Value functions for M/G/1 & Task Assignment Problem

Esa Hyytiä

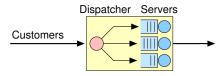
Joint work with

Samuli Aalto, Aleksi Penttinen, Jorma Virtamo

Department of Communications and Networking Aalto University, School of Electrical Engineering, Finland

YEQT-VI, November 1-3, 2012

- Server systems: Performance measures
- 2 Value functions
- 3 Value functions for M/G/1
- 4 Task Assignment Problem
- 5 Summary of Results



Latency E[T]:

- Sojourn time, Response Time, Delay, ...
- Objective:

min E[*T*].

Slowdown: "long jobs can wait longer"

Slowdown of job *i*,
$$\gamma_i \triangleq \frac{\text{Latency } T_i}{\text{Service time } X_i}$$
.

min
$$E[\gamma]$$
.

Server Systems: Holding Cost Structure

Holding cost:

- Job *i* accrues costs at job-specific rate *b_i*
- **Latency:** With $b_i = 1$,
 - Total cost rate is the number of jobs in the system, N_t
 - Cost a job incurs is equal to the latency,

$$b_i \cdot T_i = T_i.$$

Slowdown: With $b_i = 1/x_i$

Cost a job incurs is equal to the slowdown,

$$b_i \cdot T_i = \frac{T_i}{x_i}$$

Note: No costs associated with state transitions

Value Function: Definition

Let C_z(t) denote the cost rate at time t for an initial state z
 Cumulative costs accrued during (0, t) are

$$V_{\mathsf{z}}(t) \triangleq \int_0^t C_{\mathsf{z}}(s) \, ds.$$

Relative value is the expected difference in the infinite horizon cumulative costs between

- a) a system initially in state z, and
- b) a system initially in equilibrium,

$$v_{z} \triangleq \lim_{t \to \infty} \mathbb{E}[V_{z}(t) - r t].$$

For latency, the cost rate $C_z(t)$ is simply

 $N_{z}(t) \triangleq$ "the number of jobs in the system",

Value function reads

$$v_{\mathbf{z}} = \lim_{t \to \infty} \left(\mathrm{E} \left[\int_0^t N_{\mathbf{z}}(s) \, ds \right] - \mathrm{E}[N] \, t \right).$$

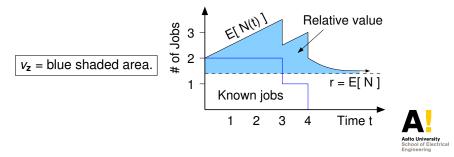
Similarly for the slowdown and general holding costs

Initial state $\mathbf{z} = (3, 1)$:

First job with remaining size 3 currently receiving service

- Second job with size 1 is waiting
- Also later arriving jobs have to wait (FCFS)

Relative value of state **z** is the expected difference in infinite horizon costs:



Value function: Comparison of States

Given two states \mathbf{z}_1 and \mathbf{z}_2 , the expected difference in the infinite horizon costs is

$$d(\mathbf{z}_1, \mathbf{z}_2) = \lim_{t \to \infty} \mathbb{E}[V_{\mathbf{z}_2}(t) - V_{\mathbf{z}_1}(t)],$$

which gives

$$d(\mathbf{z}_1,\mathbf{z}_2)=v_{\mathbf{z}_2}-v_{\mathbf{z}_1}.$$

Example: Server system

- Suppose state z₂ is state z₁ plus one new job
- Value function gives the marginal cost for accepting a new job!

Value Function for M/G/1 Queues

$$\lambda \rightarrow$$

- A. Elementary scheduling disciplines:
 - M/G/1-FCFS
 - M/G/1-LCFS
- B. Size-aware scheduling disciplines:
 - M/G/1-SPT (shortest-processing-time)
 - M/G/1-SRPT (shortert-remaining-processing-time)
 - M/G/1-SPTP (shortest-processing-time-product)
- C. Processor sharing (PS)
 - M/D/1-PS (fixed job sizes)
 - M/M/1-PS

Basic case:

- Poisson arrival rate \u03c6
- Service times X_i i.i.d., $X_i \sim X$
- Offered load $\rho = \lambda E[X]$
- Size-aware state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ with *n* jobs:
 - Δ_i is the remaining service time of job *i*
 - Job *n* is served first (FCFS,LCFS)

Backlog
$$u_{\mathbf{z}} = \sum_{i} \Delta_{i}$$

With arbitrary holding costs:

State
$$\mathbf{z} = ((\Delta_1, b_1); ...; (\Delta_n, b_n))$$

 b_i is the holding cost of job *i*

■ E[B] is the mean holding cost (arbitrary job)

M/G/1-FCFS

Proposition: The size-aware relative value of state z with respect to delay in an M/G/1-FCFS queue is¹²

$$\mathbf{v_z} - \mathbf{v_0} = \sum_{i=1}^n i \,\Delta_i + \frac{\lambda \, u_z^2}{2(1-\rho)}. \tag{1}$$

With respect to arbitrary job specific holding costs b_i ,

$$\mathbf{v_z} - \mathbf{v_0} = \sum_{i=1}^n \left(\Delta_i \sum_{j=1}^i b_j \right) + \frac{\lambda \, u_z^2}{2 \, (1-\rho)} \mathbf{E}[B].$$

Note: Insensitive to service time distribution.

¹Hyytiä et al., Eur. J. Oper. Research (2012) ²Hyytiä et al., J. Applied Probability (2012).

(2)

11/44

M/G/1-LCFS (preemptive)

Proposition: The size-aware relative value of state z with respect to delay in an M/G/1-LCFS queue is³⁴

$$v_{\mathbf{z}} - v_0 = \frac{1}{1 - \rho} \sum_{i=1}^n i \cdot \Delta_i.$$
(3)

With respect to arbitrary job specific holding costs b_i ,

$$\mathbf{v_z} - \mathbf{v_0} = \frac{1}{1 - \rho} \sum_{i=1}^n \left(\Delta_i \sum_{j=1}^i b_j \right).$$

Note: Later arrivals immune to state z.
Insensitivity: v_z - v₀ depends only on ρ.

³Hyytiä et al., Eur. J. Oper. Research (2012) ⁴Hyytiä et al., J. Applied Probability (2012).

(4)

Value Function for M/G/1 Queues

- A. Elementary scheduling disciplines:
 - M/G/1-FCFS
 - M/G/1-LCFS
- B. Size-aware scheduling disciplines:
 - M/G/1-SPT (shortest-processing-time)
 - M/G/1-SRPT (shortert-remaining-processing-time)
 - M/G/1-SPTP (shortest-processing-time-product)
- C. Processor sharing (PS)
 - M/D/1-PS (fixed job sizes)
 - M/M/1-PS

13/44

Notation: (Δ_i, Δ_i^*) = remaining and initial service time of job *i*.

Index policy α serves first the job with the lowest index.

Scheduling	Index	Optimality
SPT	Δ_i^*	optimal non-preemptive / delay & slowdown
SRPT	Δ_i	optimal preemptive / delay
SPTP	$\Delta_i \cdot \Delta_i^*$	optimal preemptive / slowdown ⁵

⁵Hyytiä, Aalto, Penttinen, SIGMETRICS'12.

	non-pree	emptive	preemptive	
	class-aware	size-aware	non-anticipating	anticipating size-aware
delay	SEPT (<i>cµ</i> -rule)	SPT	FB, FIFO, (depends on $f(x)$)	SRPT
slowdown	-"-	-"-	FB, FIFO, (depends on $f(x)$)	SPTP (M/G/1)

Size-aware M/G/1: Additional notation

Notation:

- Jobs are numbered so that (without new arrivals) job 1 is served first and job n last.
- f(x) denotes the service time pdf.
- $\rho(x)$ denotes the load due to jobs shorter than x,

$$\rho(\mathbf{x}) = \lambda \int_0^{\mathbf{x}} \mathbf{x} \, f(\mathbf{x}) \, d\mathbf{x}.$$

Define

$$h(x) \triangleq \frac{f(x) b(x)}{(1-\rho(x))^2},$$

where b(x) is the mean holding cost of a job with size x,

$$b(x) = \mathrm{E}[B|X = x]$$

M/G/1-SPT (Non-preemptive)

