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Server Systems:

Dispatcher Servers

Customers

Latency E[T]:
Sojourn time, Response Time, Delay, . . .
Objective:

min E[T ].

Slowdown: “long jobs can wait longer”

Slowdown of job i , γi ,
Latency Ti

Service time Xi
.

Objective:
min E[γ].
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Server Systems: Holding Cost Structure

Holding cost:
Job i accrues costs at job-specific rate bi

Latency: With bi = 1,
Total cost rate is the number of jobs in the system, Nt

Cost a job incurs is equal to the latency,

bi · Ti = Ti .

Slowdown: With bi = 1/xi

Cost a job incurs is equal to the slowdown,

bi · Ti =
Ti

xi
.

Note: No costs associated with state transitions
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Value Function: Definition

Let Cz(t) denote the cost rate at time t for an initial state z
Cumulative costs accrued during (0, t) are

Vz(t) ,
∫ t

0
Cz(s) ds.

Relative value is the expected difference in the infinite
horizon cumulative costs between

a) a system initially in state z, and
b) a system initially in equilibrium,

vz , lim
t→∞

E[Vz(t)− r t ].
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Value function: Latency in Server Systems

For latency, the cost rate Cz(t) is simply

Nz(t) , ”the number of jobs in the system”,

Value function reads

vz = lim
t→∞

(
E
[∫ t

0
Nz(s) ds

]
− E[N] t

)
.

Similarly for the slowdown and general holding costs
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Value function: M/G/1-FCFS Example

Initial state z = (3,1):
First job with remaining size 3 currently receiving service
Second job with size 1 is waiting
Also later arriving jobs have to wait (FCFS)

Relative value of state z is the expected difference in infinite
horizon costs:

vz = blue shaded area.
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Value function: Comparison of States

Given two states z1 and z2, the expected difference in the
infinite horizon costs is

d(z1, z2) = lim
t→∞

E[Vz2(t)− Vz1(t)],

which gives
d(z1, z2) = vz2 − vz1 .

Example: Server system
Suppose state z2 is state z1 plus one new job
Value function gives the marginal cost for accepting
a new job!
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Value Function for M/G/1 Queues

ν
λ

A. Elementary scheduling disciplines:
M/G/1-FCFS
M/G/1-LCFS

B. Size-aware scheduling disciplines:
M/G/1-SPT (shortest-processing-time)
M/G/1-SRPT (shortert-remaining-processing-time)
M/G/1-SPTP (shortest-processing-time-product)

C. Processor sharing (PS)
M/D/1-PS (fixed job sizes)
M/M/1-PS
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M/G/1: Notation

Basic case:
Poisson arrival rate λ
Service times Xi i.i.d., Xi ∼ X
Offered load ρ = λE[X ]

Size-aware state z = (∆1; ..; ∆n) with n jobs:
∆i is the remaining service time of job i
Job n is served first (FCFS,LCFS)

Backlog uz =
∑

i ∆i

With arbitrary holding costs:
State z = ((∆1,b1); ..; (∆n,bn))
bi is the holding cost of job i
E[B] is the mean holding cost (arbitrary job)
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M/G/1-FCFS

Proposition: The size-aware relative value of state z with
respect to delay in an M/G/1-FCFS queue is12

vz − v0 =
n∑

i=1

i ∆i +
λu2

z
2(1− ρ)

. (1)

With respect to arbitrary job specific holding costs bi ,

vz − v0 =
n∑

i=1

∆i

i∑
j=1

bj

+
λu2

z
2 (1− ρ)

E[B]. (2)

Note: Insensitive to service time distribution.

1Hyytiä et al., Eur. J. Oper. Research (2012)
2Hyytiä et al., J. Applied Probability (2012).
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M/G/1-LCFS (preemptive)

Proposition: The size-aware relative value of state z with
respect to delay in an M/G/1-LCFS queue is34

vz − v0 =
1

1− ρ

n∑
i=1

i ·∆i . (3)

With respect to arbitrary job specific holding costs bi ,

vz − v0 =
1

1− ρ

n∑
i=1

∆i

i∑
j=1

bj

 . (4)

Note: Later arrivals immune to state z.
Insensitivity: vz − v0 depends only on ρ.

