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Aalto University, Finland

Thrasyvoulos Spyropoulos
EURECOM, Sophia-Antipolis, France

Jörg Ott
Aalto University, Finland

Abstract—We consider a dynamic offloading problem arising
in the context of mobile cloud computing (MCC). In MCC,
three types of tasks can be identified: (i) those which can be
processed only locally in a mobile device, (ii) those which are
processed in the cloud, and (iii) those which can be processed
either in the mobile or in the cloud. For type (iii) tasks, it is
of interest to consider when they should be processed locally
and when in the cloud. Furthermore, for both type (ii) and
(iii) tasks, there is typically two ways to access the cloud:
via a (costly) cellular connection or via intermittently available
WLAN hotspots. The optimal strategy involves multi-dimensional
considerations such as the availability of WLAN hotspots, energy
consumption, communication costs and the expected delays. We
approach this challenging problem in the framework of Markov
decision processes and derive a near-optimal offloading policy.

I. INTRODUCTION

We consider the task assignment problem arising in the
context of the mobile cloud computing (MCC). In MCC, the
key idea is to offload computationally demanding tasks to the
cloud, process them there, and then transmit the results back
to a mobile device [1], [2], [3] This can be faster and also
consume less energy in the mobile device. The cloud could be
accessed using the cellular network, or via a WLAN hotspot.
The latter option is only intermittently available, but can offer
significant advantages in terms of cost and energy [1]. The
offloading scenario for a mobile user is illustrated in Fig. 1.

In MCC, three types of tasks can be identified: (i) those
which can be processed only locally in a mobile device, (ii)
those which are processed in the cloud, and (iii) those which
can be processed either in the mobile or in the cloud. A first
interesting question is when flexible type (iii) tasks should
be processed locally and when in the cloud. Furthermore, for
type (ii) and type (iii) tasks, there may exist multiple access
links, with different characteristics (e.g., WLAN, LTE, 3G) to
use for accessing the cloud. This leads to multi-dimensional
considerations where, energy consumption, transmission costs,
task type (e.g., background or foreground), network availabil-
ity and rates, must be taken into account.

We approach this problem in the framework of Markov
decision processes (MDP). The different options (process
locally, or offload to a cloud, either at a hotspot or via a cellular
network) are modelled as single server queues. The resulting
dynamic decision problem is a specific type of a task assign-
ment problem, where the policy seeks to minimize a given
cost function (e.g., the mean response time). In contrast to the
more common setting, in our case the servers corresponding

to (WLAN) hotspots are available only intermittently due to
the assumed mobility of a user. Moreover, some options can
be expensive to use. For example, service time (but not the
queueing delay) in a cellular connection can cost actual money,
in particular, if the user is roaming abroad. Therefore, often
well-functioning task assignment policies such as the join-
the-shortest-queue (JSQ) and the least-work-left (LWL) may
make sub-optimal decisions leading to poor performance. In
contrast, the policies developed in this paper take into account
the actual cost factors, the current state of the system (backlogs
in different queues and the currently available networks), and
the anticipated future tasks when making the decisions.

First we derive a new theoretical result, the so-called value
function, for an M/G/1-queue with intermittently available
server. The intermittently available server corresponds to the
WLAN hotspots: tasks offloaded via WLAN may need to
wait until the “server” appears again. Then, the value function
derived for this particular type of M/G/1-queue, together with
value functions for the other two options (local processing,
offloading to the cloud through the cellular network), are used
to apply the policy improvement step of the MDP framework.
This yields a robust and efficient offloading policies that take
into account the intermittent presence of WLAN hotspots.

In addition to the offloading of computational tasks, mobile
offloading is also seen as a promising candidate to deal with
the rapidly increasing traffic volumes (see, e.g. [4], [5], [6]), as
well as, for backup and synchronization traffic (e.g. Dropbox
& Flicker) [7]. Typically the offloading mechanisms are heuris-
tic and chosen with a particular scenario in mind. [8] proposes
a simple model to study computation and transmission energy
tradeoffs, while [9] formulates an optimization problem in-
volving various costs. Neither work considers queueing effects.
Lee et al., in [6], develop a similar queueing model for

WLAN

Cell

Cloud

User

Services

Cell Tower

WLAN

Fig. 1. Offloading in mobile cloud computing. The cloud services can be
accessed via a cellular network or intermittently available WLAN hotspots.
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Fig. 2. Offloading in mobile cloud computing: some tasks can be processed
either locally in a mobile device or in the cloud, where the latter involves
also transmission costs in terms of energy, delay and money.

the intermittently available server to analyze the gain from
offloading. However, no policy optimization is carried out.

