[Vz(Rz)] = λE[Rz] E[X]/(1− ρ) + E[V 0
z ] + E[V δz ]

= r0 E[Rz] + E[V 0
z ] + E[V δz ]

where V 0
z is the total remaining response times for the n jobs

initially present, and V δz is the total additional response time
that jobs arriving during δ experience due to the setup delay.
The remaining mean response time for a job j that is initially
present is yj/(1 − ρ). Thus, E[V 0

z ] =
∑
j yj/(1 − ρ). For a

1The effect of the routing policy can be seen in the following example.
It is easy to see that under a suitable light traffic setting the Round-robin
routing policy, though good for routing to queues without setups, can be the
worst possible policy if setup delays are present and new jobs are assigned
to servers that were just switched off.

job that arrives at time t, 0 ≤ t ≤ δ, its expected response
time increases by (δ − t)/(1− ρ), so

E[V δz ] =

∫ δ

0

λ(δ − t)
1− ρ

dt =
λδ2

2(1− ρ)
.

It follows that

vz − v0 =

n∑
j=1

yj
1− ρ

+
λδ2

2(1− ρ)
− rs E[Rz]

=

n∑
j=1

yj
1− ρ

+
λδ2

2(1− ρ)
− uλs(2 + λs)

(1− ρ)2(1 + λs)
.

Note that alternatively (10) can be written using the xi,

vz−v0 =
1

1−ρ

(
n∑
i=1

i xn−i+1 + nδ +
λ δ2

2
− uλs(2+λs)

2(1 + λs)

)
.

We note that the full setup delay s shows up in an additional
term in (10). It is negative due to the fact that a large u means
that the next setup period has been pushed far in to the future.

Corollary 5: The (response time) admission cost of a job
with size x to an LCFS queue is vz⊕x − vz , which gives

a(x, n, δ) =
nx+ δ

1− ρ +
(2− (λs)2)x+ 1(n=0)s(2 + λs)

2(1− ρ)(1 + λs)
. (11)

In particular, the admission cost depends only on the length
of the remaining setup delay δ and the number in queue
n, not on the backlog u. On one hand, this is a positive
thing as the required state information is minimal, which
improves robustness. But on the other hand, this is a negative
feature as it means that the FPI policy does not utilize the
available size information. For example, with identical servers
having no setup delay, the FPI step gives JSQ, which may
be optimal when only the queue occupation is available, but
we assumed that the remaining service times are also known.
We overcome this shortcoming in the next section by also
considering explicitly the job arriving next.

A. Lookahead

In FPI, we deviate from the basic policy α0 for one decision
and assume that the consecutive decisions are all again by
α0. In our case, the basic policy is typically a static policy,
i.e., its decisions do not depend on the current state of the
system. This may obviously hinder the quality of the FPI
policy. One approach to overcome this is Lookahead, where
the next decision is also taken into account [2], [24].

1) Analysis for a single queue: We will define a lookahead
cost for assigning a job with size X∗ at time T ∗ ∼ Exp(λ∗).
We note that X∗ may obey a different distribution than X ,
or it can be set explicitly to zero, which means that the given
queue has an arrival free period of length T ∗ (i.e., the next
job is assigned somewhere else). Similarly, λ∗ can be different
from λ and typically we have λ∗ > λ when the Lookahead
cost is used to evaluate different dispatching decisions.

Definition 1:

L(z, λ∗, X∗) := E[Vz(T
∗)− r · T ∗ + vZ∗⊕X∗ − v0],



where Vz(T ∗) denotes the costs incurred during time T ∗ and
Z∗ denotes the state of the queue at time T ∗ before the
assignment of the job with size X∗.

Theorem 6: The lookahead cost in an M/G/1-LCFS with
setup delay s when the next job with size X∗ arrives at time
T ∗ ∼ Exp(λ∗) is

L(z, λ∗, X∗) =

n∑
i=1

yi
1−ρ +

(
n+1−

∑n
i=1 e

−λ∗yi
)
(ρ∗−ρ)

λ∗(1− ρ)

+
λδ2

2(1− ρ) +
(λ− λ∗)(1− λ∗δ − e−λ

∗δ)

(λ∗)2(1− ρ)

+
λ(ρ−ρ∗−λ∗u) + (λ∗−λ)e−λ

∗u

λ∗(1− ρ) · s(2 + λs)

2(1 + λs)
,

(12)

where u denotes the virtual backlog including the remaining
setup delay δ, and ρ∗ = λ∗ E[X∗].