3Hyytiä et al., Eur. J. Oper. Research (2012)
4Hyytiä et al., J. Applied Probability (2012).
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Value Function for M/G/1 Queues

ν
λ

A. Elementary scheduling disciplines:
M/G/1-FCFS
M/G/1-LCFS

B. Size-aware scheduling disciplines:
M/G/1-SPT (shortest-processing-time)
M/G/1-SRPT (shortert-remaining-processing-time)
M/G/1-SPTP (shortest-processing-time-product)

C. Processor sharing (PS)
M/D/1-PS (fixed job sizes)
M/M/1-PS
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Size-aware M/G/1: Scheduling

Notation: (∆i ,∆
∗
i ) = remaining and initial service time of job i .

Index policy α serves first the job with the lowest index.

Scheduling Index Optimality

SPT ∆∗i optimal non-preemptive / delay & slowdown
SRPT ∆i optimal preemptive / delay
SPTP ∆i ·∆∗i optimal preemptive / slowdown5

5Hyytiä, Aalto, Penttinen, SIGMETRICS’12.
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Size-aware M/G/1: Scheduling

non-preemptive preemptive
class-aware size-aware non-anticipating anticipating

size-aware

de
la

y SEPT SPT FB, FIFO,. . . SRPT
(cµ-rule) (depends on f (x))

sl
ow

do
w

n

-”- -”- FB, FIFO, . . . SPTP
(depends on f (x)) (M/G/1)
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Size-aware M/G/1: Additional notation

Notation:
Jobs are numbered so that (without new arrivals)
job 1 is served first and job n last.
f (x) denotes the service time pdf.
ρ(x) denotes the load due to jobs shorter than x ,

ρ(x) = λ

∫ x

0
x f (x) dx .

Define
h(x) ,

f (x) b(x)

(1− ρ(x))2 ,

where b(x) is the mean holding cost of a job with size x ,

b(x) = E[B |X = x ]
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M/G/1-SPT (Non-preemptive)

Proposition: The size-aware relative value of state z with
respect to arbitrary holding costs in an M/G/1-SPT queue is6

vz − v0 =
n∑

i=1

bi

∆i +
1

1− ρ(∆i)

( i−1∑
j=1

∆j

) +

λ

2

n∑
i=1

 n∑
j=i+1

∆2
j +

( i∑
j=1

∆j

)2
∫ ∆̃i+1

∆̃i

h(x) dx


(5)

where
job 1 receives service and ∆2 < . . . < ∆n

∆̃i =


0, i = 1,
∆i , i = 2, . . . ,n
∞ i = n + 1.

6Hyytiä et al., Eur. J. Oper. Research (2012)
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M/G/1-SRPT

Proposition: The size-aware relative value of state z with
respect to arbitrary holding costs in an M/G/1-SRPT queue is7

vz − v0 =
n∑

i=1

bi

 1
1−ρ(∆i )

( i−1∑
j=1

∆j

)
+

∫ ∆i

0

1
1−ρ(x)

dx



+
λ

2

n∑
i=0

( i∑
j=1

∆j

)2
∆i+1∫
∆i

h(x) dx + (n−i)

∆i+1∫
∆i

x2 h(x) dx


(6)

where
job 1 receives currently service and ∆1 < . . . < ∆n,
∆0 = 0 and ∆n+1 =∞

7Hyytiä et al., Eur. J. Oper. Research (2012)
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M/G/1-SPTP

Proposition: The size-aware relative value of state z with respect
to arbitrary holding costs in an M/G/1-SPTP queue is8

vz − v0 =
n∑

i=1

bi

(
1

1−ρ(∆̃i )

( i−1∑
j=1

∆j

)
+

2
∆∗

i

∫ ∆̃i

0

x dx
1−ρ(x)

)

+
λ

2

n∑
i=0

( i∑
j=1

∆j

)2
∆̃i+1∫
∆̃i

h(x) dx +

( n∑
j=i+1

(∆∗
j )−2

) ∆̃i+1∫
∆̃i

x4 h(x) dx


where

Job 1 receives service and
√

∆1∆∗
1 < . . . <

√
∆n∆∗

n (SPTP)

∆̃i =


0, i = 0√

∆i ∆∗
i , i = 1, . . . ,n

∞, i = n + 1.