Proposition: The size-aware relative value of state z with respect to arbitrary holding costs in an M/G/1-SPT queue is⁶

$$v_{\mathbf{z}} - v_{0} = \sum_{i=1}^{n} b_{i} \left(\Delta_{i} + \frac{1}{1 - \rho(\Delta_{i})} \left(\sum_{j=1}^{i-1} \Delta_{j} \right) \right) + \frac{\lambda}{2} \sum_{i=1}^{n} \left[\left(\sum_{j=i+1}^{n} \Delta_{j}^{2} + \left(\sum_{j=1}^{i} \Delta_{j} \right)^{2} \right) \int_{\tilde{\Delta}_{i}}^{\tilde{\Delta}_{i+1}} h(x) dx \right]$$

where

■ job 1 receives service and $\Delta_2 < ... < \Delta_n$ ■ $\tilde{\Delta}_i = \begin{cases} 0, & i = 1, \\ \Delta_i, & i = 2, ..., n \\ \infty & i = n + 1. \end{cases}$

⁶Hyytiä et al., Eur. J. Oper. Research (2012)

(5)

M/G/1-SRPT

Proposition: The size-aware relative value of state z with respect to arbitrary holding costs in an M/G/1-SRPT queue is⁷

$$v_{z} - v_{0} = \sum_{i=1}^{n} b_{i} \left(\frac{1}{1 - \rho(\Delta_{i})} \left(\sum_{j=1}^{i-1} \Delta_{j} \right) + \int_{0}^{\Delta_{i}} \frac{1}{1 - \rho(x)} dx \right) + \frac{\lambda}{2} \sum_{i=0}^{n} \left[\left(\sum_{j=1}^{i} \Delta_{j} \right)^{2} \int_{\Delta_{i}}^{\Delta_{i+1}} h(x) dx + (n-i) \int_{\Delta_{i}}^{\Delta_{i+1}} x^{2} h(x) dx \right]$$
(6)

where

■ job 1 receives currently service and $\Delta_1 < \ldots < \Delta_n$,

•
$$\Delta_0 = 0$$
 and $\Delta_{n+1} = \infty$

⁷Hyytiä et al., Eur. J. Oper. Research (2012)

M/G/1-SPTP

Proposition: The size-aware relative value of state \mathbf{z} with respect to arbitrary holding costs in an M/G/1-SPTP queue is⁸

$$\begin{aligned} \mathbf{v}_{\mathbf{z}} - \mathbf{v}_{0} &= \sum_{i=1}^{n} b_{i} \left(\frac{1}{1 - \rho(\tilde{\Delta}_{i})} \left(\sum_{j=1}^{i-1} \Delta_{j} \right) + \frac{2}{\Delta_{i}^{*}} \int_{0}^{\tilde{\Delta}_{i}} \frac{x \, dx}{1 - \rho(x)} \right) \\ &+ \frac{\lambda}{2} \sum_{i=0}^{n} \left[\left(\sum_{j=1}^{i} \Delta_{j} \right)^{2} \int_{\tilde{\Delta}_{i}}^{\tilde{\Delta}_{i+1}} h(x) \, dx + \left(\sum_{j=i+1}^{n} (\Delta_{j}^{*})^{-2} \right) \int_{\tilde{\Delta}_{i}}^{\tilde{\Delta}_{i+1}} x^{4} \, h(x) \, dx \right] \end{aligned}$$

where

■ Job 1 receives service and $\sqrt{\Delta_1 \Delta_1^*} < ... < \sqrt{\Delta_n \Delta_n^*}$ (SPTP)

$$\bullet \tilde{\Delta}_i = \begin{cases} 0, & i = 0\\ \sqrt{\Delta_i \Delta_i^*}, & i = 1, \dots, n\\ \infty, & i = n+1. \end{cases}$$

⁸Hyytiä, Aalto, Penttinen, SIGMETRICS'12.

19/44

Value Function for M/G/1 Queues

$$\lambda \rightarrow$$

- A. Elementary scheduling disciplines:
 - M/G/1-FCFS
 - M/G/1-LCFS
- B. Size-aware scheduling disciplines:
 - M/G/1-SPT (shortest-processing-time)
 - M/G/1-SRPT (shortert-remaining-processing-time)
 - M/G/1-SPTP (shortest-processing-time-product)
- C. Processor sharing (PS)
 - M/D/1-PS (fixed job sizes)
 - M/M/1-PS

M/G/1-PS: (Processor sharing)

Basics:

- **PS** serves the existing *n* jobs at equal rates 1/n.
- Mean delay in M/G/1-PS is insensitive to job size distribution,

$$\mathrm{E}[T] = \frac{\mathrm{E}[X]}{1-\rho}.$$

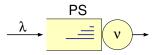
- Unfortunately, the size-aware value function is not!
- $(\Delta_1; ..; \Delta_n)$ denotes the remaining service times, $\Delta_1 \ge ... \ge \Delta_n$.