Proof: Consider first the difference in the expected cost
incurred during (0, T ∗) starting in state z and the long-run
average cost for the same interval, A0 = E[Vz(T

∗)− T ∗ · r],
where r = E[N ], given by (9). Thus,

A0 =
∑
i

E[min(yi, T
∗)]− r

λ∗
=
∑
i

1− e−λ∗yi
λ∗

− r

λ∗

=
1

λ∗

(
n−

∑
i

e−λ
∗yi − ρ

1− ρ
− λs(2 + λs)

2(1 + λs)

)
.

Then at time T ∗ a job with size X∗ arrives, and we need to
compute the value function (10) for the resulting state (after
the arrival). Let ∆ denote the remaining setup delay at time
T ∗. For the first sum in (10) we have

A1 =
E[∆] + E[X∗]

1−ρ
+
∑
i

P{T ∗<yi}E[yi−T ∗+X∗|T ∗<yi]
1−ρ

,

where the first term corresponds to the arriving job with
size X∗, and the summation to the earlier jobs possibly still
present. This gives

A1 =
1

1− ρ

(
δ − 1− e−λ∗δ

λ∗
+ se−λ

∗u + E[X∗]

+
∑
i

[
yi + (1− e−λ

∗yi)

(
E[X∗]− 1

λ∗

)])
.

The second term in (10) corresponds to the remaining setup
delay and we have

A2 =
λE[∆2]

2(1−ρ)
=

λ

1−ρ

(
δ2 + e−λ

∗us2

2
+

1− e−λ∗δ − λ∗δ
(λ∗)2

)
,

The last term in (10) depends on the virtual backlog after the
arrival at time T ∗, denoted by U∗, and

E[U∗] = P{T ∗<u}E[u−T ∗|T ∗<u] + P{T ∗>u} s+ E[X∗],

which reduces to

E[U∗] = u+ E[X∗]− 1− (1 + λ∗s)e−λ
∗u

λ∗
.

Multiplying E[U∗] by the constant factor in the last term of
(10) gives the final part for the lookahead cost,

A3 =
−λs(2 + λs)

2(1− ρ)(1 + λs)

(
u+ E[X∗]− 1−(1+λ∗s)e−λ

∗u

λ∗

)
.

The sum A0 +A1 +A2 +A3 then gives (12).
Note that the identity L(z, λ,X) = vz − v0 holds, because
if the next job arrives at rate λ and has size X , the system’s
future behavior is normal from the beginning.

Corollary 7: Without a setup delay (s = 0), the lookahead
cost reduces to

L(z, λ∗, X∗) =

n∑
i=1

yi
1− ρ

+

(
n+ 1−

∑n
i=1 e

−λ∗yi
)

(ρ∗ − ρ)

λ∗(1− ρ)
.

2) Dispatching jobs: Consider next a system with k parallel
servers, where jobs arrive at rate λ. As with the FPI approach,
the Lookahead policy chooses the action that gives the smallest
expected cost (difference). For the action routing both the
current and the next job to Queue i we have

aii = L(i)(zi ⊕ x, λ,X)− L(i)(zi, λ, 0),

and for actions (i, j) with j 6= i,

aij = L(i)(zi ⊕ x, λ, 0)− L(i)(zi, λ, 0)

+ L(j)(zj , λ,X)− L(j)(zj , λ, 0).

In the above, we have subtracted
∑
i L

(i)(zi, λ, 0) from all
the possible actions, which makes the computation of the
lookahead costs a local operation. The Lookahead policy
chooses the most promising action,

αLH(z, x) = arg min
i

{
min
j

ai,j

}
.