The main contributions of this paper are as follows:
1) We analyze the offloading problem in MCC and propose

a multi-queue model that captures the essential elements.
2) We derive the size-aware value function for M/G/1-

queue with an intermittently available server.
3) We give new state- and cost-aware offloading policies

that take into account the mobility, and the existing and
anticipated tasks. By means of numerical examples, we
further demonstrate that significant gains are available.

The rest of the paper is organized as follows. Section II
introduces the model and notation. The value function for
M/G/1 with intermittently available server is derived in Sec-
tion III. The new offloading policies are given and evaluated
in Section IV, and Section V concludes the paper.

II. MODEL AND NOTATION

Fig. 2 illustrates the basic setting, where three performance
metrics are important to us: (i) energy consumption at the
mobile device, (ii) monetary costs (from the access network),
and (iii) the delay until the results are available for the user
(i.e., the response time). Should a transfer of a content be
carried out in the vicinity of WLAN hotspots, the transfer
time can vary a lot depending on if an WLAN connection
is currently available or not, whereas the use of a cellular
connection is often slower and costs money. The cloud itself
is assumed to be scalable and thus free from capacity concerns.

A. Task and Network Types

Different types of tasks emerge in a mobile device according
to some process, which we, for simplicity, assume to be a
Poisson process with rate λ. These tasks can be classified into
the following three classes:
(i) Local-only: A fraction pm are unconditionally processed

locally in the mobile device, e.g. because transferring the
relevant information would take more time and energy
than when processed locally or because these tasks must
access local components (e.g. sensors, user interface,
etc.) [1]. Local processing consumes the CPU power
of the device and, in particular, the battery power. We
assume that jobs processed locally are served in the
first-come-first-server (FCFS) order and for each task we
know the expected service time (depends on the task and
the CPU). There are no communication costs or delays.

(ii) Cloud-only: A fraction pc must always be processed in
the cloud, e.g. because necessary data or the software is
only present in the cloud. Backup or synchronization of
files and images (e.g. Dropbox, Google+, etc.) could also
be seen as such an “offloading task”. The user can still
decide which network to use for offloading.

(iii) Flexible: A fraction p = 1 − pm − pc are flexible tasks
that can be processed either in a mobile device or in the
cloud. The device can dynamically decide where they
are processed based on the urgency of the task, available
networks and the state of the system (e.g., the current
backlogs). Many tasks fall in this category, and the of-
floading decision depends on whether the communication
costs balance the local processing costs [8].

All “cloud-only” tasks as well as some of the “flexible”
ones, will need to access the cloud over some wireless
interface. We assume that the following options are available:
(a) Cellular network: When accessing the cloud via a

cellular network, there is queueing due to the transmission
speed of the cellular link. The service time consists of the
upload time, cloud processing time, and the download
time. For simplicity, we lump these three phases together
and model them as a single FCFS server. Costs arise
in terms of transmission delays (queueing and actual
transmission times), energy and money costs related only
to the transmission and reception (but not to processing).

(b) WLAN: WLAN is similar with two distinctive features.
First, the communication costs are generally lower (or
even zero). Second, the hotspot availability is intermittent
and the offloading may encounter long random delays
until the device arrives to a vicinity of the next hotspot.
This intermittent availability of hotspots corresponds to
a FCFS queue with a server that disappears occasionally.
We assume that the sojourn time in a hotspot and the
time between two hotspots are exponentially distributed
with parameters νA and νD. However, this assumption is
relaxed in numerical examples. (The cellular connection
and local CPU processing are always available.)

B. Cost Structure and Objective

We take the users’ perspective and aim at maximizing his or
her satisfaction. This involves energy consumption (unless the
device is currently connected to a charger), monetary costs,
and the delay. We further assume a time scale separation so
that each task takes a short time when compared to a typical
recharging cycle. The dynamic optimization problem is to
strike a balance between the different costs factors and the
perceived user experience in terms of delay (a.k.a., latency and
response time). This boils down to two kinds of dynamic task
assignment decisions as illustrated in Fig. 3: (i) choosing the
cloud and the access link, or local processing for the flexible
tasks, and (ii) choosing the cloud access link for the cloud-
only tasks. The intermittent availability of the WLAN hotspots
further complicates the problem.

We have different costs depending on what kind of action
a queue models (local CPU, or cloud via WLAN/cellular):
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Fig. 3. Model: some tasks can be processed only in cloud, some locally and
some are flexible.

• Waiting cost in queue while server is ON or OFF, which
is just a delay. No energy or money is spent while waiting,
and this cost factor is also independent of the interface.
The same holding cost applies also for the service time,
as the user does not care where the delay occurs, just
about the time it takes to complete a task.

• Energy cost, measured per bit, spent only when transmit-
ting or receiving a task to/from a cloud. This cost depends
on the interface. An energy cost is present also when a
task is processed locally.

• Monetary cost, also measured per bit and spent only
when transmitting or receiving a task to/from a cloud.
This can be assumed to be zero for WLAN and some
positive constant for the cellular access.