Without new arrivals:

- Job *n* leaves the system first and job 1 last
- Cumulative delay (myopic cost) is given by

$$V_{z} = \Delta_{n} n^{2} + (\Delta_{n-1} - \Delta_{n})(n-1)^{2} + \ldots + (\Delta_{1} - \Delta_{2})$$

$$= \sum_{i=1}^{n} (2i-1)\Delta_{i}.$$
(7)
(7)
(7)
(7)
(7)
(7)
(7)



Proposition: The size-aware relative value of state z with respect to the delay in an M/D/1-PS queue is given by⁹

$$\mathbf{v}_{(\Delta_1;..;\Delta_n)} - \mathbf{v}_0 = \frac{\lambda}{1-\rho} u_{\mathbf{z}}^2 - u_{\mathbf{z}} + 2\sum_{i=1}^n i \Delta_i.$$

Note:

Compact form as a new job will always depart last.

• Converges to (7) when $\lambda \rightarrow 0$

(8)

⁹Hyytiä et al., ITC'11.

Number-aware M/M/1 queue

$$\lambda \rightarrow |||| \nu \rightarrow$$

Consider:

- M/M/1 queue
- any work conserving scheduling (FCFS, LCFS, PS, ...)
- number-aware system: number of jobs m is known

Lemma: The value function for a work conserving and number-aware $M\!/\!M\!/\!1$ queue is^{10}

$$v_m = rac{1}{2} \cdot rac{m(m+1)}{\mu - \lambda} - rac{\lambda \mu}{(\mu - \lambda)^3}.$$

¹⁰Aalto and Virtamo (1996), Virtamo (Lecture slides, 2004). The constant term follows from the identity $\sum_{i} \pi_{i} v_{i} = 0$.

(9)

Size-aware M/M/1-PS queue

Proposition: The relative value of state $(m; \Delta_1, ..., \Delta_n)$ in a size-aware M/M/1-PS queue is given by¹¹

$$\begin{aligned} v_{(m;\Delta_1,...,\Delta_n)} &= v_m + \frac{1}{(1-\rho)^2} \sum_{k=1}^n (2k-1)\Delta_k + \\ \frac{2-\rho}{\mu(1-\rho)^2} \sum_{k=1}^n \left(m - \frac{k\rho}{1-\rho}\right) \left(\sum_{i=1}^k e^{-\mu(1-\rho)(\Delta_i - \Delta_k)}\right) \left(1 - e^{-\mu(1-\rho)(\Delta_k - \Delta_{k+1})}\right) \end{aligned}$$

where

- Δ_i are *n* known remaining service times, $\Delta_1 > \ldots > \Delta_n$,
- **m** tasks have unknown $Exp(\mu)$ distributed service time,
- and $\Delta_{n+1} \triangleq 0$.

Note: Converges to (7) when m = 0 and $\lambda \rightarrow 0$.

¹¹Hyytiä et al., Performance 2011.

24/44

Queueing systems:

M/M/s: M/G/1-FCFS (approx.)

M/M/1 & M/M/1/N (deviation matrix)

M/M/1 (FCFS/LCFS/PS)

M/Cox(r)/1

Krishnan, CDC'87 Sassen et al. Neerlandica (1997)

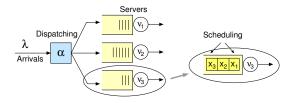
Koole, CDC'98

Aalto&Virtamo, NTS-13 (1996); and Virtamo, Lecture notes on MDP (2004) Bhulai, J. Applied Prob. (2006)

Blocking systems:

M/M/s/s M/M/s/k Krishnan, CDC'86 Leeuwaarden et al. (2001)

Task Assignment Problem



Task assignment (dispatching):

Route job to one of the m servers upon arrival.

Examples:

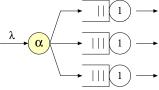
- 1 Manufacturing sites
- 2 Job assignment in supercomputing,
- 3 Data traffic routing
- 4 Web-server farms and Data centers
- 5 Other distributed computing systems ...

YEQT-VI Nov 2012

Size- and State-aware Dispatching Problem

Model:

- Poisson arrival process, rate λ
- m parallel heterogeneous servers
- General job size distribution
- Service requirements become known upon arrival (possibly server specific)
- Queue states are known (job sizes and their service order)
- Scheduling discipline known: FCFS, LCFS, SRPT ...