IV. M/D/1-PS WITH A SETUP DELAY

Next we consider PS with jobs of fixed size d. The value
function with respect to response time in an ordinary M/D/1-
PS queue has been given in [16]. We are interested in an
M/D/1-PS with a setup delay, and derive first two expressions
for the expected costs, denoted by q(z), that the system incurs
until the end of the current busy period from an initial state
z = (δ;x1, . . . , xn), where x1 ≥ . . . ≥ xn. That is,

q(z) = E[

∫ Rz

0

Nz(t) dt], (13)

where Rz denotes the remaining length of the busy period and
Nz(t) is the number of jobs in the system at time t.

Lemma 8: The average total response time that an M/D/1-
PS queue with a remaining setup delay of δ > 0 incurs during
the remaining busy period is

q(z) =
ρ(nd+ δ)

(1− ρ)2
+

2n2d+ (1 + ρ)(2n+ λ δ)δ

2(1− ρ)
, (14)

where n denotes the initial number of jobs waiting (xi ≡ d).
Proof: Because δ > 0, the setup period is under way and

x1 = . . . = xn = d as no job has received any service yet.
Let A denote the number of jobs arriving during the remaining



setup period, A ∼ Poisson(λ δ). Therefore, before the setup
is over, the system will incur an average response time of

q1 := n · δ + λ δ · δ
2

= (n+ λ δ/2) δ,

where the first term is the delay of the present n jobs and
the second term corresponds to the jobs arriving during (0, δ).
Without new arrivals, the response time of the initial M =
n+A jobs is Md, which gives the total cost of M2d because
serving all M jobs concurrently takes time Md. As M is a
random variable, on average we have that the expected cost
for this part is

q2 = E[M2d] =
(
(n+ λ δ)2 + λ δ

)
d.

The final part is to include the jobs that arrive once service
has begun. Each arrival after the setup period increases the
total response time by (see (3) in [16])2

c(u) = 2u+ d, (15)

where u denotes the backlog in the queue upon the arrival.
Suppose first that the initial backlog is u. In particular,
considering only the total backlog, each arrival starts a mini
busy period as illustrated in Fig. 2. Apart from the random
offset U∗ in the backlog, the busy period is identical to that
of an ordinary M/D/1 queue. The actual backlog the arriving
jobs see is the sum of U∗ and the backlog in an M/D/1 queue
at a random arrival. The latter is the same as the waiting time
W ∗ in an equivalent FCFS queue, and its mean is given by
the Pollazcek-Khinchine formula, E[W ∗] = λd2/(2(1 − ρ)).
Thus the average actual backlog that new arrivals see is

E[U∗ +W ∗] =
u

2
+

λd2

2(1− ρ)
,

because the remaining backlog from the initial backlog u is
on average E[U∗] = u/2. Moreover, there are on average
λu i.i.d. mini busy periods, each comprising on average
E[NB ] = (1 − ρ)−1 jobs. Combining these gives the mean
additional response time when the setup time is over and the
initial backlog is u,

q
(u)
3 =

λu

1−ρ
(2 E[U∗ +W ∗] + d) =

λu2

1−ρ
+

ρu

(1− ρ)2
. (16)

Because the initial backlog when service begins is a random
variable, Us = Nd, we need to substitute E[Us] = E[N ] d and
E[U2

s ] = E[N2] d2 into (16),

q3 =
λd2 E[N2]

1− ρ
+
λd2 E[N ]

(1− ρ)2
=

λd2

1− ρ

(
E[N2] +

E[N ]

1− ρ

)
.

The expected total cost until the end of the busy period is
q = q1 + q2 + q3, which gives (14) after some manipulation.

2Note that q2 can be also obtained by adding the M jobs to “service” one
by one using (15), c(0) + c(d) + . . .+ c((M − 1)d) =M2d.
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Fig. 2. Busy period with setup delay s contains a random number of ordinary
M/D/1 busy periods.

Lemma 9: An M/D/1-PS queue already serving jobs (δ =
0) incurs an average total response time of

q(z) = 2
∑
i

ixi +

(
λ
d+ (1− ρ)u

(1− ρ)2
− 1

)
u, (17)

where x1 ≥ . . . ≥ xn is assumed and u = x1 + . . .+ xn.
Proof: When the server is already active we can utilize

(16). Additionally, the remaining response time of the current
n jobs without new arrivals must be taken into account. For
the latter we have [16],∑

i

(2i− 1)xi = 2
∑
i

ixi − u, (xn ≤ . . . ≤ x1).