The complete model, illustrated in Fig. 3, is as follows:
• For each new task, the system must take an action among

the available options (e.g., offload task i via WLAN).
• Each task j has a task-specific holding cost hj , which

characterizes its urgency (e.g., emails may have a lower
priority than a response to the user activity).

• Cost parameters of job j for each action i are known:
i) Energy consumption rate ej,i,

ii) Transmission cost rate cj,i, and
iii) Service time sj,i (excluding queueing delays).

• We are also aware of the full state, i.e., the files under
transmission via different access links and the current
state of the local processing queue, including the remain-
ing service times of the jobs currently receiving service.

• The queues are assumed to operate independently at
constant rate according to FCFS scheduling discipline.

• The objective is to minimize the costs the system incurs,

min

n∑
j=1

(
(cj,d(j) + ej,d(j))Sj + hjTj

)
,

where d(j) is the decision for job j, Sj is its service time
and Tj the latency, i.e., the sum of the waiting time and
service time, Tj = Wj + Sj .

Note that the unit holding cost, H = 1, corresponds to
minimization of the mean latency. In general, with this cost
structure each job, after the assignment, has a certain holding
cost while waiting, hW , and another while receiving service,
hS . We utilize this convention later in Section III-D. For
simplicity, we assume that Sj = sj,d(j), i.e., the actual service

time is known exactly for each possible action. Similarly, in the
size-aware setting with FCFS, also the tentative waiting time
Wj is known exactly for each decision (later arriving tasks will
not cause any additional delays to the present tasks). That is,
we know exactly the immediate cost of each action (waiting
and service time of the new task), while the consequences on
later arriving tasks have to be also taken into account.

III. ANALYSIS

In this section, we consider a single size-aware M/G/1-FCFS
queue, where the (remaining) service times of the existing
jobs are known. Our aim is to derive the value function,
which characterizes the expected difference in costs a system
initially in state z incurs when compared to a system initially
in equilibrium. The single queue results are later utilized to
evaluate the costs from assigning a new task to different queues
in the offloading setting depicted in Fig. 3.

A. Value function and policy improvement

The notion of value functions is a fundamental element in
solving MDP problems [10], [11], [12]. Formally, let Vz(t)
denote the costs a system incurs during time (0, t) when the
system is initially in some state denoted by z. Obviously, many
systems incur costs at every time step and limt→∞ E[Vz(t)] =
∞. However, for ergodic systems the expected difference in
costs incurred between two initial states, z1 and z2, is finite,

lim
t→∞

E[Vz1
(t)− Vz2

(t)] <∞.

Instead of choosing an arbitrary state (such as z2 in above) as
a reference state, it is customary to compare the costs incurred
from a given state z to the long-run average costs, leading to
a formal definition of the value function (without discounting)

vz , lim
t→∞

E[Vz(t)− rt],

where r denotes the (long-run) mean cost rate. Both the value
function and the mean cost rate depend on the policy, vz =
vz(α) and r = r(α).

The standard application of the value function is the policy
improvement. Suppose that we have determined vz(α0) for a
basic policy α0. At some state, we have n possible actions
(e.g., n possible ways to process a new task), having immedi-
ate costs xi and resulting states zi, i = 1, . . . , n. The n actions
can be evaluated by xi + vzi , as

=immediate︷ ︸︸ ︷
(xi − xj) +

=future︷ ︸︸ ︷
(vzi
− vzj

),

clearly describes the relative expected cost of action i in
comparison to action j. The policy improvement step defines
a new policy α by choosing the action i∗ that minimizes the
expected long-term costs,

i∗ = argmin
i

xi + vzi
.

That is, for the current action one deviates from the basic
policy α0, while the consecutive actions are according to it so
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Fig. 4. M/G/1-FCFS queue with an external Markov ON/OFF process
controlling the availability of the server.

that vz(α0) can be utilized. The constant offset in the value
function is immaterial, and equally

argmin
i

xi + (vzi
− v0),

where v0 denotes the value of an empty system. In policy
iteration, one repeats the same steps for the new policy α
iteratively until the policy converges and an optimal policy
has been obtained.1 For more details on the value functions
and MDP in general, we refer to [10], [11], [12], and on the
use in the task assignment setting, see e.g., [13], [14], [15].

B. M/G/1-FCFS with intermittently available server

The value function for the size-aware M/G/1-FCFS queue
with an always available server has been derived in [15].

In this section, we consider the M/G/1-FCFS queue where
the availability of the server is governed by an external
ON/OFF process. In our context, the queue corresponding to
offloading via WLAN is served only when the mobile device
is in the vicinity of a WLAN hotspot, as illustrated in Fig. 1.