Definition:

State-independent policy chooses the server independently of the queue states.

1 Bernoulli splitting (RND):

Choose queue in random using probabilities p_i

2 Size-Interval-Task-Assignment (SITA):

"short jobs to one queue and rest to another"

- Proposed in Crovella et. al (Sigmetrics'98) and Harchol-Balter et. al (J. of PDC, vol. 59, 1999).
- SITA-E uses such intervals that balance the load.
- Optimal size-aware state-free for FCFS (Feng et. al, 2005).

1 Join-the-Shortest-Queue (JSQ):

Optimal when Poisson arrivals, Exp-distributed job sizes, identical servers, and only the queue occupancy is known (Winston, 1977).

2 Round-robin (RR):

Optimal with identical servers that were initially in a same state (Ephremides et. al, 1980).

3 Least-Work-Left (LWL):

Pick the queue with the shortest backlog (Sharifnia, 1997).

- Size- and state-aware setting; future arrivals not known
- Idea: start with a reasonable basic dispatching policy, and carry out the first policy iteration (FPI) step
- Policy iteration finds the optimal policy; the first step typically yields the highest improvement.
- Requires the relative values of states vz

30/44

First Policy Iteration (FPI)

- Assume: Relative values vz available (for basic policy)
- Improved decision according to FPI at state z:

$$\alpha(\mathbf{z}, \mathbf{x}) \triangleq \underset{i}{\operatorname{argmin}} \left(\mathbf{v}_{\mathbf{z}'(i)} - \mathbf{v}_{\mathbf{z}} \right),$$

where $\mathbf{z}'(i)$ is the new state if job x is added to queue *i*.

"Choose the action with the smallest expected future cost"

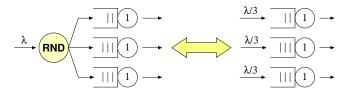
Recall: in addition to z, relative value vz depends also on

- Basic dispatching policy
- 2 Scheduling discipline
- 3 Arrival rate λ , and
- 4 Job size distribution.

31/44

Decomposition to Independent M/G/1 Queues

- Deriving value function is generally difficult.
- However, any state-independent policy feeds each server jobs according to a Poisson process (cf. Bernoulli split)

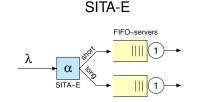


System's value function is the sum of the queue specific value function:

$$v_{z} = \sum_{i} v_{z_{i}}.$$

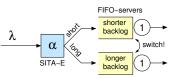
Sufficient to analyze single M/G/1 queues instead!

SITA-E/Switch policy for FCFS



- Jobs shorter than y to Queue 1
- The rest to Queue 2
- Adjust y to balance the load
- Poisson arrivals
- Behaves as two independent M/G/1-FCFS queues

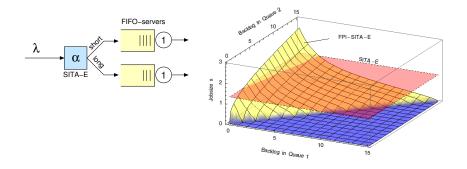
SITA-Es (switch)



- Identical servers
- Roles can be swapped
- New initial state, same system otherwise
- Value function $v_{z_1} + v_{z_2}$ \Rightarrow optimal permutation of roles

SITA-Es: "Short jobs to short queue, and long to long."

FPI-SITA-E, "Dynamic SITA-E"



- SITA-E uses a fixed threshold for separating the short jobs from the long jobs.
- FPI gives a new policy, FPI-SITA-E
- With FPI-SITA-E, the threshold is dynamically adjusted based on the current backlog in the queues.

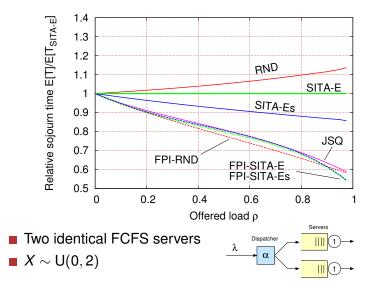
For Delay:

- Two identical FCFS servers
- 2 Two identical SRPT servers
- 3 Heterogeneous PS servers

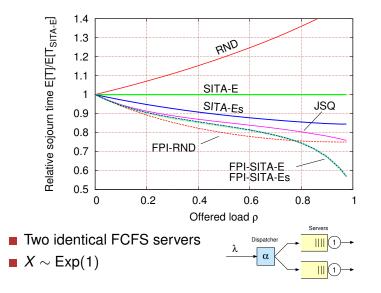
For Slowdown:

Three heterogeneous servers

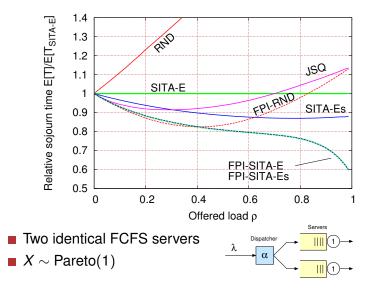
FCFS with Uniformly distributed jobs



FCFS with Exponentially distributed jobs

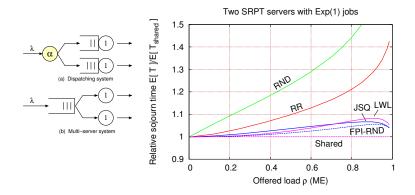


FCFS with Pareto distributed jobs



YEQT-VI Nov 2012

SRPT and Exponentially distributed jobs



- Dispatching system vs. a shared queue with SRPT (M/M/2-SRPT).
- Disadvantage due to the dispatching can be insignificant (here order of 5% with FPI-RND).

Heterogeneous PS Servers

System:

- Poisson arrival process
- Fixed server-specific service time d_i = d/v_i

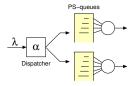
Dispatching policies:

Random split balancing the load

Least-work-left (pre-assignment)

Least-work-left (post-assignment)

FPI for RND- ρ



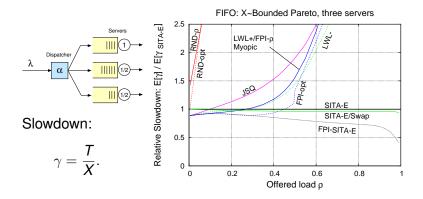
 RND - ρ

LWL⁻: argmin u_i

LWL⁺: argmin $u_i + d_i$

FPI: argmin $u_i + (1/2)d_i$

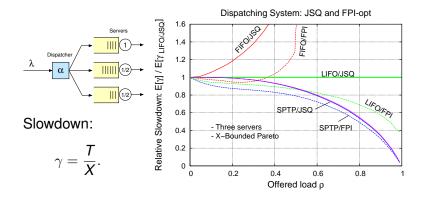
Heterogeneous FCFS Servers with Slowdown metric



- Three servers with service rates 1, 1/2 and 1/2
- FCFS scheduling discipline
- Bounded Pareto distributed service times

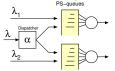
YEQT-VI Nov 2012

Heterogeneous Servers with Slowdown Metric



- Three servers with service rates 1, 1/2 and 1/2
- Scheduling discipline: FCFS, LCFS and SPTP
- Bounded Pareto distributed service times

Each server can have dedicated input



2 Basic policy can be class-specific

- Low and high priority customers with own queues
- When to route a low priority job to a high priority queue?
- 3 Service times can be server-specific
 - General purpose vs. specialized servers

Conclusions

- Size- and state-aware dispatching problem can be approached in the MDP framework
- Value functions *v*_z are required for the FPI step.
- For state-independent basic policies, sufficient to analyze an M/G/1 queue in isolation:
 - FCFS and LCFS: *v*_z is insensitive to job size distribution.
 - SPT, SRPT and SPTP: v_z is an integral expression.
 - PS: harder to analyze (M/D/1-PS and M/M/1-PS)
- Efficient dispatching policies that take into account
 - cost structure
 - existing and later arriving tasks

Thanks!

References:

- 1 Hyytiä, Penttinen and Aalto, *Size- and State-Aware Dispatching Problem with Queue-Specific Job Sizes*, EJOR 2012.
- 2 Hyytiä, Virtamo, Aalto and Penttinen, *M/M/1-PS Queue and Size-Aware Task Assignment*, Performance 2011.
- 3 Hyytiä, Penttinen, Aalto and Virtamo, *Dispatching problem with fixed size jobs and processor sharing discipline*, ITC'23, 2011.
- 4 Hyytiä, Aalto and Penttinen, Minimizing Slowdown in Heterogeneous Size-Aware Dispatching Systems, SIGMETRICS 2012.
- 5 Hyytiä, Aalto, Penttinen and Virtamo, On the value function of the M/G/1 FCFS and LCFS queues, Journal of Applied Probability, 2012, to appear.