Adding the above and (16) together gives

q = 2
∑
i

ixi − u+
λu2

1− ρ
+

ρu

(1− ρ)2
,

which yields (17).
Consider next a fixed setup delay of s. According to (13),

the mean number of jobs in the system is E[N ] = q(s; d)/E[`],
where Lemma 8 gives q(s; d) and (2) gives E[`]. Little’s result
then gives the mean response time in an M/D/1-PS,

E[T ] =
d

1− ρ
+ (1 + ρ)

s(2 + λs)

2(1 + λs)
. (18)

We note that when s → 0, the above converges to d/(1− ρ)
as expected. As with LCFS, by unconditioning (see the proof
of (8)) one can also generalize (18) to random setup time S:

Corollary 10 (Mean response time in M/D/1-PS): The
mean response time in an M/D/1-PS with i.i.d. setup delays
Si ∼ S is

E[T ] =
d

1− ρ
+ (1 + ρ)

E[S] + (λ/2) E[S2]

1 + λE[S]
. (19)

That is, the delay penalty is (1 + ρ)pS , whereas with FCFS
and LCFS we had only pS .

Lemma 11 (Mean response time in M/M/1): The mean re-
sponse time in M/M/1 with setup delay s and an arbitrary work
conserving scheduling discipline (e.g., FCFS, LCFS, PS) is

E[T ] =
1

µ− λ
+
s(2 + λs)

2(1 + λs)
. (20)

Proof: Substitute X ∼ Exp(µ) into (23) or (7).
A comparison of (18) and (20) reveals an interesting result:

Corollary 12 (Sensitivity): An M/G/1-PS queue loses its
insensitivity property when a setup delay is introduced.



Lemmas 8 and 9 also yield the size-aware value function
for an M/D/1-PS with a fixed setup delay:

Corollary 13 (Value function): The value function w.r.t. re-
sponse time in an M/D/1-PS with a fixed setup delay of s is

vz − v0 = q(z)− u

1− ρ
r,

where q(z) is given by (14) or (17), u = δ + x1 + . . . + xn
and r is the mean cost rate, r = λE[T ].
We do not write the value function out explicitly due to
the length of the expression. However, the expression for
admission costs is more compact. As mentioned, the admis-
sion cost corresponds to the increase in the value function,
a(z) = vz⊕d−vz, where z⊕d denotes the state with one new
job. Therefore, the new state when a job arrives to an empty
M/D/1-PS system is z′ = (s; d) and using (14) for q(z′) gives

a(0) = q(s; d)− s+ d

1− ρ
r =

d

1− ρ
+

(1 + ρ)s

2
· 2 + λs

1 + λs
,

and thus a(0) = E[T ] given by (18). For (remaining) setup
period of δ > 0, and u = nd+ δ

a(n, δ) =
(2n+ 1)d+ (1 + ρ) δ

1− ρ
− ρs(1 + ρ)(2 + λs)

2(1− ρ)(1 + λs)
.

When the service has begun, so δ = 0, the admission cost is

a(u) =
2u+ d

1− ρ
− ρs(1 + ρ)(2 + λs)

2(1− ρ)(1 + λs)
.

Combining the last two cases gives

a(u, δ) =
2u+d

1− ρ +
1(u = 0)− ρ

1− ρ · s(1+ρ)(2+λs)
2(1+λs)

− δ. (21)

V. NUMERICAL EXAMPLES

First we consider elementary two server systems, where
both servers are equally fast, but the secondary server has
a setup delay of s2 = {0, 2}. Then we consider a system of
four servers and determine also the optimal combination of
elementary switch-off policies InstantOff and NeverOff

introduced in [20], [21], where the former switches the server
immediately off when it becomes idle, and the latter keeps the
server always running even when it is idle. With NeverOff,
Server i incurs energy costs continuously at rate ei and has
no setup delay (si = 0). Expressions for FPI with respect to
running costs were given in Section II-F, and for Lookahead
we refer to [2].