More specifically, the server is either in ON-state processing
the existing jobs in FCFS order (if any), or in OFF-state
during which no job gets service. The server’s activity cycle
is assumed to follow an external Markov ON/OFF process
with independent activity and inactivity periods (Ai, Di), both
obeying exponential distributions with parameters νA and νD,
respectively. When a server returns, it resumes to serve the
customer whose service was interrupted (if any), i.e., the work
already conducted is not lost (cf. file transfers with resume).

The system is illustrated in Fig. 4. Hence, the fraction of
time the server is available to process jobs is

P{available} =
νD

νA + νD
.

As νD →∞, the availability of the server tends to 1.
1) Busy periods: A busy period begins when a job arrives

to an empty system, and ends when the system becomes
empty again. When a busy period ends, the server is obviously
unconditionally active. Let q denote the probability that the
server is active when a new busy period starts. Due to the
memoryless property of the Markov processes, we have

q =
λ

λ+ νA
+

νA
λ+ νA

· νD
λ+ νD

· q,

which gives

q =
λ+ νD

λ+ νA + νD
. (1)

1To be exact, this holds, e.g., for ergodic systems with finite state-spaces,
whereas with continuous state-space the situation is more complicated.

The mean remaining busy period in a work-conserving M/G/1-
queue is given by

u

1− ρ
, (2)

where u is the initial backlog and ρ = λE[S] the offered load
with E[S] denoting the mean service time. We can utilize (2)
to give an expression for the mean busy period in a system
with the intermittently available server as follows. First, we
associate the interruptions occurring during the service time
of job i to be part of the corresponding job,

Yi = Xi +D
(i)
1 + . . .+D

(i)
Ni
,

where Ni ∼ Poisson(νAXi) and D(i)
j ∼ Exp(νD). Thus, with

the chain rule of expectation one obtains

E[Y ] =

(
1 +

νA
νD

)
E[X],

E[Y 2] =

(
1 +

νA
νD

)2

E[X2] +
2νA
ν2
D

E[X].

In this sense, the offered load during the busy period is

ρ∗ , λE[Y ] = λE[X](1 + νA/νD).

For stability ρ∗ < 1 is assumed. The mean busy period can
be obtained by utilizing (2), which gives the mean remaining
busy period in an M/G/1-queue with an initial backlog of u:

E[B] = q · E[Y ]

1− ρ∗
+ (1− q) · E[Y +D]

1− ρ∗

=
E[Y ]

1− ρ∗
+

1

1− ρ∗
· νA/νD
λ+ νA + νD

=
E[Y ] + β

1− ρ∗
,

where β denotes the mean time until the server becomes
available at the start of the busy period,

β =
νA/νD

λ+ νA + νD
.

2) Mean delay: The mean delay in an ordinary M/G/1-
queue is given by the Pollaczek-Khinchine formula,

E[T ] =
λE[S2]

2(1− ρ)
+ E[S]. (3)

The following holds for the intermittently available server:
Theorem 1: The mean delay in an M/G/1-queue with

intermittently available server is given by

E[T ] =
λE[Y 2]

2(1− ρ∗)
+

E[Y ] + β(1 + λ(E[Y ] + 1/νD))

1 + λβ
. (4)

Proof: In an M/G/1-queue, where the first customer of a busy
period receives exceptional service, the mean delay is [16]

E[T ] =
λE[S2]

2(1− ρ)
+

2E[S∗] + λ(E[(S∗)2]− E[S2])

2(1 + λ(E[S∗]− E[S]))
, (5)

where S∗ denotes the service time of the first customer, S
the service time of the other customers, and ρ = λE[S]. Our
system is a special case of the above, where S = Y and

S∗ = Y ∗ =

{
Y, with probability of q,
Y +D, otherwise.



The first two moments of Y ∗ are

E[Y ∗] = E[Y ] +
νA/νD

λ+ νA + νD
= E[Y ] + β,

E[(Y ∗)2] = qE[Y 2] + (1− q) E[(Y +D)2]

= E[Y 2] + 2
νA/νD

λ+ νA + νD

(
E[Y ] +

1

νD

)
= E[Y 2] + 2β

(
E[Y ] +

1

νD

)
.

Substituting these into (5) gives (4). �

Note that at the limit νD → ∞, we have β → 0 and (4)
reduces to the Pollaczek-Khinchine mean value formula (3).
Another interesting limit is obtained when both νA, νD →∞
in such way that νD/(νA+ νA), corresponding to the fraction
of time the server is available, is finite (cf. duty cycle).