8Hyytiä, Aalto, Penttinen, SIGMETRICS’12.
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Value Function for M/G/1 Queues

ν
λ

A. Elementary scheduling disciplines:
M/G/1-FCFS
M/G/1-LCFS

B. Size-aware scheduling disciplines:
M/G/1-SPT (shortest-processing-time)
M/G/1-SRPT (shortert-remaining-processing-time)
M/G/1-SPTP (shortest-processing-time-product)

C. Processor sharing (PS)
M/D/1-PS (fixed job sizes)
M/M/1-PS
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M/G/1-PS: (Processor sharing)
Basics:

PS serves the existing n jobs at equal rates 1/n.

Mean delay in M/G/1-PS is insensitive to job size distribution,

E[T ] =
E[X ]

1− ρ
.

Unfortunately, the size-aware value function is not!

(∆1; ..; ∆n) denotes the remaining service times, ∆1 ≥ . . . ≥ ∆n.

Without new arrivals:
Job n leaves the system first and job 1 last

Cumulative delay (myopic cost) is given by

Vz = ∆nn2 + (∆n−1 −∆n)(n − 1)2 + . . .+ (∆1 −∆2)

=
n∑

i=1

(2i − 1)∆i .
(7)
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M/D/1-PS

ν
λ

PS

Proposition: The size-aware relative value of state z with
respect to the delay in an M/D/1-PS queue is given by9

v(∆1;..;∆n) − v0 =
λ

1− ρ
u2

z − uz + 2
n∑

i=1

i ∆i . (8)

Note:
Compact form as a new job will always depart last.
Converges to (7) when λ→ 0

9Hyytiä et al., ITC’11.
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Number-aware M/M/1 queue

ν
λ

Consider:
M/M/1 queue
any work conserving scheduling (FCFS, LCFS, PS, . . . )
number-aware system: number of jobs m is known

Lemma: The value function for a work conserving and
number-aware M/M/1 queue is10

vm =
1
2
· m(m + 1)

µ− λ
− λµ

(µ− λ)3 . (9)

10Aalto and Virtamo (1996), Virtamo (Lecture slides, 2004).
The constant term follows from the identity

∑
i πivi = 0.
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Size-aware M/M/1-PS queue

Proposition: The relative value of state (m; ∆1, . . . ,∆n) in a
size-aware M/M/1-PS queue is given by11

v(m;∆1,...,∆n) = vm +
1

(1− ρ)2

n∑
k=1

(2k − 1)∆k +

2− ρ
µ(1−ρ)2

n∑
k=1

(
m− kρ

1−ρ

)( k∑
i=1

e−µ(1−ρ)(∆i−∆k )

)(
1−e−µ(1−ρ)(∆k−∆k+1)

)
where

∆i are n known remaining service times, ∆1 > . . . > ∆n,
m tasks have unknown Exp(µ) distributed service time,
and ∆n+1 , 0.

Note: Converges to (7) when m = 0 and λ→ 0.

11Hyytiä et al., Performance 2011.
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Related results for value functions

Queueing systems:

M/M/s: Krishnan, CDC’87
M/G/1-FCFS
(approx.)

Sassen et al. Neerlandica (1997)

M/M/1 & M/M/1/N
(deviation matrix)

Koole, CDC’98

M/M/1
(FCFS/LCFS/PS)

Aalto&Virtamo, NTS-13 (1996); and
Virtamo, Lecture notes on MDP (2004)

M/Cox(r)/1 Bhulai, J. Applied Prob. (2006)

Blocking systems:

M/M/s/s Krishnan, CDC’86
M/M/s/k Leeuwaarden et al. (2001)
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Task Assignment Problem

ν3

ν1

x3 x2 x1

ν2

λ
α

Servers

ν3

Arrivals

Dispatching Scheduling

Task assignment (dispatching):

Route job to one of the m servers upon arrival.

Examples:
1 Manufacturing sites
2 Job assignment in supercomputing,
3 Data traffic routing
4 Web-server farms and Data centers
5 Other distributed computing systems . . .
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Size- and State-aware Dispatching Problem

1

1

1

λ
α

Model:
Poisson arrival process, rate λ
m parallel heterogeneous servers
General job size distribution
Service requirements become known upon arrival
(possibly server specific)
Queue states are known (job sizes and their service order)
Scheduling discipline known: FCFS, LCFS, SRPT . . .
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State-independent Policies

Definition:

State-independent policy chooses the server
independently of the queue states.