Consider two systems under the same arrivals:

- **S1** initially in state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ and
- S2 initially empty.

Both systems behave identically once S1 becomes empty. The difference in the relative values is equal to the additional time jobs spend in S1,

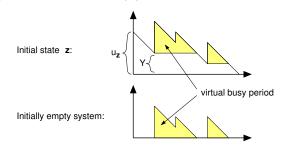
$$v_{\mathbf{z}}-v_0=V_1+V_2,$$

where V_1 denotes the (remaining) delay of present jobs, and V_2 the additional mean delay the later arrivals experience in S1.

The total delay of the *n* present jobs in S1 is already fixed,

$$V_1 = \sum_{i=1}^n i \,\Delta_i.$$

A later arriving task starts a busy period in S2, which corresponds to a mini busy period in S1.



- During busy periods, arriving jobs increase the cumulative delay by an amount equal to the post arrival workload.
- These jobs experience an additional delay Y in S1.
- Otherwise the delay contributions are equal!

YEQT-VI Nov 2012

Summing up:

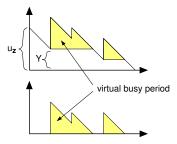
- Mean number of busy periods before S1 empty: λu_z .
- Mean number of jobs arriving during a busy period: $1/(1 \rho)$.
- Mean offset $E[Y] = u_z/2$.

Therefore,

$$V_2 = \lambda \, u_{\mathbf{z}} \cdot \frac{1}{1-\rho} \cdot \frac{u_{\mathbf{z}}}{2}$$
$$= \frac{\lambda \, u_{\mathbf{z}}^2}{2(1-\rho)},$$

Initial state z:

Initially empty system:



and $V_1 + V_2 = v_z - v_0$, which completes the proof.

YEQT-VI Nov 2012

Proof for M/G/1-LCFS

Consider two systems under same arrivals:

1 S1 initially in state
$$\mathbf{z} = (\Delta_1, .., \Delta_n)$$
,

- 2 S2 initially empty.
- Let D_i denote the (remaining) delay of job *i* in S1.
- With LCFS, the current state has no effect on the future arrivals' sojourn times.
- The difference between the relative value of S1 and S2 is equal to the mean remaining delay of the *n* present jobs,

$$v_{(\Delta_1;..;\Delta_n)} - v_0 = \sum_{i=1}^n \mathrm{E}[D_i].$$

Remaining delay D_n of job *n* is given by a random sum,

$$D_n = \Delta_n + (B_1 + \ldots + B_{A(\Delta_n)})$$

where $A(\Delta_n)$ denotes the number of (mini) busy periods during time Δ_n , and B_i the corresponding durations,

$$\mathbf{E}[\boldsymbol{B}_i] = \mathbf{E}[\boldsymbol{X}]/(1-\rho).$$

Taking the expectation on both sides gives

$$\mathrm{E}[D_n] = \Delta_n + \mathrm{E}[A(\Delta_n)] \cdot \mathrm{E}[B] = \frac{\Delta_n}{1-\rho}$$

• Similarly,
$$\operatorname{E}[D_i] = \frac{1}{1-\rho} \sum_{j=i}^n \Delta_j.$$

$$\Rightarrow \quad \mathbf{v_z} - \mathbf{v_0} = \sum_{i=1}^n \operatorname{E}[D_i] = \boxed{\frac{1}{1-\rho} \sum_{i=1}^n i \cdot \Delta_i.}$$

M/G/1-SRPT - Alternative Form

Proposition: The size-aware relative value of state z with respect to arbitrary holding costs in an M/G/1-SRPT queue is¹²

$$\begin{aligned} \mathbf{v_z} - \mathbf{v_0} &= \sum_{i=1}^n b_i \left(\frac{u_\mathbf{z}(\Delta_i)}{1 - \rho(\Delta_i)} + \int_0^{\Delta_i} \frac{1}{1 - \rho(t)} \, dt \right) \\ &+ \frac{\lambda}{2} \int_0^\infty h(x) \left(u_\mathbf{z}(x)^2 + n_\mathbf{z}(x) \, x^2 \right) \, dx, \end{aligned}$$

where

- job *n* receives currently service and $\Delta_1 > ... > \Delta_n$,
- $u_z(x)$ = backlog due to jobs shorter than x in state z,
- $n_z(x)$ = number of jobs longer than x in state z.