C. Size-aware value function

As mentioned, we assume a size-aware system, where the
service times of the jobs become known upon arrival. Let ∆i

denote the (remaining) service time of job i, which are ordered
so that job 1 (if any) receives first service, then job 2, etc. We
also know the state of the server, i.e., whether it is available
or not, but not how long each time period is going to last. The
parameters of the availability process, (νA, νD), however, are
known. The state of the system is denoted by vector z,

z = (∆1, . . . ,∆n; e),

where e ∈ {0, 1} indicates if the server is available or not.
Our aim is to derive the size-aware value function with

respect to delay. The mean number of jobs served during a
busy period in an ordinary M/G/1-queue is [17]

E[NB ] =
1

1− ρ
. (6)

Utilizing the above, it is easy to show by conditioning that the
mean number of jobs served during a busy period that starts
with a job having a service time of x is

E[NB | X1 = x] = 1 +
λx

1− ρ
. (7)

Now we are ready to state our main theorem:
Theorem 2: The value function with respect to delay in an

M/G/1-queue with intermittently available server is

vz − v0 =
λγ2u2

2(1− ρ∗)
+ 1off

λγu

(1− ρ∗)νD

+ γ

n∑
i=1

(n+ 1− i)∆i + 1off
n

νD
,

(8)

where γ = 1 + νA/νD and ρ∗ = λ γ E[X], and 1off = 1 if the
server is not currently available (e = 0) and zero otherwise.

Proof: See Appendix. �

We note that the terms with 1off factor correspond to the
additional penalty due to the currently unavailable server. Note
also that the reference state v0 corresponds to an empty system

with server initially in the same state as in z. This is sufficient
for task assignment as inserting new jobs to a queue does not
change the state of the server, the availability of which was
governed by an external independent ON/OFF process. The
parameter γ = 1 + νA/νD can be seen as the effective mean
service rate, as γu corresponds to the mean time to process a
backlog of u (given the server is initially available).

The value function (8) is with respect to the delay. Next we
will consider how much it costs to add a new job to a queue,
i.e., we give an expression for the admission cost. We also
generalize the cost structure to arbitrary and separate holding
costs that apply for the waiting time and service time.

D. Admission costs and general cost structure

Next we consider how much it costs in terms of additional
delay all later arriving jobs concurrently incur if a job with size
x is admitted to the queue. The cost difference with respect
to delay is simply the difference in the relative values,

a(x; z) = vz⊕x − vz, (9)

where z denotes the initial state and z ⊕ x the state after
including a new job with size x,

z⊕ x = (∆1, . . . ,∆n, x; e).

Corollary 1: The admission cost of a job with size x
with respect to delay in an M/G/1-queue with intermittently
available server is

a(x;u) =
λγx

1 − ρ∗

(
γ(2u+ x)

2
+

1off

νD

)
+ γ(u+x) +

1off

νD
. (10)

Proof: With FCFS, the admission cost depends only on the
current backlog u = ∆1+ . . .+∆n. Substituting (8) to (9)
yields (10). �

Note that γ → 1 and ρ∗ → ρ when νD →∞, and the above
reduces to the admission cost in an ordinary M/G/1 [15],

a(x;u) =
λx

2(1− ρ)
(2u+ x) + u+ x.

The above value function is with respect to delay, corre-
sponding to unit holding cost during both the waiting and
service time. A generalization to arbitrary and separate holding
costs for the waiting and service time is straightforward. This
is important for us as it allows specifying energy, delay, and
money costs per task once the assignment decision has been
done and, e.g., the cost per bit transmitted gets fixed (operators
charge only for the bits transmitted).

Corollary 2: The admission cost of a job with size x and
holding cost rates (hW , hS) for the waiting and service time
to an M/G/1-queue with an intermittently available server is

a(x;u) =
λE[HW ]γx

(1− ρ∗)

(
γ(2u+x)

2
+

1off

νD

)
+ hW

(
γ(u+ x)−x+

1off

νD

)
+ hS x.

(11)

where E[HW ] is the mean waiting time holding cost rate for
jobs arriving to the queue.
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Fig. 5. Example #1: Server 1 always available with rate r1 = 100 kB/s; Server 2 is intermittently available with νA = νD (i.e., 50%) and r2 = 200kB/s.

Proof: First we note that the first two terms in (10) correspond
to the additional delay the later arriving jobs experience on
average if the new job is admitted to the queue. With non-
preemptive scheduling disciplines, the service times of the jobs
are not affected by the state of the system (at any moment),
and thus the first two terms (10) must correspond to the
increase in the waiting time, which we simply multiply by
the mean holding cost while waiting, E[HW ]. The costs the
given (x, hW , hS)-job incurs on average is

(u(1 + νA/νD) + x(νA/νD) + 1off/νD)hW + xhS .

Combining these yields (11). �

The first term corresponds to the mean additional costs the
later arriving jobs will incur (while waiting), and the last two
terms to the costs the given new job incurs on average. The
same generalization to job- and state-specific (waiting or in
service) holding cost rates can be done also for the value
function (8), which we omit here for brevity.