1 Bernoulli splitting (RND):
Choose queue in random using probabilities pi

2 Size-Interval-Task-Assignment (SITA):
“short jobs to one queue and rest to another”

Proposed in Crovella et. al (Sigmetrics’98) and
Harchol-Balter et. al (J. of PDC, vol. 59, 1999).
SITA-E uses such intervals that balance the load.
Optimal size-aware state-free for FCFS (Feng et. al, 2005).
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State-dependent Policies

1 Join-the-Shortest-Queue (JSQ):
Optimal when Poisson arrivals, Exp-distributed job sizes,
identical servers, and only the queue occupancy is known
(Winston, 1977).

2 Round-robin (RR):
Optimal with identical servers that were initially in a same
state (Ephremides et. al, 1980).

3 Least-Work-Left (LWL):
Pick the queue with the shortest backlog (Sharifnia, 1997).
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Approach: First Policy Iteration (FPI)

Size- and state-aware setting; future arrivals not known
Idea: start with a reasonable basic dispatching policy, and
carry out the first policy iteration (FPI) step
Policy iteration finds the optimal policy; the first step
typically yields the highest improvement.
Requires the relative values of states vz
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First Policy Iteration (FPI)

Assume: Relative values vz available (for basic policy)
Improved decision according to FPI at state z:

α(z, x) , argmin
i

(
vz′(i) − vz

)
,

where z′(i) is the new state if job x is added to queue i .

“Choose the action with the smallest expected future cost”

Recall: in addition to z, relative value vz depends also on
1 Basic dispatching policy
2 Scheduling discipline
3 Arrival rate λ, and
4 Job size distribution.
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Decomposition to Independent M/G/1 Queues

Deriving value function is generally difficult.
However, any state-independent policy feeds each server
jobs according to a Poisson process (cf. Bernoulli split)

1

1

1
λ/3

λ/3

λ/3

λ
1

1

1

RND

System’s value function is the sum of the queue specific
value function:

vz =
∑

i

vzi .

Sufficient to analyze single M/G/1 queues instead!
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SITA-E/Switch policy for FCFS

SITA-E

1

1
λ

α long

sh
or

t

SITA−E

FIFO−servers

Jobs shorter than y to Queue 1

The rest to Queue 2

Adjust y to balance the load

Poisson arrivals

Behaves as two independent
M/G/1-FCFS queues

SITA-Es (switch)

shorter 
backlog

longer
backlog

λ
α long

sh
or

t

SITA−E 1

1

switch! 

FIFO−servers

Identical servers

Roles can be swapped

New initial state,
same system otherwise

Value function vz1 + vz2
⇒ optimal permutation of roles

SITA-Es: “Short jobs to short queue, and long to long.”
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FPI-SITA-E, “Dynamic SITA-E”

1

1
λ

α long

sh
or

t

SITA−E

FIFO−servers

SITA-E uses a fixed threshold for separating the short jobs
from the long jobs.
FPI gives a new policy, FPI-SITA-E
With FPI-SITA-E, the threshold is dynamically adjusted
based on the current backlog in the queues.
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Numerical Examples

For Delay:
1 Two identical FCFS servers
2 Two identical SRPT servers
3 Heterogeneous PS servers

For Slowdown:
1 Three heterogeneous servers
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FCFS with Uniformly distributed jobs
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FCFS with Exponentially distributed jobs
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FCFS with Pareto distributed jobs
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SRPT and Exponentially distributed jobs
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(b)  Multi−server system
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Dispatching system vs. a shared queue with SRPT
(M/M/2-SRPT).
Disadvantage due to the dispatching
can be insignificant (here order of 5% with FPI-RND).
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Heterogeneous PS Servers

System:
Poisson arrival process
Fixed server-specific
service time di = d/νi

α

Dispatcher

PS−queues

λ

Dispatching policies:

Random split balancing the load RND-ρ

Least-work-left (pre-assignment) LWL−: argmin
i

ui

Least-work-left (post-assignment) LWL+: argmin
i

ui + di

FPI for RND-ρ FPI: argmin
i

ui + (1/2)di
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Heterogeneous FCFS Servers with Slowdown metric
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Dispatcher
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Heterogeneous Servers with Slowdown Metric
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Versatile Approach

1 Each server can have dedicated input
λ1

λ2

α

PS−queues

Dispatcher

λ

2 Basic policy can be class-specific
Low and high priority customers with own queues
When to route a low priority job to a high priority queue?