A. Two servers

Here we assume a two server system and focus on the mean
response time (excluding energy costs). The primary server is
NeverOff (s1 = 0), whereas the secondary server is switched
off when it becomes idle, and it has a setup delay of s2 = 0
or 2. We consider the following heuristic policies:
• Join-the-shortest-queue sends jobs to a shorter queue:

JSQ resolves ties in favor of the primary server,
JSQ∗ in favor of the secondary server, and
JSQ’ favors primary if empty and secondary otherwise.
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Fig. 3. Simulation results with two LCFS servers without setup delays. On
the left, the job sizes are exponentially distributed. On the right, the job sizes
obey the Weibull distribution and the offered load is fixed to ρ = 0.9.

• SITA sends jobs shorter than ξ to the primary server and
the rest to the secondary server. SITA-E uses the load-
balancing threshold ξ, and SITA-opt the optimal ξ.

• RND-U sends half of the jobs to primary server and the
rest to the secondary. RND-opt uses the optimal random
split and favors the server with a shorter setup delay.

• Round-Robin (RR) alternates between the two servers.
• LWL chooses the server with the shortest backlog, where

possible setup delay (after the assignment) is included.
• Myopic minimizes the cost assuming no other jobs arrive.

Additionally, we also consider FPI and Lookahead (LH)
policies based on SITA-E unless otherwise specified. 3

1) LCFS: The numerical results with two identical LCFS
servers without setup delays and exponentially distributed
service times are depicted in Fig. 3 (left). FPI, as mentioned,
reduces to JSQ. The heuristic policies RND (with optimal pi),
RR and LWL are worse than JSQ. Note that RND, RR, JSQ,
and LWL are all optimal when the service discipline is FCFS,
depending on the information available to the dispatcher. LH
achieves the lowest response time, especially when ρ is high.
In Fig. 3 (right), we have fixed ρ = 0.9 and vary the coefficient
of variation, cv , of the Weibull distribution. With cv = 1 one
obtains exponential distribution. We can see that LH remains
better than JSQ/FPI, but the difference gets a bit smaller as cv
increases. Note also that LWL becomes a poor choice when
cv is high, and even a static RND does a better job.

The numerical results with setup delay s2=2 and exponen-
tially distributed service times are depicted in Fig. 4 (a)-(c).
From (a) we see that RND-U becomes equivalent to RND-opt,
and SITA-E becomes equivalent to SITA-opt, when ρ > 0.5.
From (b) we see that JSQ∗ should not be used as either JSQ or
JSQ’, or both, are equal or better. Also the difference between
JSQ and JSQ’ is modest. From (a)-(c) we conclude that JSQ,
as expected, is a robust policy for LCFS (with modest setup
delays). However, JSQ’, LWL and the optimal static policies
are better at some levels of load. In contrast, FPI and LH
clearly achieve the lowest mean response for all values of ρ.

3Alternatively, one can also use RND or SITA-opt as a starting point. In
our experiments, SITA-E typically yielded a better policy than RND, and the
difference between SITA-E and SITA-opt was marginal.
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Fig. 4. Results for two LCFS servers with setup delay s2=2. In (a)-(c),
X ∼ Exp(1) and ρ is varied. In (d), ρ=0.9 and the coefficient of variation
cv of the Weibull distribution is varied, so cv=1 corresponds to Exp(1).

Fig. 4 (d) depicts how the variance in the job sizes affects
the performance. Note that LCFS itself is insensitive to the
shape of the job size distribution. However, dispatching poli-
cies considering also the (remaining) service times are not. We
see that the performance of LWL continues to degrade as cv
increases, and FPI and LH are again the best.

2) FCFS vs. LCFS: Let us next compare FCFS to LCFS
for the same two server system. Suppose first that the job
sizes are exponentially distributed. In this case, JSQ obtains the
same response time independently of the scheduling discipline
(FCFS, LCFS or PS). We choose JSQ without setup delays
(s = 0) as the reference policy. As LH was the best policy in
the earlier experiments, we compare its performance to that
of JSQ. Fig. 5 (left) depicts the relative performance of FCFS
and LCFS service under LH. We can see that for each policy
the performance with a setup delay converges to that without
a setup delay as the offered load ρ tends to one, as expected.
Generally, FCFS/LH achieves the lowest response time, but
LCFS/LH is marginally better when s = 2 and ρ is small.

In Fig. 5 (right), we fix ρ=0.9 and vary cv again. As is well
known, FCFS is better than LCFS in M/G/1 when cv < 1,
and vice versa. The same happens with JSQ, but with the
more advanced dispatching policy LH the turning point is a bit
higher and LCFS/LH is better than FCFS/LH when cv > 1.5.
A similar shift in the turning point happens also with LWL.

3) PS: Due to lack of space, we provide only a minimal
example for PS with fixed service times, and we exclude LH
because the expressions are a bit more complicated. In Fig. 6
we see that RND-U load balancing is a poor choice when the
offered load is low and the secondary server with setup delay
should be avoided. LWL is initially good, but when ρ > 0.2
it is also clearly sub-optimal. FPI is again the best policy.
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B. Four servers

Next we assume a system of four LCFS servers and expo-
nentially distributed job sizes. We also take the energy con-
sumption explicitly into account by including running costs. In
particular, we assume four identical servers with service rates
ν = (1, 1, 1, 1), running costs e = (1, 1, 1, 1), setup delays s =
(1, 1, 1, 1), and seek the optimal energy-performance tradeoff
with objective min λE[T ] +

∑4
i=1 P{Server i running} · ei.

The results are illustrated in Fig. 7. In contrast to the previous
examples, here we have also chosen the optimal switching off
policy for each dispatching policy and level of load ρ. That is,
for each policy α and arrival rate λ, we simulated the system
with all possible combinations of the switching off policies
(NeverOff and InstantOff), and selected the one with the
best performance. We can see that Lookahead yields superior
performance for all ρ. Myopic is also very good when ρ < 0.2,
and similarly, FPI does a good job until ρ > 0.7. Fig. 8 depicts
the optimal switch off configuration with JSQ and LH. As the
load increases, the pool of always running servers increases.

VI. DISCUSSION

Table I summarizes the interesting observations made in the
previous sections. Namely, the largely celebrated insensitivity
of the mean response time under PS breaks down dramatically
when we include features present in actual systems! The
mean performance of LCFS as well as its value function are
both insensitive to service time distribution. Also, the size-
aware value function of FCFS is insensitive to service time
distribution with or without setup delays. These suggest that
the assignment of jobs to FCFS and LCFS servers in a robust
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manner is straightforward.
The fact that the increase in the mean response time with

FCFS and LCFS corresponds to the same additional term holds
for a larger class of service systems:

Theorem 14 (Separability): If the mean response time in a
work conserving service system with a Poisson arrival process
is additively separable, E[T ] = fX(λ) + pS(λ), then

pS(λ) =
E[S] + λE[S2]/2

1 + λE[S]
.

Proof: If E[T ] separates, then it holds also for the trivial
case of X = 0. In such a system, the response time incurred is
purely the remaining setup delay, fX(λ) = 0. Consequently,

pS(λ) =
1

λ
· E[S + λS2/2]

1/λ+ E[S]
=

E[S] + λE[S2]/2

1 + λE[S]
.

In contrast, the mean response time for PS is not separable.

VII. CONCLUSIONS

Due to the phenomenal growth of cloud-based services,
energy consumption has become an important part of the
overall system design. In this paper, we have considered a
queueing model for a server farm that captures the essen-
tial characteristics of such a system: energy consumption,
switching off servers, setup delays and the mean response
time. First we obtained interesting queueing theoretic results
and showed that the mean response time in M/G/1-PS is
no longer insensitive to service time distribution when setup
delays are present. In contrast, M/G/1-LCFS preserves this
property making it more robust scheduling discipline than PS.
We also derived size-aware value functions for M/G/1-LCFS
and M/D/1-PS queues subject to setup delays, and applied
these results to develop efficient job assignment policies.

TABLE I
INSENSITIVITY TO SERVICE TIME DISTRIBUTION.

Mean response time Value function

M/G/1 with setup M/G/1 with setup

LCFS X X LCFS X X
PS X - PS - -

FCFS - - FCFS X X
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