The obtained result (11) is satisfactory in many respect.
First, the expression is compact and depends only on few
parameters: the new task, (x, hW , hS), the state of the server
(available or not) and the current backlog u. The rest are
constant, i.e., (11) is clearly easy to compute in online fashion.
Second, (11) is insensitive to the distribution of service time
X and depends only on its mean. Third, considering (11) as
a conditional admission cost on condition that U = u, we
note that the expected admission cost is also insensitive to
the distribution of U and depends only on its mean E[U ].
The insensitivity is a desirable property, e.g., towards the
robustness and predictability of a control algorithm [18].

IV. DYNAMIC MOBILE DATA OFFLOADING

In this section, we utilize the just derived value functions
and admission costs to derive sophisticated dynamic policies
for the offloading problem. The general approach is as follows:

1) We start with a static policy α0 (actions are made
independently of the past decisions and the state of the
queues). Note that the actions of α0 may still depend on
the parameters of a task (e.g., size or holding costs).

2) Given a Poisson arrival process, the static α0 feeds each
server jobs also according to a Poisson process, the
system of parallel queues decomposes, and the sum of

queue specific value functions gives the value function
for the whole system, vz =

∑
i v

(i)
z(i).

3) Consequently, we can carry out the policy improvement
step and simply choose for each task the queue with the
smallest admission cost using (11),

α1 : argmin
j

aj((x, hW , hS); (uj , ej)),

where (x, hW , hS) in general also depend on Queue j
(e.g., the service time depends on the link speed when
offloading a task to a cloud), and (uj , ej) denote the
(relevant) state information of Queue j.

We refer to the the improved policy as FPI (first-policy-
iteration). The FPI policy is no longer static but dynamic, and
in practice it is often also near optimal (given the starting
point was a reasonable). Let us next illustrate the concept and
different heuristic policies with two numerical examples.

A. Example #1: Cellular vs. WLAN

Consider first an elementary system of two servers:
• Cellular: always present; service rate r = 100kB/s
• WLAN: intermittently available, νA=νD=ν; r=200kB/s

The mean rate of both servers is thus equal. Jobs are large
files, X ∼ Exp(µ) with the mean size of 1/µ = 6MB

The optimal Bernoulli split between the two queues, de-
termined using (4), is depicted in Fig. 5(a) for ν = 0.1, 1, 10
min−1. Parameter p on the y-axis corresponds to the fraction of
jobs assigned to Server 1. For very small λ, it is advantageous
to assign all jobs to Server 1 (p = 1). As λ increases, it first
becomes advantageous and later necessary (ρ ≥ 0.5) to utilize
both servers (p < 1). When ν →∞, the duty cycle in Server
2 becomes infinitely small and the two servers are equivalent.

The size-interval-task-assignment (SITA) policy assigns
jobs shorter than threshold ξ to Cellular, and the rest to WLAN
[19], [20]. This way, the short jobs are segregated from the
long ones and processed in the “faster” server (cf. SRPT).
Hence, SITA controls both the load and the type of jobs
each server receives. With SITAe, the threshold is chosen
so that both servers receive equal load; ξe ≈ 10 MB. The
optimal threshold for SITA can be determined using (4), and
we refer to that policy as SITAopt. Fig. 5(b) depicts these for
ν = 0.1, 1, 10 min−1. Observations are similar as with RND.
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Fig. 5(c) depicts the mean delay (in minutes) with the
different policies. All-to-1 sends all jobs to Server 1 and it
is unstable if ρ ≥ 0.5. We observe that the SITA policies
are strong and the difference between them is negligible when
ρ > 0.1 in this case. (It is the optimal static policy for ordinary
FCFS servers [21].)

Let us then consider the following dynamic policies:

• JSQ chooses the queue with the least number of jobs.
• LWL chooses the queue with the shortest backlog.
• Greedy is the same as LWL, but includes the availability.
• FPI based on the SITAe.

Possible ties are broken in favor of Server 1. The numerical
results are depicted in Fig. 6. On the x-axis is the offered load
ρ, and the y-axis corresponds to the mean delay relative to the
mean delay with Greedy. We can make two observations: (i)
the optimal static policies are inferior to dynamic policies, and
(ii) FPI, the only policy that consciously takes into account the
anticipated future arrivals, shows a superior performance.

Experimental studies [5], [6] suggest that both ON and OFF
periods tend to be heavy-tailed. Obviously, everything depends
on the mobility pattern of the particular user. Therefore, we
also run the simulations when the ON/OFF periods obey
bounded Pareto (with α = 0.6) and uniform distributions.
In all cases, FPI turned out to be similarly superior to
others, suggesting that the obtained FPI policy is relatively
insensitive to the shapes of the ON/OFF distributions.