3 Service times can be server-specific
General purpose vs. specialized servers
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Conclusions

Size- and state-aware dispatching problem can be
approached in the MDP framework
Value functions vz are required for the FPI step.
For state-independent basic policies, sufficient to analyze
an M/G/1 queue in isolation:

FCFS and LCFS: vz is insensitive to job size distribution.
SPT, SRPT and SPTP: vz is an integral expression.
PS: harder to analyze (M/D/1-PS and M/M/1-PS)

Efficient dispatching policies that take into account
cost structure
existing and later arriving tasks

Thanks!

YEQT-VI Nov 2012 44/44



References:

1 Hyytiä, Penttinen and Aalto, Size- and State-Aware Dispatching
Problem with Queue-Specific Job Sizes, EJOR 2012.

2 Hyytiä, Virtamo, Aalto and Penttinen, M/M/1-PS Queue and
Size-Aware Task Assignment, Performance 2011.

3 Hyytiä, Penttinen, Aalto and Virtamo, Dispatching problem with
fixed size jobs and processor sharing discipline, ITC’23, 2011.

4 Hyytiä, Aalto and Penttinen, Minimizing Slowdown in
Heterogeneous Size-Aware Dispatching Systems, SIGMETRICS
2012.

5 Hyytiä, Aalto, Penttinen and Virtamo, On the value function of
the M/G/1 FCFS and LCFS queues, Journal of Applied
Probability, 2012, to appear.

YEQT-VI Nov 2012 45/44



Proof for M/G/1-FCFS

Consider two systems under the same arrivals:
S1 initially in state z = (∆1; ..; ∆n) and
S2 initially empty.

Both systems behave identically once S1 becomes empty. The
difference in the relative values is equal to the additional time
jobs spend in S1,

vz − v0 = V1 + V2,

where V1 denotes the (remaining) delay of present jobs, and
V2 the additional mean delay the later arrivals experience in S1.

The total delay of the n present jobs in S1 is already fixed,

V1 =
n∑

i=1

i ∆i .
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A later arriving task starts a busy period in S2, which
corresponds to a mini busy period in S1.

u
z

virtual busy period

Y

Initially empty system:

Initial state :z

During busy periods, arriving jobs increase the cumulative
delay by an amount equal to the post arrival workload.
These jobs experience an additional delay Y in S1.
Otherwise the delay contributions are equal!
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Summing up:
Mean number of busy periods before S1 empty: λuz.
Mean number of jobs arriving during a busy period: 1/(1− ρ).
Mean offset E[Y ] = uz/2.

Therefore,

V2 = λuz ·
1

1− ρ
· uz

2

=
λu2

z
2(1− ρ)

,

u
z

virtual busy period

Y

Initially empty system:

Initial state :z

and V1 + V2 = vz − v0, which completes the proof.
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Proof for M/G/1-LCFS

Consider two systems under same arrivals:
1 S1 initially in state z = (∆1, ..,∆n),
2 S2 initially empty.

Let Di denote the (remaining) delay of job i in S1.
With LCFS, the current state has no effect on the future
arrivals’ sojourn times.
The difference between the relative value of S1 and S2 is
equal to the mean remaining delay of the n present jobs,

v(∆1;..;∆n) − v0 =
n∑

i=1

E[Di ].
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Remaining delay Dn of job n is given by a random sum,

Dn = ∆n +
(
B1 + . . .+ BA(∆n)

)
where A(∆n) denotes the number of (mini) busy periods
during time ∆n, and Bi the corresponding durations,

E[Bi ] = E[X ]/(1− ρ).

Taking the expectation on both sides gives

E[Dn] = ∆n + E[A(∆n)] · E[B] =
∆n

1− ρ
.

Similarly, E[Di ] =
1

1− ρ

n∑
j=i

∆j .

⇒ vz − v0 =
n∑

i=1

E[Di ] =
1

1− ρ

n∑
i=1

i ·∆i .
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M/G/1-SRPT - Alternative Form

Proposition: The size-aware relative value of state z with
respect to arbitrary holding costs in an M/G/1-SRPT queue is12

vz − v0 =
n∑

i=1

bi

(
uz(∆i)

1−ρ(∆i)
+

∫ ∆i

0

1
1−ρ(t)

dt
)

+
λ

2

∫ ∞
0

h(x)
(

uz(x)2 + nz(x) x2
)

dx ,

(10)

where
job n receives currently service and ∆1 > . . . > ∆n,
uz(x) = backlog due to jobs shorter than x in state z,
nz(x) = number of jobs longer than x in state z.

12Hyytiä et al., Eur. J. Oper. Research (2012)
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