B. Example #2: Offloading vs. local processing

Let us next consider the scenario depicted in Fig. 7 (left).
The rate of WLAN and cellular are 200kB/s and 100kB/s,
respectively, whereas the rate of CPU is 50k “ticks”/s. The
always offloaded tasks X1 ∼ Exp(µ1) with mean 1/µ1 =
250kB arrive at rate λ1. Flexible jobs (XC , XL) arrive at rate
λ2, where XC denotes the size if offloaded (bytes), and XL if
processed locally (ticks). We assume that XC and XL are i.i.d.,
XC ∼ XL ∼ Exp(µ2) with 1/µ2 = 500k. Jobs that CPU
must process arrive at rate λ3 and are uniformly distributed,
X3 ∼ U(0, 500 k) (ticks). Then 1/νA = 1/νD = 40 sec (i.e.,
a vehicular setting) and the objective is to minimize the mean
delay. We consider the following policies:
• Basic policy comprises two heuristic decisions. First, the

flexible jobs are processed locally if XC > XL, and
otherwise offloaded to the cloud. Offloaded tasks are
split with SITAe: short jobs are transmitted via a cellular
network, and long ones via WLAN hotspots.

• Greedy policy chooses the action which minimizes the
expected delay of the given task. The current system state
and tentative service times are utilized in myopic fashion.

• FPI policy is obtained by computing the parameters of
the arrival process to each queue with the above basic
policy, and then using (10) to evaluate each action.

As Basic is static, its mean delay can be computed ana-
lytically using the Pollaczek-Khinchine formula and (4). The
other two must be evaluated by means of simulations.

We set 1/λ2=1/λ3=10 sec, and vary λ1. With these, Basic
is stable when λ1 < 0.75. Fig. 7 (middle) depicts the mean
delay (in seconds) as a function of λ1, and Fig. 7 (right)
the relative mean delay when compared to Greedy. Initially,
both Greedy and FPI offer a low mean delay, as expected.
As the load increases, Greedy starts to suffer from its short-
sighted decisions, and eventually it falls even behind Basic.
The fact that Basic focuses on minimizing the workload (the
min operation with flexibile jobs) pays off under a heavy load.
In contrast, FPI shows superior performance and outperforms
the other two especially when the load is high: the mean delay
with Greedy is more than two times longer than with FPI.

It is clearly a non-trivial task to dynamically decide which
tasks to process locally and which to offload. It seems that the
FPI based policy does a very good job also in this respect.



V. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a stochastic model to
study the dynamic offloading in the context of MCC. The
model captures various performance metrics and also the
intermittently available access links (WLAN hotspots). The
problem itself is non-trivial and to facilitate the analysis, we
have, e.g., assumed that a job set to be offloaded via WLAN
hotspot cannot be later re-assigned to cellular. The analysis is
carried out in the MDP framework. First we derived a new
queueing theoretic result, which enables derivation of near-
optimal dynamic offloading policies that take into account
the different performance metrics (delay, energy, offloading
costs), current state of the queues, and the anticipated future
tasks. In the preliminary numerical experiments, the resulting
policy gave very good results, it was robust to shape of
distributions defining the lengths of the ON/OFF durations,
and outperformed other policies by a significant margin. The
gain is expected to be even higher with more diverse cost
structures, file size distributions etc.

The approach is robust and, e.g., scales to an arbitrary
number of offloading channels. The future work includes
experiments in more realistic scenarios, where, e.g., energy
consumption and transmission costs of cellular data plan
are explicitly included. Moreover, we plan to investigate the
possibility to develop schemes with jockeying, where it is
possible to re-assign tasks later on. This is useful, e.g., when
a user unexpectedly arrives to the vicinity of a hotspot.
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APPENDIX

PROOF OF THEOREM 2

Proof: Fig. 8 illustrates a sample realization when the server
is initially available, which happens with the probability of
q, see (1). The upper System 1 has an initial backlog of u,
and the lower System 2 is initially empty. The idea is that by
assuming the same arrival sequences and server availabilities
for both systems, we can deduce the mean difference in costs
incurred until System 1 becomes empty, after which the two
systems will behave identically. In what follows, we utilize
the lack of memory property of Markov processes repeatedly
without explicitly mentioning it.

Suppose a new job with size x arrives when the backlog
in System 1 is u. This causes the backlog to jump from u to
u+x. We refer to the time period until the backlog in System
1 is again at level u as a mini busy period. During the other
time periods, i.e., outside the mini busy periods, the “original”
backlog is served and we refer to this as the main process. First
we observe that two types of mini busy periods can emerge:
(i) those where the server is initially available (Type 1), and
(ii) those where it is not (Type 2). Fig. 9 illustrates a high-
level view on System 1. The two states on the left, active and
unavailable, correspond to the main process, and the possible
mini busy periods are on the right. We note that when a mini
busy period ends, the server is always in active state.



Next we refer to Fig. 8, and observe that the durations of
the mini busy periods and the new jobs involved are identical
in both systems, and in fact a mini busy period in System 1
corresponds to a busy period in System 2. The only important
difference is that the new jobs arriving during a (mini) busy
period experience an additional delay in System 1 equal to the
amount of backlog there was in System 1 at the beginning of
the mini busy period (see the “offset” in Fig 8).

The number of Type 1 mini busy periods obeys Poisson
process with mean λu. Associating the unavailability periods
to the job currently under service, the remaining busy period
is equivalent to one in an ordinary M/G/1-queue with service
time Y . In particular, the mean number of jobs served during
such a busy period is given by (6)

E[NB1] =
1

1− ρ∗
.

The cost difference these jobs experience between the two sys-
tems is equal to the offset indicated in Fig. 8. These offsets are
independently and uniformly distributed on (0, u) (cf. Poisson
arrival process), i.e., the average additional delay in System 1
for each mini busy period is γ u2 , where γ = 1 +νA/νD is the
constant factor by which the nominal mean service time E[X]
is multiplied to include also the interruptions occurring during
the service of the job, E[Y ] = γ E[X]. Combining these gives
the additional delay System 1 incurs in total on average during
the Type 1 mini busy periods until System 1 becomes empty,

d1 = λu · 1

1− ρ∗
· γ u

2
=

λγu2

2(1− ρ∗)
.

Consider next the time periods when the server in the “main
process” is unavailable (i.e., excluding the mini busy periods,
see Fig. 8). The key observation here is that these time periods
end according to a Poisson process with rate λ + νD; either
a new job arrives and a mini busy period starts, or the server
becomes available. In particular, at the end of Type 2 mini
busy period the server is also available, and the unavailable
time period has thereby ended, as illustrated in Fig. 9.

The number of times the server in the “main process”
becomes unavailable obeys Poisson distribution with mean
νAu. With probability of λ/(λ+νD) these time periods change
into the mini busy periods of Type 2. Thus, the mean number
of Type 2 mini busy periods is

νAu ·
λ

λ+ νD
.

With Type 2 mini busy periods, we can associate the remaining
time until the server becomes available to the job that started
the mini busy period, corresponding to an effective service
time of Y + D, where D ∼ Exp(νD). With aid of (7), it
follows that the mean number of jobs served during a Type 2
mini busy period is

E[NB2] = 1 +
λE[Y +D]

1− ρ∗
=

1 + λ/νD
1− ρ∗

.

The mean additional delay in System 1 (the offsets) are
statistically the same as earlier, γu/2, for each mini busy

Active Type 1

Unavailable Type 2

NB1
jobs

NB2
jobs

Main process Mini busy periodsλ

νA

.

λ

νD

Fig. 9. State diagram illustrating how both Type 1 and Type 2 mini busy
periods end with the server being available and active. The total time the
main process spends in the “Active” state is u.

period. Thus the mean additional delay incurred during the
Type 2 mini busy periods before System 1 becomes empty is
again the product of the above: the mean number of Type 2
mini busy periods, times the mean number of jobs in each of
them, times the average additional delay for jobs in System 1
in each mini busy period,

d2 = νAu ·
λ

λ+ νD
· 1 + λ/νD

1− ρ∗
· γ u

2
=

λγu2

2(1− ρ∗)
νA/νD.

The average additional delay the later arriving jobs experience
in System 1 is then

d1 + d2 =
λγ2u2

2(1− ρ∗)
, (12)

Additionally, we have the n jobs present only in System 1.
The average delay they incur is

d3 = γ (n∆1+(n−1)∆2+ . . .+∆n) = γ

n∑
i=1

(n+1−i)∆i. (13)

Combining (12) and (13) gives the difference in the value
function between state z and an empty system, vz − v0, for
the states where the server was initially available.

The case where the server is not initially available requires
only two minor correction terms. If the server becomes
available before a next job arrives, the remaining behavior
is identical to what we just discussed with Type mini busy
periods. However, with probability of λ/(λ+ νD), the initial
period when the server is unavailable ends to a specific
(additional) Type 2 mini busy period. The offset for this mini
busy period is u, since the server has been unavailable from
the start. Thus the additional delay incurred in System 1 during
this specific mini busy period is on average

λ

λ+ νD
· γu · 1 + λ/νD

1− ρ∗
=

λγu

(1− ρ∗)νD
.

Similarly, the present n jobs experience on average an addi-
tional delay of n/νD before the server becomes available for
the first time, after which the situation is the same as with Type
1 and given by (13). Adding these two gives the additional
mean delay incurred if the server is initially unavailable,

d4 = 1off

(
λγu

(1− ρ∗)νD
+

n

νD

)
.

The sum d1 + d2 + d3 + d4 then gives the desired result. �


