
Minimizing Slowdown in Heterogeneous
Size-Aware Dispatching Systems (full version)†

Esa Hyytiä, Samuli Aalto and Aleksi Penttinen
Department of Communications and Networking

Aalto University School of Electrical Engineering, Finland

Abstract—We consider a system of parallel queues where
tasks are assigned (dispatched) to one of the available servers
upon arrival. The dispatching decision is based on the full state
information, i.e., on the sizes of the new and existing jobs. We are
interested in minimizing the so-called mean slowdown criterion
corresponding to the mean of the sojourn time divided by the
processing time. Assuming no new jobs arrive, the shortest-
processing-time-product (SPTP) schedule is known to minimize
the slowdown of the existing jobs. The main contribution of
this paper is three-fold: 1) To show the optimality of SPTP
with respect to slowdown in a single server queue under Poisson
arrivals; 2) to derive the so-called size-aware value functions for
M/G/1-FIFO/LIFO/SPTP/SPT/SRPT with general holding costs of
which the slowdown criterion is a special case; and 3) to utilize
the value functions to derive efficient dispatching policies so as to
minimize the mean slowdown in a heterogeneous server system.
The derived policies offer a significantly better performance than
e.g., the size-aware-task-assignment with equal load (SITA-E) and
least-work-left (LWL) policies.

I. INTRODUCTION

Dispatching problems arise in many contexts such as man-
ufacturing sites, web server farms, super computing systems,
and other parallel server systems. In a dispatching system
jobs are assigned upon arrival to one of the several queues
as illustrated in Fig. 1. Such systems involve two decisions:
(i) dispatching policy α chooses the server, and (ii) schedul-
ing discipline the order in which the jobs are served. The
dispatching decisions are irrevocable, i.e., it is not possible to
move a job to another queue afterwards. In the literature, the
dispatching problems and their solutions differ with respect to
(i) optimization objective, (ii) available information, and (iii)
scheduling discipline used in the servers.

Although the literature has generally addressed the mean
sojourn time (i.e., response time) as the optimization objective,
also other performance metrics can be relevant. One such
metric is the slowdown1 of a job, defined as the ratio of the
sojourn time and the processing time (service requirement)
[17], [9], [1]. The slowdown criterion combines efficiency
and fairness and stems from the idea that longer jobs can
tolerate longer sojourn time. The optimal scheduling discipline
in this respect for a single server queue and a fixed number of
jobs is the so-called shortest-processing-time-product2 (SPTP)

† This is the full version (including the appendix) of the paper with the
same title that appears in the ACM SIGMETRICS 2012, London, UK.

1Yang and de Veciana refer to the slowdown as the bit-transmission delay
(BTD) [30].

2Wierman et al. refer to SPTP as the RS policy, a product of the remaining
size and the original size [28].

ν3

ν1

x3 x2 x1

ν2

λ
α

Servers

ν3

Arrivals

Dispatching Scheduling

Fig. 1. A dispatching system with m = 3 servers.

discipline [30], where the index of a job is the product of the
initial and remaining service requirements and the job with
the smallest index is served first. With aid of Gittins index,
we show that SPTP minimizes the mean slowdown in single
server queues also in the dynamic case of Poisson arrivals, i.e.,
it is the optimal discipline for an M/G/1 queue with respect
to the slowdown.

Then we derive value functions with respect to arbitrary job
specific holding costs for an M/G/1 with the first-in-first-out
(FIFO), the last-in-first-out (LIFO), the shortest-processing-
time (SPT), the shortest-remaining-processing-time (SRPT)
and SPTP scheduling disciplines, where the last three are size-
aware. A value function essentially characterizes the queue
state in terms of the expected costs in infinite time horizon
for a fixed scheduling discipline. In this respect, our work
generalizes the results of [19] to arbitrary job specific holding
cost rates, and includes also the analysis of the slowdown
specific SPTP scheduling discipline.

Finally, we apply the derived value functions to the dis-
patching problem so as to minimize the mean slowdown when
the scheduling disciplines in each queue are fixed. We assume
that the dispatcher is fully aware of the state of the system,
i.e., of the tasks in each queue and their remaining service
requirements. By starting with an arbitrary state-independent
policy, we carry out the first-policy-iteration (FPI) step of the
Markov decision processes (MDP) and obtain efficient state-
dependent dispatching policies.

The rest of the paper is organized as follows. In Section II,
we consider a single M/G/1 queue with respect to slowdown
criterion, and prove the optimality of SPTP. In Section III, we
derive the size-aware value functions with respect to arbitrary
job specific holding cost rates for FIFO, LIFO and SPTP
(SPT and SRPT are given in the Appendix). The single queue
scheduling related results are utilized in Section IV to derive
efficient dispatching policies, which are then evaluated in
Section V. Section VI concludes the paper.

A. Related Work

FIFO is perhaps the most common scheduling discipline
due to its nature and ease of implementation. Other common
disciplines are LIFO, SPT and SRPT. As for the objective,
minimization of the mean sojourn time has been a popular
choice. Indeed, SPT and SRPT, respectively, are the optimal
non-preemptive and preemptive schedules with this respect
[25]. For a recent survey on fairness and other scheduling
objectives in a single server queue we refer to [27].

In the context of dispatching problems, FIFO has been
studied extensively in the literature since the early work by
Winston [29], Ephremides et al. [8], and others. Often the
number of tasks per server is assumed to be known, cf.,
e.g., join-the-shortest-queue (JSQ) dispatching policy [29].
Even though FIFO queues have received the most of the
attention, also other scheduling disciplines have been studied.
For example, Gupta et. al consider JSQ with processor-sharing
(PS) scheduling discipline in [12].

Only a few optimality results are known for the dispatch-
ing problems. Assuming exponentially distributed interarrival
times and job sizes, [29] shows that JSQ with FIFO minimizes
the mean waiting time when the number in each queue is
available. Also [8] argues for the optimality of JSQ/FIFO
when the number in each queue is available, while the Round-
Robin (RR), followed by FIFO, is shown to be the optimal
policy when it is only known that the queues were initially
in the same state. [24] proves that RR/FIFO is optimal with
the absence of queue length information if the job sizes have
a non-decreasing hazard function. The RR results were later
generalized in [23]. Whitt [26], on the other hand, provides
several counterexamples where JSQ/FIFO policy fails. Crov-
ella et al.[6] and Harchol-Balter et al. [14] assume that the
dispatcher is aware of the size of a new job, but not of the
state of the FIFO queues, and propose policies based on job
size intervals (e.g., short jobs to one queue, and the rest to
another). Feng et al. [10] later showed that such a policy
is the optimal size-aware state-independent dispatching policy
for homogeneous servers.

Also the MDP framework lends itself to dispatching prob-
lems. Krishnan [22] has utilized it in the context of parallel
M/M/s-FIFO servers so as to minimize the mean sojourn
time, similarly as Aalto and Virtamo [3] for the traditional
M/M/1 queue. Recently, FIFO, LIFO, SPT and SRPT queues
were analyzed in [19] with a general service time distribution.
Similarly, PS is considered in [21], [20]. The key idea with
the above work is to start by an arbitrary state-independent
policy, and then carry out FPI step utilizing the value functions
(relative values of states).

II. M/G/1 QUEUE AND SLOWDOWN

In this section we consider a single M/G/1 queue with arrival
rate λ. The service requirements are i.i.d. random variables
Xi ∼ X with a general distribution.

We define the slowdown of a job as a ratio of the sojourn

time T to the service requirement X ,

γ ,
T

X
,

where one is generally interested in its mean value E[γ]. Also
other similar definitions exist. In the context of distributed
computing, Harchol-Balter defines the slowdown as the “wall-
time” divided by the CPU-time in [15]. Another common
convention is to consider the ratio of the waiting time to the
processing time (see, e.g., [13]), which is a well-defined quan-
tity for non-preemptive systems. These different definitions,
however, are essentially the same.

For non-preemptive work conserving policies, the sojourn
time in queue comprises the initial waiting time W and the
consequent processing time X . Thus, the mean slowdown is

E[γ] = E[
W +X

X
] = 1 + E[W/X].

Waiting time with FIFO is independent of the job size X , and
with aid of Pollaczek-Khinchin formula one obtains [13],

E[γ] = 1 + E[W] · E[X−1] = 1 +
λE[X2]

2(1− ρ)
· E[X−1], (1)

which underlines the fact that the mean slowdown may be
infinite for a stable queue as E[X−1] =∞ for many common
job size distributions, e.g., for an exponential distribution.

The mean slowdown in an M/G/1 queue with preemptive
LIFO and PS disciplines is a constant for all job sizes,

E[γ | X = x] =
1

1− ρ
. (2)

Comparison of (1) and (2) immediately gives:
Corollary 1: FIFO is a better scheduling discipline than

LIFO in an M/G/1 queue with respect to slowdown iff

2 E[X] > E[X2] · E[X−1]. (3)

A. Shortest-Processing-Time-Product (SPTP)
In [30], Yang and de Veciana introduced the shortest-

processing-time-product (SPTP) scheduling discipline, which
will serve the job i∗ such that

i∗ = arg min
i

∆∗i∆i,

where ∆∗i and ∆i denote, respectively, the initial and re-
maining service requirement of job i. Yang and de Veciana
were able to show that SPTP is optimal with respect to the
mean slowdown E[γ] in a transient system where all jobs are
available at time 0 and no new jobs arrive thereafter (i.e., a
myopic approach). SPTP can be seen as the counterpart of the
SRPT3 when instead of minimizing the mean sojourn time,
one is interested in minimizing the mean slowdown.

We argue below that SPTP is the optimal scheduling disci-
pline also in the corresponding dynamic system with Poisson
arrivals. That is, we show that SPTP is optimal with respect
to the slowdown in the M/G/1 queue. Our proof is based on
the Gittins index approach.

3Note that defining an index policy with indices ∆i, ∆∗i and
√

∆i∆∗i
gives SRPT, SPT and SPTP, respectively, where

√
∆i∆∗i corresponds to the

geometric mean of ∆i and ∆∗i .

B. Gittins Index

Consider an M/G/1 queue with multiple job classes k, k =
1, . . . ,K. Let λk denote the class-k arrival rate, and pk =
λk/λ the probability that an arriving job belongs to class k. In
addition, let Xk denote the generic service time related to class
k. The total load is denoted by ρ = λ1E[X1]+. . .+λKE[XK].
We assume that ρ < 1. The Gittins index [11], [2] for a class-k
job with attained service a is defined by

Gk(a) = sup
δ>0

wk
P{Xk − a ≤ δ | Xk > a}

E[min{Xk − a, δ} | Xk > a]
,

where wk is the holding cost rate related to class k. Note that,
in addition to the attained service a, the Gittins index is based
on the (class-specific) distribution of the service time, but not
on the service time itself. The Gittins index policy will serve
the job i∗ such that

i∗ = arg max
i
Gki(ai),

where ki refers to the class and ai to the attained service of
job i. Let Tk denote the sojourn time of a class-k job. We
recall the following optimality result proved by Gittins [11,
Theorem 3.28].

Theorem 1: Consider an M/G/1 multi-class queue. The
Gittins index policy minimizes the mean holding costs,∑

k

pkwkE[Tk],

among the non-anticipating scheduling policies.
The non-anticipating policies are only aware of the attained

service times ai of each job i and the service time distributions
(but not on the actual service times). So, in general, non-
anticipating policies do not know the remaining service times
implying that, e.g., SPTP does not belong to non-anticipating
disciplines. However, there is one exception: If the service
times Xk are deterministic, P{Xk = xk} = 1, then the
remaining service times xk − ak are available for the non-
anticipating policies (with probability 1). In such a case, all
policies are non-anticipating.

C. Optimality of SPTP

Consider now an M/G/1 queue with a single class and load
ρ < 1. Let X and T denote, respectively, the generic service
and sojourn times of a job. In addition, let τ(x) denote the
conditional mean sojourn time of a job with service time x,

τ(x) , E[T | X = x].

Assume first that the support of the service time distribution
is finite. In other words, there are x1 < . . . < xK such that∑
k P{X = xk} = 1. The following result is an immediate

consequence of Theorem 1 as soon as we associate class k with
the jobs with the same service time requirement xk. Note that
the Gittins index is now clearly given by

Gk(a) =
wk

xk − a
with the optimal δ equal to xk − a.

Corollary 2: Consider an M/G/1 queue for which the
support of the service time distribution is finite. Among all
scheduling policies, the mean holding costs,∑

k

P{X = xk}wkτ(xk),

are minimized by the policy that will serve job i∗ such that

i∗ = arg min
i

∆i

wk(i)

where k(i) and ∆i denote the class and the remaining service
requirement of job i.

In particular, if we choose wk = 1/xk, we see that the mean
slowdown is minimized by SPTP:

Corollary 3: Consider an M/G/1 queue for which the sup-
port of the service time distribution is finite. SPTP minimizes
the mean slowdown E[γ] among all scheduling policies.

Since any service time distribution can be approximated
with an arbitrary precision by discrete service time distribu-
tions, we expect that the above result holds also for general
service time distributions. Note also that the choice wk = 1,
for all k, results in the well-known optimality result of SRPT
with respect to the mean sojourn time.

III. VALUE FUNCTIONS FOR M/G/1

In this section we analyze a single M/G/1 queue in isolation
with FIFO, LIFO, and SPTP scheduling disciplines and derive
expressions for the size-aware value functions with respect to
arbitrary job specific holding costs. The corresponding results
for SPT and SRPT are also given in the Appendix. As special
cases, one trivially obtains the value functions with respect to
the mean sojourn time and the mean slowdown. Thus, these
results generalize the corresponding results in [19], where the
size-aware value functions with respect to sojourn time are
given (except for SPTP).

Holding cost model: Consider an M/G/1 queue with an
arbitrary but fixed work conserving scheduling discipline and
load ρ < 1. Each existing task incurs costs at some task
specific holding cost rate denoted by Bi for job i. Assume
that Bi are i.i.d. random variables, Bi ∼ B. However, Bi may
depend on the corresponding service requirement Xi. Both the
service requirement and the holding cost become known upon
arrival.

The cumulative cost during (0, t) for an initial state z is

Vz(t) ,
∫ t

0

∑
i∈Nz(s)

Bi ds,

where Nz(s) denotes the set of tasks present in the system at
time s. Similarly, the long-term mean cost rate is

rz , lim
t→∞

1

t
E[Vz(t)] = lim

t→∞

1

t
E[

∫ t

0

∑
i∈Nz(s)

Bi ds],

which for an ergodic Markovian system reads

r = lim
t→∞

E[
∑

i∈Nz(t)

Bi].

The value function vz is defined as the expected deviation
from the mean cost rate in infinite time-horizon,

vz , lim
t→∞

E[Vz(t)− r · t].

A value function characterizes how expensive it is to start
from each state. In our setting, it enables one to compute the
expected cost of admitting a job with size x and holding cost
rate b to a queue, which afterwards behaves as an M/G/1 queue
with the given scheduling discipline:

ωz(x, b) , vz⊕(x,b) − vz, (4)

where z ⊕ (x, b) denotes the state resulting from adding a
new job (x, b) in state z. In Section IV we will carry out the
FPI step in the context of dispatching problem, for which a
corresponding value function is a prerequisite.

Size dependent holding cost: In general, the holding cost
rate b can be arbitrary, e.g., a class-specific i.i.d. random vari-
able. However, in two important special cases, mean sojourn
time and mean slowdown, it depends solely on the service
requirement x, b = c(x):

mean sojourn time: c(x) = 1

mean slowdown: c(x) = 1/x

In equilibrium, the average cost per job is E[c(X) ·T]. Using
Little’s result, we have for the mean cost rate,

r = λE[c(X) · T] =

{
λE[T] = E[N], for c(x) = 1,
λE[γ], for c(x) = 1/x.

where E[N] denotes the mean number in the system.

A. M/G/1-FIFO Queue

Next we derive the size-aware value function for an M/G/1-
FIFO queue with respect to arbitrary job specific holding
costs. To this end, let z = ((∆1, b1); . . . ; (∆n, bn)) denote the
remaining service requirements (measured in time) ∆i and the
corresponding holding cost rates bi at state z. The total rate
at which costs are accrued at given state z is thus the sum∑
i bi. Job 1 is currently receiving service and job n is the

latest arrival. The total backlog is denoted by uz,

uz =

n∑
i=1

∆i.

Proposition 1: For the size-aware relative value in an
M/G/1-FIFO queue with respect to arbitrary job specific
holding costs it holds that

vz − v0 =

n∑
i=1

bi i∑
j=1

∆j

+
λ · E[B]

2 (1− ρ)
u2
z (5)

where E[B] is the mean holding cost rate for all later jobs.
Proof: We compare two systems with the same arrival

patterns, System 1 initially in state z and System 2 initially
empty. The two systems behave equivalently after System

uz

Yb
a

c
k
lo

g

time

same arrival pattern to two systems

initially in state z:
System 1

b
a

c
k
lo

g

time

initially empty:
System 2 (mini) busy period

Fig. 2. Derivation of the value function in an M/G/1-FIFO queue.

1 becomes empty. The cost incurred by the current n jobs,
present only in System 1, is already fixed as

h1 =

n∑
i=1

bi i∑
j=1

∆j

 .

The later arriving jobs encounter a longer waiting time in Sys-
tem 1. The key observation here is that these jobs experience
an additional delay of Y in System 1 when compared to Sys-
tem 2, as is illustrated in Fig. 2. Otherwise the sojourn times
are equal. On average λuz (mini) busy periods occur before
System 1 becomes empty. These busy periods are independent
and on average 1/(1 − ρ) jobs are served during each of
them. The average additional waiting time is E[Y] = uz/2.
Therefore, the later arriving jobs incur on average

h2 =
λ · E[B]

2 (1− ρ)
u2
z

higher holding cost in System 1 than in System 2. Total cost
difference is h1 + h2, which completes the proof.

Corollary 4: The mean cost in terms of sojourn time due
to accepting a job with size x to a size-aware M/G/1-FIFO
queue initially at state z is

ωz(x) = x+ uz +
λ

2(1− ρ)
(2uz x+ x2).

Corollary 5: The mean cost in terms of slowdown due to
accepting a job with size x to a size-aware M/G/1-FIFO queue
initially at state z is

ωz(x) = 1 +
uz
x

+
λ · E[X−1]

2(1− ρ)
(2uzx+ x2). (6)

In both cases, it is implicitly assumed that the question about
the admittance is a one-time operation and the future behavior
of the queue is according to the standard M/G/1-FIFO. The
proofs follow trivially from (4) and (5).

B. M/G/1-LIFO Queue

Next we derive the size-aware value function for the LIFO
scheduling discipline. To this end, let us denote the state of the
system with n jobs by a vector z = ((∆1, b1); . . . ; (∆n, bn)),
where ∆i denotes the remaining service requirement (mea-
sured in time) and bi the holding cost rate of job i. Job 1
is the latest arrival and currently receiving service (if any),

i.e., without new arrivals the jobs are processed in the natural
order: 1, 2, . . . , n.

Proposition 2: For the size-aware relative value in a pre-
emptive M/G/1-LIFO queue with respect to arbitrary job
specific holding cost it holds that

vz − v0 =
1

1− ρ

n∑
i=1

bi i∑
j=1

∆j

 . (7)

Proof: We compare System 1 initially in state z and
System 2 initially empty. The current state bears no meaning
for the future arrivals with preemptive LIFO, and thus the
difference in the expected costs is equal to the cost the current
n jobs in System 1 incur:

vz − v0 =

n∑
i=1

bi E[Ri],

where Ri denotes the remaining sojourn time of job i [19],

E[Ri] =

∑i
j=1 ∆j

1− ρ
,

which completes the proof.
For the mean sojourn time, the holding cost rate is constant
bi = 1 and a sufficient state description is (∆1, . . . ,∆n).

Corollary 6: The cost in terms of sojourn time due to
accepting a job with size x to a size-aware preemptive M/G/1-
LIFO queue at state z is

ωz(x) =
1

1− ρ
(n+ 1)x.

For the slowdown, the initial service requirements define
the holding costs and a sufficient state description is z =
((∆1,∆

∗
1), .., (∆1,∆

∗
1)), where ∆i and ∆∗i denote the remain-

ing and initial service requirement of job i, so that the holding
cost of job i is bi = 1/∆∗i :

Corollary 7: The cost in terms of slowdown due to accept-
ing a job with size x to a size-aware preemptive M/G/1-LIFO
queue at state z is

ωz(x) =
1

1− ρ

(
1 +

n∑
i=1

x/∆∗i

)
. (8)

The proofs follow trivially from (7) and from definition (4).
Note that ωz(x) with (preemptive) LIFO does not depend on
the remaining service times ∆i due to the preemption.

C. M/G/1-SPTP Queue

Next we derive the corresponding size-aware value function
for the SPTP scheduling discipline. The state description
for SPTP is z = ((∆1,∆

∗
1, b1), . . . , (∆n,∆

∗
n, bn)), where,

without loss of generality, we assume a decreasing priority
order, ∆i∆

∗
i < ∆i+1∆∗i+1, i.e., the job 1 (if any) is currently

receiving service. Then, uz(h) denotes the amount of work
with a higher priority than h,

uz(h) ,
∑

i:∆i∆∗i<h

∆i.

Jo
b

si
ze

uz HD D
*L D

*

D
*

h D
*

In serviceWaiting

Arriving higher priority jobs

interrupt the service of the present jobs

Time

Fig. 3. Remaining sojourn time of an (∆,∆∗)-job in an M/G/1-SPTP queue.

Let λ(x), m(x) and ρ(x) denote the arrival rate, mean job
size and offered load due to jobs shorter than x,

λ(x) , λP{X < x},
m(x) , E[X | X < x],

ρ(x) , λ
∫ x

0
t f(t) dt,

(9)

where f(x) denotes the job size pdf.
Lemma 1: The mean remaining sojourn time of a (∆,∆∗)-

job in an M/G/1-SPTP queue initially in state z is given by

E[Rz(∆,∆∗)] =
uz(∆∆∗)

1−ρ(
√

∆∆∗)
+

2

∆∗

√
∆∆∗∫
0

x dx

1−ρ(x)
. (10)

Proof: Let k denote the (∆,∆∗)-job, whose remaining
sojourn time depends on the initial and later arriving higher
priority work. We can assume that the latter are served
immediately according to LIFO, thus triggering mini busy
periods. Let h = h(t) denote the remaining service time of
job k at (virtual) time t, where we have omitted these mini
busy periods from the time axis. During 0 < t < uz(∆∆∗),
job k is waiting and h = ∆, but as the service begins h→ 0
linearly. The later arriving higher priority jobs shorter than√
h∆∗ constitute an inhomogeneous Poisson process with rate

λ(
√
h∆∗), as illustrated in Fig. 3. The mean duration of a mini

busy period is (cf. the mean busy period in M/G/1),

D(h) ,
m(
√
h∆∗)

1− ρ(
√
h∆∗)

.

The mean waiting time before job k receives service for the
first time is uz(∆∆∗) + λ(

√
h∆∗)uz(∆∆∗) · D(∆), which

gives the first term in (10).
The service time ∆ and the additional delays during the

service are on average

∆ +

∫ ∆

0

λ(
√
h∆∗) ·D(h) dh;

refer to the “in service” region of Fig. 3. Change of integration
variable, x =

√
h∆∗ then gives the second term in (10), which

completes the proof.
Even though SPTP explicitly tries to minimize the mean

slowdown, we derive next a general expression for the value
function with arbitrary job specific holding costs:

Proposition 3: For the size-aware relative value in an
M/G/1-SPTP queue with respect to arbitrary job specific

Y1

(1)

x2uz() area A

y

y

z()x2

z()x2 T
(1)

1 T
(1)

2

Y1

(1)

Y2

(1)
Y1

(2)

T1

(2)

u

u

y

(mini) busy periods

time

b
a

c
k
lo

g
b

a
c
k
lo

g

same arrival pattern to two systems

time

area A

initially empty:

initially in state :z

System 1

System 2

a job with an initially higher priority
becomes a higherindex than x

priority job as the remaining
service requirement decreases

2

Fig. 4. Derivation of the value function for an M/G/1-SPTP queue with respect to slowdown.

holding costs it holds that

vz−v0 =

n∑
i=1

bi

(∑i−1
j=1 ∆j

1−ρ(∆̃i)
+

2

∆∗i

∫ ∆̃i

0

x dx

1−ρ(x)

)

+
λ

2

n∑
i=0

[
(

i∑
j=1

∆j)
2

∫ ∆̃i+1

∆̃i

b(x) f(x)

(1− ρ(x))2
dx +

n∑
j=i+1

(∆∗j)
−2

∫ ∆̃i+1

∆̃i

x4 b(x) f(x)

(1− ρ(x))2
dx

]
(11)

where b(x) , E[B | X = x] and

∆̃i =

0, i = 0√

∆i∆∗i , i = 1, . . . , n
∞, i = n+ 1.

Proof: The relative value comprises the mean holding cost
h1 accrued by the current n tasks in state z,

z = ((∆1,∆
∗
1, b1), . . . , (∆n,∆

∗
n, bn)),

and the difference in costs accrued by the later arriving jobs,
h2, vz − v0 = h1 + h2. The first summation over n gives
h1, i.e., it follows from multiplying (10) with the job specific
holding cost bi and adding over all i.

The latter integral corresponds to h2 where the accrued
costs are conditioned on the size x of an arriving job. The
corresponding arrival rate is λ f(x) dx. The mean difference
in sojourn time experienced by an arriving job with size x is
accrued during the initial waiting time – once a job enters the
service for the first time its mean remaining sojourn time is
the same in both systems. The initial waiting time is a function
of higher priority workload upon arrival, denoted by Uz(x2, t)
for an initial state z at arrival time t. In particular, the mean
(initial) waiting time is simply E[Uz(x2, t)]/(1−ρ(x)), which
gives

h2 = λ

∫ ∞
0

f(x)

1− ρ(x)
(E[Uz(x2, t)− U0(x2, t)]) dx.

Next we refer to Fig. 4 and observe that Uz(x2, t)−U0(x2, t)
in the integrand corresponds to area A. This area consists of
one uz(x2) triangle, followed by N0 rectangles, and similar se-
quences starting with a x2/∆∗i triangle for {i : ∆i∆

∗
i > x2},

each followed by Ni rectangles. The Ni are random variables
corresponding to the number of mini busy periods during

the service time of a particular triangle. The first triangle
corresponds to the initially higher priority workload uz(x2),
and the latter to the jobs with initially lower priority, i.e., to
jobs i with ∆i∆

∗
i > x2. At some point in time, the remaining

service requirement of such a job i decreases to yi = x2/∆∗i
and its priority index drops below x2. For a sequence starting
with a y-triangle, the number of mini busy periods (rectangles)
obeys Poisson distribution with mean λ(x) y. The height of
a rectangle is uniformly distributed in (0, y) having the mean
y/2 (property of Poisson process), while the width corresponds
to the duration of a busy period in a work conserving M/G/1
queue having the mean m(x)/(1−ρ(x)). Thus, the mean total
area is

y2

2
+ λ(x)y · y

2
· m(x)

1− ρ(x)
=

y2

2(1− ρ(x))
.

Therefore,

h2 =
λ

2

∞∫
0

b(x) f(x)

(1− ρ(x))2

(
uz(x2)2 +

∑
i:∆i∆∗i>x

2

(
x2

∆∗i

)2)
dx,

where b(x) = E[B | X = x] factor in the numerator
corresponds to the mean holding cost of an x-job. For each
interval x ∈ (∆̃i, ∆̃i+1), uz(x2) =

∑i−1
j=1 ∆j and

∑
j:∆j∆∗j>x

2

(
x2

∆∗j

)2

= x4
n∑

j=i+1

(∆∗j)
−2,

and integration in n+ 1 parts completes the proof.
Recall that with respect to the mean sojourn time, bi = 1

and b(x) = 1, while for the slowdown criterion, bi = 1/∆∗i
and b(x) = 1/x. Hence, (11) allows one to compute the mean
cost ωz(x) due to accepting a given job in terms of sojourn
time or slowdown. We omit the explicit expression for ωz(x)
for brevity.

The corresponding value functions for SPT and SRPT are
derived in the Appendix. The numerical evaluation of the value
function for SPTP, SPT and SRPT is not as unattractive as it
first may seem. Basically one needs to be able to compute
integrals of form

Fk(x) =

∫ x

0

tk b(t) f(t)

(1− ρ(t))2
dt, and Gd(x) =

∫ x

0

td

1− ρ(t)
dt,

where k = 0, 2, 4 and d = 0, 1 depending on the discipline.
Thus, e.g., a suitable interpolation of the Fk(x) and Gd(x)
enables on-line computation of the value function.

IV. DISPATCHING PROBLEM

Next we utilize the results of Section III in the dispatching
problem with parallel servers and focus solely on minimizing
the mean slowdown. The dispatching system illustrated in
Fig. 1 comprises m servers with service rates ν1, . . . , νm.
Jobs arrive according to a Poisson process with rate λ and
their service requirements are i.i.d. random variables with a
general distribution. The jobs are served according to a given
scheduling discipline (e.g., FIFO) in each server.

The slowdown for an isolated queue was defined as the
sojourn time T divided by the service requirement X [17]
(both measured in time), γ = T/X . However, as we consider
heterogeneous servers with rates νi, the service requirement
X of size Y job (measured, e.g., in bytes) is no longer
unambiguous but a server specific quantity,

Xi = Y/νi.

Therefore, for a dispatching system we compare the sojourn
time T to the hypothetical service time if all capacity could
be assigned to process a given job [7],

γ∗ ,
T

Y/
∑
i νi

.

The relationship between the queue i specific slowdown γ and
the system wide slowdown γ∗ is γ∗ = γ · (

∑
j νj)/νi.

A. Random Dispatching Policies

The so-called Bernoulli splitting assigning jobs indepen-
dently in random using probability distribution (p1, . . . , pm)
offers a good state-independent basic dispatching policy. Due
to Poisson arrivals, each queue also receives jobs according to
a Poisson process with rate pi λ.

Definition 1 (RND-ρ): The RND-ρ dispatching policy bal-
ances the load equally by setting pi = νi/

∑
j νj .

As an example, the mean slowdown in a preemptive LIFO
or PS queue with RND-ρ policy is,

E[γ∗] =
(∑
j

νj
) m∑

j νj − λE[Y]
,

where the denominator corresponds to the excess capacity.
Thus, with RND-ρ and LIFO queues, the slowdown criterion
is m times higher when m servers are used instead of a single
fast one irrespectively of the service rate distribution νi.

For identical servers, ν1 = ν2 = . . . = νm, the RND-ρ
dispatching policy reduces to RND-U:

Definition 2 (RND-U): The RND-U dispatching policy as-
signs jobs randomly in uniform using pi = 1/m.

RND-U is obviously the optimal random policy in case of
identical servers.

In general, the optimal splitting probabilities depend on the
service time distribution and the scheduling discipline. For the

preemptive LIFO (and PS) server systems the mean slowdown
with a random dispatching policy is given by

E[γ∗] =
(∑
j

νj
) m∑
i=1

pi
νi − pi · λE[Y]

,

where
∑
j νj is a constant that can be neglected when opti-

mizing the pi.
Definition 3 (RND-opt): The optimal random dispatching

policy for LIFO/PS queues, referred to as RND-opt, splits the
incoming tasks using the probability distribution,

pi =
νi −

√
νiG

λE[Y]
, where G =

∑
i νi − λE[Y]∑

i

√
νi

.

The result is easy to show with the aid of Lagrange multipliers.
We note that when some servers are too slow, the above gives
infeasible values for some pi, in case of which one simply
excludes the slowest server from the solution and re-computes
a new probability distribution. This is repeated until a feasible
solution is found. A more explicit formulation is given in [5],
[18]. RND-opt is insensitive to the job size distribution and
optimal only for LIFO and PS.

Pollaczek-Khinchin mean value formula enables one to
analyze FIFO queues and, e.g., to write an expression for
the mean slowdown with RND-ρ. Also the optimal splitting
probabilities can be computed numerically for an arbitrary job
size distribution. According to (1), the mean slowdown in each
queue depends on the mean waiting time E[Wi] and E[X−1

i],
where the latter is assumed to exist and to be finite. Hence,
the optimal probability distribution with respect to slowdown
is the same as with the mean sojourn time.

Similarly, the mean sojourn time in SPT and SRPT queues is
known which allows a numerical optimization of the splitting
probabilities. For simplicity, we consider only RND-ρ and
RND-opt in this paper as compact closed form expressions
for the pi are only available for these.

B. SITA-E Dispatching Policy

With FIFO queues, a state-independent dispatching policy
known as the size-interval-task-assignment (SITA) has proven
to be efficient especially with heavy-tailed job size distribu-
tions [6], [14], [4]. The motivation behind SITA is to segregate
the long jobs from the short ones. Reality, however, is more
complicated and segregating the jobs categorically can also
give suboptimal results [16]. Here we assume ν1 ≥ ν2 ≥ . . . ≥
νm and a continuous job size distribution with pdf f(x).

Definition 4 (SITA): A SITA policy is defined by disjoint
job size intervals {(ξ0, ξ1], (ξ1, ξ2], . . ., (ξm−1, ξm]}, and
assigns a job with size x to server i iff x ∈ (ξi−1, ξi].

Without loss of generality, one can assume that ξ0 = 0
and ξm =∞. Note that in contrast to random policies, SITA
assumes that the dispatcher is aware of the size of the new job.
In this paper, we limit ourselves to SITA-E, where E stands
for equal load. That is, the size intervals are chosen in such
a way that the load is balanced between the servers.

Definition 5 (SITA-E): With SITA-E dispatching policy the
thresholds ξi are defined in such a way that

1

νi

∫ ξi

ξi−1

x f(x) dx =
1

νj

∫ ξj

ξj−1

x f(x) dx, ∀ i, j.

Thus, similarly as RND-ρ, also the SITA-E policy is insen-
sitive to the arrival rate λ.

C. Improved Dispatching Policies

The important property the above state-independent dis-
patching policies have is that the arrival process to each queue
is a Poisson process. Consequently, the value functions derived
earlier allow us to quantify the value function of the whole
system. With a slight abuse of notation,

vz̃ − v0 =

m∑
i=1

(v(i)
zi
− v(i)

0),

where v(i)
zi denotes the relative value of queue i in state zi,

and z̃ = (z1, . . . , zm) the state of the whole system.
Policy Improvement by Role Switching: One interesting

opportunity to utilize the relative values is to switch the roles of
two queues [19]. Namely, with an arbitrary state-independent
policy one can switch the input processes of any two identical
servers at any moment, and effectively end up to a new state
of the same system. Despite its limitation (identical servers),
switching is an interesting policy improvement method that
requires little additional computation. The switch should only
be carried out when the new state has lower expected future
costs, i.e. when for some i 6= j, the rates are equal, νi = νj ,
and

v(z1,..,zi,..zj ,..,zm) < v(z1,..,zj ,..zi,..,zm).

Carrying out this operation whenever a new job has arrived
to the system reduces the state-space by removing such states
for which a better alternative to continue exists. Formally, let
π(z̃) denote the set of feasible permutations of the queues’
roles, where the input processes between identical servers are
switched. Then, the optimal state-space reduction, implicitly
defining a new policy, is given by

z̃← argmin
z̃′∈π(z̃)

vz̃′ .

To elaborate this, consider a RND-ρ/LIFO system. In this
case, (7) implies that switching the roles of any two identical
queues makes no difference to the relative value.

In contrast, with FIFO discipline the interesting quantity
from (5) for two identical servers i and j is identified to be

Cij ,
λi E[Bi]

1− ρi
· u2

zj
.

Switching the input processes between queues i and j leads
to a state with a lower relative value if Cii+Cjj > Cij +Cji.
Again, with RND-ρ the factor λi E[Bi]/(1− ρi) is a constant
for any two identical servers and switching provides no gain.
However, with SITA-E, even though the denominator 1 − ρi
is a constant, the numerator is not. Let Xi denote a job size

in queue i. Then E[Xi] < E[Xi+1], and therefore λi > λi+1.
Moreover, E[1/Xi] > E[1/Xi+1], yielding

λi E[1/Xi] > λi+1 E[1/Xi+1].

Consequently, with the SITA-E with switch policy, the optimal
permutation, after inserting a new job to a queue, is the one
with increasing backlogs for identical servers:

Definition 6 (SITA-Es): SITA-E with switch dispatching
policy behaves similarly as SITA-E with a distinction that after
each task assignment the queues are permutated in such a way
that uzi

≤ uzi+1
for all identical servers i and i+ 1.

Policy Improvement by FPI: The first-policy-iteration (FPI)
is a general method of the MDP framework to improve any
given policy. We apply it to the dispatching problem [19].
Suppose that the scheduling discipline in each queue is fixed
and that a state-independent basic dispatching policy would
assign a new job to some queue. Given the relative values and
the expected cost associated with accepting the job to each
queue, we can carry out FPI: we deviate from the default
action if the expected cost is smaller with some other action,
thereby decreasing the expected cumulative costs in infinite
time horizon.

Let λi denote the arrival rate to queue i according to the
basic dispatching policy, and Yi the corresponding job size.
With a state-independent policy, accepting a job to queue i
does not affect the future behavior of the other queues. Thus,
the cost of assigning a job with size y to queue i is

ωz̃(y, i) = ω∗zi
(y).

where ω∗zi
(y) is the mean admittance cost of a job with size

y (measured, e.g., in bytes) to queue i, where its service
requirement (measured in time) would be y/νi. For slowdown,
we have an elementary relation

ω∗zi
(y) =

∑
j νj

νi
· ωzi(y/νi).

For FIFO queues, (6) gives

ω∗zi
(y) =

(∑
j

νj
)(1

νi
+
uzi

y
+
λi E[Y −1

i]

2
· 2uzi

y + y2/νi
νi − λi E[Yi]

)
.

For preemptive LIFO queues, (8) similarly gives

ω∗zi
(y) =

(∑
j

νj
)1 + (y/νi)

∑ni

j=1 1/∆∗i,j

νi − λi E[Yi]
,

where ni denotes the number of jobs in queue i and ∆∗i,j
the initial service requirement (in time) of job j in queue i.
According to the FPI principle, one simply chooses the queue
with the smallest (expected) cost,

αz̃(y) , argmin
i

ω∗zi
(y). (12)

We refer to these improved dispatching policies simply as the
FPI-p policy, where p denotes the basic dispatching policy,
e.g., RND-opt or RND-ρ, where for brevity reasons the RND
prefix is often omitted. Note that the factor

∑
j νj in both

expressions is a common constant for all queues.

RND-ρ state-independent random policy with load balancing
RND-opt state-independent random policy minimizing the mean slowdown (assumes LIFO/PS)
SITA-E state-independent size-interval-task-assignment with equal loads (optionally, with switch)

Round-Robin assigns arriving tasks sequentially to servers [8]
LWL− least-work-left, assigns a job to server with the least amount unfinished work upon arrival
LWL+ same as LWL− but based on the unfinished work (in time) including the new job [19]
JSQ join-the-shortest-queue, i.e., the one with the least number of jobs [29]
Myopic minimize the mean slowdown on condition that no further jobs arrive
FPI first policy iteration on the state-independent RND-ρ, RND-opt and SITA-E policies

TABLE I
DISPATCHING POLICIES EVALUATED IN THE NUMERICAL EXAMPLES.

1

1Dispatcher

λ
α

Servers

Servers

Dispatcher

λ
α

1

1/2

1/2

(a) Two identical servers (b) Three heterogeneous servers

Fig. 5. Example dispatching systems.

In a symmetric case of m identical servers and the RND-
U basic policy, a corresponding FPI-based policy reduces to
a well-known dispatching policy, i.e., with FIFO queues, FPI
yields LWL, and with LIFO, the Myopic policy (see Table I).
Moreover, given additionally a constant job size, then in case
of LIFO queues one ends up with the JSQ policy. In general,
for constant job sizes the slowdown objective reduces to the
minimization of the mean sojourn time.

V. NUMERICAL EXAMPLES

Let us next evaluate by means of numerical simulations
the improved dispatching policies derived in Section IV. To
this end, we have chosen to consider two elementary server
systems that are illustrated in Fig 5:

(a) Two identical servers with rates ν1 = ν2 = 1,
(b) Three heterogeneous servers with rates ν1 = 1 and ν2 =

ν3 = 1/2.

Thus, the total service rate in both systems is equal to 2.
We compare the mean slowdown performance of the FPI
policies against several well-known heuristic dispatching poli-
cies, including the state-independent policies RND-opt, RND-
ρ and SITA-E. The somewhat more sophisticated least-work-
left (LWL) policies choose the queue with the least amount of
unfinished work (backlog). The difference between the LWL
policies is that LWL− considers the situation without the new
job, and LWL+ afterwards. With identical servers the LWL
policies are equivalent. JSQ chooses the queue with the least
number of jobs. With the LWL and JSQ, the ties are broken
in favor of a faster server. The Myopic policy assumes in
a greedy fashion that no further jobs arrive and chooses the
queue which minimizes the immediate cost the known jobs
accrue. All policies are listed in Table I.

In many real-life settings, the job sizes have been found
to exhibit a heavy-tailed behavior, (cf., e.g., file sizes in the
Internet). Thus, in most examples we assume a bounded Pareto
distribution with pdf

f(x) =
αkα

1− (k/p)α
x−α−1, k ≤ x ≤ p, (13)

where (k, p, α) = (0.33959, 1000, 1.5) so that E[X]≈ 1. This
job size distribution is particularly suitable for SITA-E.

A. FIFO

First we assume that servers operate under the FIFO
scheduling discipline and job sizes obey the bounded Pareto
distribution (13). With FIFO, the departure time gets fixed
at dispatching and the Myopic policy corresponds to selfish
users choosing the queue that guarantees the shortest sojourn
time, i.e., LWL+. Similarly, LWL− is equivalent to an M/G/m
system with a single shared queue.

Two identical servers: Fig. 6 (left) depicts the results with
two identical servers with rates ν1 = ν2 = 1. The x-axis
corresponds to the offered load ρ and the y-axis to the relative
mean slowdown, E[γ]/E[γSITA−E], i.e., the comparison is
against SITA-E. We find that the policies appear to fall in
one of the three groups with respect to slowdown: SITA
policies form the best group, other queue state-dependent
policies the next, and RND-U and Round-Robin have the
worst performance. Especially, FPI-SITA-E outperforms the
other policies by a significant margin, including the other
SITA policies. Note also that when ρ is small, the sensible
state-dependent policies utilize idle servers better than, e.g.,
SITA-E.

Fig. 7 illustrates SITA-E and FPI-SITA-E in the same setting
at an offered load of ρ = 0.5. The x- and y-axes correspond
to the backlog in Queue 1 and Queue 2, respectively, and
the z-axis to the maximum job size a given policy assigns
to Queue 1. With SITA-E, this threshold is constant, while
FPI-SITA-E changes the threshold dynamically. One observes
that as a result of FPI, Queue 1 has become a “high-priority”
queue where no jobs are accepted whenever Queue 1 has more
unfinished work than Queue 2. Similarly, when Queue 2 has
a long backlog, the threshold for assigning a job to Queue 1
becomes higher with FPI than with SITA-E.

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
S

lo
w

do
w

n:
 E

[γ
] /

 E
[γ

 S
IT

A
-E

]

Offered load ρ

FIFO: X~Bounded Pareto, two identical servers

R
N

D
-U

R
ou

nd
-R

ob
in

JSQ

M
yo

pi
c/

LW
L/

FP
I-U

SITA-E

SITA-E/swap

FPI-SITA-E

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
S

lo
w

do
w

n:
 E

[γ
] /

 E
[γ

 S
IT

A
-E

]

Offered load ρ

FIFO: X~Bounded Pareto, three servers

SITA-E
SITA-E/Swap

FPI-SITA-E

R
N

D
-ρ

R
N

D
-o

pt

JSQ

LWL+/FPI-ρ
Myopic

F
P

I-
op

t

LW
L-

Fig. 6. Numerical results with two identical (left) and three heterogeneous servers having rates ν = (1,0.5,0.5) (right). The scheduling discipline is FIFO
and jobs sizes obey bounded Pareto distribution.

Fig. 7. SITA-E and FPI-SITA-E policies in the setting of two identical FIFO
queues, bounded Pareto distributed job sizes and offered load ρ = 0.5. x-
and y-axes correspond to the backlog in Queue 1 and Queue 2, respectively,
and z-axis to the maximum job size that a policy assigns to Queue 1.

Three heterogeneous servers: Consider next the asymmetric
setting comprising one primary server with service rate ν1 = 1
and two secondary servers with rates ν2 = ν3 = 1/2. Fig. 6
(right) illustrates the results from a numerical simulation.

The state-independent random policies are much worse than
the other policies. However, state-independent SITA-E again
proves out to be better than the state-dependent policies JSQ,
LWL−, LWL+, Myopic, FPI-ρ and FPI-opt. The gain from
switching the roles of the queues (SITA-E vs. SITA-Es) is
smaller in this case due to the fact that we may only switch
the roles of the two slower queues having the same service
rate ν = 0.5. As expected, the FPI-SITA-E policy yields
a significantly lower mean slowdown than any other policy
especially under a heavy load.

Based on the results, one can assume that the relative values
obtained for the random policies simply do not capture the
situation sufficiently well, while SITA-E is already a good
dispatching policy, and FPI then leads to “adaptive” size
intervals.

B. Preemptive LIFO

Next we assume that the servers are bound to operate
under LIFO, which, as mentioned, has a reasonably robust
performance with respect to the mean slowdown. Job sizes
are again assumed to obey the bounded Pareto distribution.

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
S

lo
w

do
w

n:
 E

[γ
] /

 E
[γ

 s
in

gl
e

]

Offered load ρ

LIFO: X~Bounded Pareto, different server constellations

Single server: ν1=2

Two identical servers: ν
1=ν

2=1

Three servers: ν
1 =1, ν

2 =ν
3 =0.5

Single server
Myopic/FPI, 2 servers

Myopic, 3 servers
FPI-opt, 3 servers

Fig. 9. Comparison of the chosen server constellations with an equal total
capacity: i) single server, ii) two identical servers, and iii) three servers.

Two identical servers: Fig. 8 (left) illustrates the perfor-
mance with respect to the slowdown criterion for two identical
servers. On x-axis is again the offered load ρ and y-axis
corresponds to the relative mean slowdown (here comparison
is against the Myopic policy). One can identify three per-
formance groups: RND and LWL form the worst performing
group, then come Round-Robin and JSQ, and the Myopic and
FPI-RND policy achieve the lowest mean slowdown.

Three heterogeneous servers: Fig. 8 (right) illustrates the
simulation results in the asymmetric setting comprising one
primary server with service rate ν1 = 1 and two secondary
servers with rates ν2 = ν3 = 1/2. In this case, the Myopic
approach is the optimal (among the candidates) while both FPI
policies attain almost identical mean slowdown. Even though
the value function for the Myopic policy is not available for
us, one can estimate the relative values by means of simulation
and carry out the policy improvement numerically. However,
in this paper we do not pursue into this direction.

Server constellations: In Fig. 9 we compare the mean
slowdown between different server constellations assuming the
preemptive LIFO scheduling discipline. The y-axis represents
the relative performance when compared to the two server
system. To no surprise, when the load is small or moderate,
a single server system achieves the lowest mean slowdown.

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
S

lo
w

do
w

n:
 E

[γ
] /

 E
[γ

 M
yo

pi
c

]

Offered load ρ

LIFO: X~Bounded Pareto, two identical servers

RND

Rou
nd

-R
ob

in

LW
L

JSQ

Myopic/FPI

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
S

lo
w

do
w

n:
 E

[γ
] /

 E
[γ

 M
yo

pi
c

]

Offered load ρ

LIFO: X~Bounded Pareto, three servers

RND-ρ

RND-o
pt

LW
L+

LW
L-

JS
Q

FPI-ρ
FPI-opt

Myopic

Fig. 8. Numerical results with preemptive LIFO scheduling discipline for two identical (left) servers with rates ν1 = ν2 = 1, and three heterogeneous
servers with rates ν1 = 1 and ν2 = ν3 = 1/2.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
S

lo
w

do
w

n:
 E

[γ
] /

 E
[γ

 J
S

Q
]

Offered load ρ

SPTP: X~Bounded Pareto, two identical servers

RND

LWL

Myopic / FPI-RND

JSQ/Round-Robin

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
S

lo
w

do
w

n:
 E

[γ
] /

 E
[γ

 J
S

Q
]

Offered load ρ

SPTP: X~Bounded Pareto, three heterogeneous servers

RND-ρ

RND-opt

JSQ

LWL-

LW
L+

Myopic

FPI-ρ
FPI-opt

Fig. 10. Numerical results with SPTP for two identical (left) and three heterogeneous servers (right).

However, as the load increases more, first the two server
system becomes optimal, and then eventually the three server
system takes the lead. This is due to the fact that at higher
load levels, the correct dispatching decisions allow one to serve
more expensive jobs faster. One interesting research question
indeed is that given a total capacity budget, what is the optimal
server constellation so as to minimize the mean slowdown.

C. SPTP

Finally, let us consider the SPTP scheduling discipline that
is the natural choice when minimizing the mean slowdown
(see Section II). The job sizes are again assumed to obey
the bounded Pareto distribution. Fig. 10 (left) illustrates the
slowdown performance with the two identical servers. Interest-
ingly, LWL becomes even weaker than RND-U as the offered
load increases. Myopic and FPI-RND achieve the lowest mean
slowdown.

In the case of three heterogeneous servers, the situation is
again more challenging and the numerical results are depicted
in Fig. 10 (right). At low levels of load, RND-opt is a
surprisingly good choice, suggesting that SPTP manages to
locally “correct” the occasional suboptimal decisions. When
the load increases, the LWL policies become weak again. The
Myopic policy shows a robust and good performance at all
levels of offered load. However, the FPI policies, and FPI-
opt in particular, achieve the lowest mean slowdown which is

significantly better than with any other policy when ρ > 0.5.

D. Comparison of scheduling disciplines

So far we have fixed a scheduling discipline and evaluated
different dispatching policies. Here we give a brief comparison
of different scheduling disciplines with respect to the slow-
down metric. Job sizes obey either (a) uniform distribution,
Y ∼ U(0.5, 1.5), or (b) the bounded Pareto distribution, both
having the same mean, E[Y] = 1.

First we consider a single server queue. Fig. 11 (left) depicts
a comparison against LIFO with the same job size distribution
on the logarithmic scale. In accordance with (3), FIFO is better
than LIFO with uniform job size distribution, and with the
bounded Pareto distribution the situation is the opposite. SPTP
is clearly the best in both cases. In Fig. 11 (right), the reference
level is the mean slowdown with SPTP. Here we have included
also SRPT, which turns out to be only marginally better than
SRPT, as observed also in [28]. LIFO and PS are significantly
worse.

Fig. 12 illustrates the relative performance between different
scheduling disciplines and dispatching policies in the hetero-
geneous three server dispatching system. SRPT is not included
as its performance is very similar to SPTP. The reference
level is the mean slowdown a JSQ/FIFO (left) and JSQ/LIFO
(right) achieve. FPI manages to outperform the corresponding
JSQ policy in all cases. Especially with the bounded Pareto

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
S

lo
w

do
w

n:
 E

[γ
] /

 E
[γ

 L
IF

O
]

Offered load ρ

Single Server: LIFO vs. Other

LIFO/#

FIFO/Uniform

SPTP/Uniform

FIFO/Bounded Pareto

SPTP/Bounded Pareto

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
S

lo
w

do
w

n:
 E

[γ
] /

 E
[γ

 S
P

T
P
]

Offered load ρ

Single Server: SPTP vs. Other

LIFO/PS: X~Uniform

LIFO/PS: X~Exp or X~Bounded Pareto

SRPT: X~Exp

SRPT: X~Bounded Pareto

SRPT: X~Uniform

Fig. 11. Comparison of different scheduling disciplines in a single server queue. FIFO is better than LIFO with some job size distributions (left). SPTP is
only marginally better than SRPT (right).

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
S

lo
w

do
w

n:
 E

[γ
] /

 E
[γ

 L
IF

O
/J

S
Q

]

Offered load ρ

Dispatching System: JSQ and FPI-opt

- Three servers

- X~Uniform(0.5,1.5)

LIFO/JSQ

LIFO/FPI

FIFO/JSQ

FIFO/FPI
SPTP/JSQ

SPTP/FPI

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
S

lo
w

do
w

n:
 E

[γ
] /

 E
[γ

 L
IF

O
/J

S
Q

]

Offered load ρ

Dispatching System: JSQ and FPI-opt

- Three servers
- X~Bounded Pareto

FI
FO

/JS
Q

F
IF

O
/F

P
I

LIFO/JSQ

LIFO/FPI
SPTP/JSQ

SPTP/FPI

(a) X ∼ U(0.5, 1.5) (b) X ∼ Bounded Pareto

Fig. 12. Heterogeneous dispatching system with different scheduling disciplines.

distributed job sizes, FPI/LIFO performs rather well when
compared to JSQ/LIFO. SPTP is clearly superior scheduling
discipline in both cases, as expected.

In general, the scheduling discipline seems to have a
stronger influence to the performance than the dispatching
policy.

VI. CONCLUSIONS

This work generalizes the earlier results of the size-aware
value functions with respect to the sojourn time for M/G/1
queues with FIFO, LIFO, SPT and SRPT disciplines to a gen-
eral job specific holding cost. Additionally, we have considered
the SPTP queueing discipline, the optimality of which with
Poisson arrivals was also established. As an important special
case, one obtains the slowdown criterion, where the holding
cost is inversely proportional to the job’s (original) size. These
results were then utilized in developing robust policies for
dispatching systems. In particular, the value functions enable
the policy improvement step for an arbitrary state-independent
dispatching policy such as Bernoulli-splitting. The derived
dispatching policies were also shown to perform well by
means of numerical simulations. In particular, the highest
improvements were often obtained in a more challenging
heterogeneous setting with unequal service rates. Also the
SPTP scheduling discipline outperformed the other by a clear

margin in the examples, except the SRPT discipline, which
appears to offer a rather similar performance in terms of
slowdown and sojourn time.

REFERENCES

[1] S. Aalto, U. Ayesta, S. Borst, V. Misra, and R. Núñez-Queija. Beyond
processor sharing. SIGMETRICS Perform. Eval. Rev., 34:36–43, 2007.

[2] S. Aalto, U. Ayesta, and R. Righter. On the Gittins index in the M/G/1
queue. Queueing Systems, 63(1-4):437–458, 2009.

[3] S. Aalto and J. Virtamo. Basic packet routing problem. In NTS-13,
Trondheim, Norway, Aug. 1996.

[4] E. Bachmat and H. Sarfati. Analysis of SITA policies. Performance
Evaluation, 67(2):102–120, 2010.

[5] C. E. Bell and J. Shaler Stidham. Individual versus social optimization in
the allocation of customers to alternative servers. Management Science,
29(7):831–839, July 1983.

[6] M. E. Crovella, M. Harchol-Balter, and C. D. Murta. Task assignment
in a distributed system: Improving performance by unbalancing load. In
ACM SIGMETRICS, pages 268–269, June 1998.

[7] A. Downey. A parallel workload model and its implications for processor
allocation. In IEEE HPDC’97, pages 112–123, Aug. 1997.

[8] A. Ephremides, P. Varaiya, and J. Walrand. A simple dynamic routing
problem. IEEE Transactions on Automatic Control, 25(4):690–693, Aug.
1980.

[9] H. Feng and V. Misra. Mixed scheduling disciplines for network flows.
SIGMETRICS Perform. Eval. Rev., 31:36–39, Sept. 2003.

[10] H. Feng, V. Misra, and D. Rubenstein. Optimal state-free, size-aware
dispatching for heterogeneous M/G/-type systems. Perform. Eval., 62(1-
4), 2005.

[11] J. Gittins. Multi-armed Bandit Allocation Indices. Wiley, 1989.

[12] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt. Analysis
of join-the-shortest-queue routing for web server farms. Performance
Evaluation, 64(9-12):1062–1081, Oct. 2007.

[13] M. Harchol-Balter. Task assignment with unknown duration. J. ACM,
49(2):260–288, Mar. 2002.

[14] M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On choosing a task
assignment policy for a distributed server system. Journal of Parallel
and Distributed Computing, 59:204–228, 1999.

[15] M. Harchol-Balter and A. B. Downey. Exploiting process lifetime dis-
tributions for dynamic load balancing. ACM Transactions on Computer
Systems, 15(3):253–285, Aug. 1997.

[16] M. Harchol-Balter, A. Scheller-Wolf, and A. R. Young. Surprising re-
sults on task assignment in server farms with high-variability workloads.
In ACM SIGMETRICS, pages 287–298, 2009.

[17] M. Harchol-Balter, K. Sigman, and A. Wierman. Asymptotic conver-
gence of scheduling policies with respect to slowdown. Perform. Eval.,
49(1-4):241–256, Sept. 2002.

[18] M. Haviv and T. Roughgarden. The price of anarchy in an exponential
multi-server. Oper. Res. Lett., 35(4):421–426, 2007.

[19] E. Hyytiä, A. Penttinen, and S. Aalto. Size- and state-aware dispatching
problem with queue-specific job sizes. European Journal of Operational
Research, 217(2):357–370, Mar. 2012.

[20] E. Hyytiä, A. Penttinen, S. Aalto, and J. Virtamo. Dispatching problem
with fixed size jobs and processor sharing discipline. In ITC’23, SFO,
USA, Sept. 2011.

[21] E. Hyytiä, J. Virtamo, S. Aalto, and A. Penttinen. M/M/1-PS queue
and size-aware task assignment. Performance Evaluation, 68(11):1136–
1148, Nov. 2011.

[22] K. R. Krishnan. Joining the right queue: a state-dependent decision rule.
IEEE Transactions on Automatic Control, 35(1):104–108, Jan. 1990.

[23] Z. Liu and R. Righter. Optimal load balancing on distributed homo-
geneous unreliable processors. Operations Research, 46(4):563–573,
1998.

[24] Z. Liu and D. Towsley. Optimality of the round-robin routing policy.
Journal of Applied Probability, 31(2):466–475, June 1994.

[25] L. Schrage. A proof of the optimality of the shortest remaining
processing time discipline. Operations Research, 16(3), 1968.

[26] W. Whitt. Deciding which queue to join: Some counterexamples. Oper.
Res., 34(1):55–62, 1986.

[27] A. Wierman. Fairness and scheduling in single server queues. Surveys
in Operations Research and Management Science, 16(1):39–48, 2011.

[28] A. Wierman, M. Harchol-Balter, and T. Osogami. Nearly insensitive
bounds on SMART scheduling. In ACM SIGMETRICS, pages 205–216,
2005.

[29] W. Winston. Optimality of the shortest line discipline. Journal of Applied
Probability, 14:181–189, 1977.

[30] S. Yang and G. de Veciana. Size-based adaptive bandwidth allocation:
optimizing the average QoS for elastic flows. In IEEE INFOCOM, 2002.

APPENDIX

Carrying out the similar steps as with SPTP, it is straight-
forward to derive value function also in the case of SPT and
SRPT policies. Again, we let f(x) denote the pdf of the job
size distribution and ρ(x) the offered load due to jobs shorter
than x according to (9). The backlog due to higher priority
work in this case is uz(x), i.e., where the priority index for
SPT is the initial service time ∆∗i , and for SRPT the remaining
service time ∆i. The bi denote the job specific holding costs.

A. M/G/1-SPT

We consider the non-preemptive SPT, which is the opti-
mal non-preemptive schedule with respect to both the mean
sojourn time and the mean slowdown. Thus, the remaining
service time of a queueing job is equal to the initial service
time. Therefore, a sufficient state description for a non-
preemptive M/G/1-SPT queue with arbitrary holding costs
is z = ((∆1, b1); . . . ; (∆n, bn)), where job 1 (if any) is
currently receiving service and jobs 2, . . . , n are waiting in

the queue. Without lack of generality, we can assume that
∆2 < ∆3 < . . . < ∆n.

Proposition 4: For the size-aware value function with re-
spect to arbitrary holding costs in an non-preemptive M/G/1-
SPT queue it holds that,

vz − v0 =

n∑
i=1

bi

(
∆i +

∑i−1
j=1 ∆j

1 − ρ(∆i)

)
+

λ

2

n∑
i=1

((i∑
j=1

∆j

)2

+

n∑
j=i+1

(∆j)
2

)∆̃i+1∫
∆̃i

b(x) f(x)

(1−ρ(x))2
dx

 ,

(14)

where b(x) = E[B | X=x] and the integration intervals are

∆̃i =

 0, i = 1
∆i, i = 2, . . . , n
∞, i = n+ 1.

Proof: Similarly as with the SPTP, we compare two sys-
tems: System 1 initially in state z and System 2 initially empty.
The two systems behave identically once System 1 becomes
empty for the first time. We can write vz−v0 = h1+h2, where
h1 is the cost the n jobs initially present (only) in System 1
incur, and h2 the difference in cost the later arriving customers
incur between the two systems.

First, the remaining sojourn time of job i in a non-
preemptive M/G/1-SPT queue is

E[Ri] = ∆i +

∑i−1
j=1 ∆j

1− ρ(∆i)
, (15)

which holds for all n jobs present only in System 1. Therefore,
their contribution to the vz − v0 is

h1 =

n∑
i=1

bi

(
∆i +

∑i−1
j=1 ∆j

1− ρ(∆i)

)
.

For the later arriving jobs, we condition the derivation on
job sizes (x, x+dx), which arrive at rate of λ f(x) dx. Let t̃(x)
denote the mean additional sojourn time such jobs experience
in System 1 when compared to System 2. Let b(x) = E[B |
X=x] so that we have an expression for h2

h2 =

∫ ∞
0

t̃(x) · b(x) dx.

Instead of considering actual arrivals, we focus on a rate at
which virtual costs are accrued in order to find t̃(x). With aid
of (15), one can deduce that the virtual cost rate is equal to

λf(x)
Uz(x, t)

1− ρ(x)
,

where Uz(x, t) denotes the amount of work at time t that
would be processed before an arriving size x job when a
system was initially in state z. In particular, we can write

t̃(x) = E[

∫ ∞
0

λ f(x)

(
Uz(x, t)

1− ρ(x)
− U0(x, t)

1− ρ(x)

)
dt],

u (x)z

T1 T2

Y2
Y1

uz(x)

uz(x)
area A

z

initially empty:
System 2

System 1
initially in state : Y

area A

b
a
c
k
lo

g
b
a
c
k
lo

g

time

time

(mini) busy period

same arrival pattern to two systems

Fig. 13. Derivation of value function for an M/G/1-SPT queue.

which gives

t̃(x) =
λ f(x)

1− ρ(x)
E[

∫ ∞
0

Uz(x, t)− Uz(x, t) dt].

Let kz(x) denote the number of jobs waiting in the queue
with a remaining service time greater than x.

kz(x) = |{i ∈ {2, . . . , n} : ∆i > x}|,

Due to the non-preemptive discipline, the evolution of Uz(x, t)
for z 6= 0 consists of kz(x) + 1 phases. Let m = n − kz(x).
During the first phase jobs 1, . . . ,m are served and the initial
backlog size x jobs see is ∆1 + . . . + ∆m. The second
phase starts when job m + 1 enters the server and cannot
be preempted, thus creating an initial backlog ∆m+1 for size
x jobs, etc.

Considering arrival sample paths, one can deduce that
the difference

∫∞
0
Uz(x, t) − Uz(x, t) dt corresponds to the

white marked region in Fig. 13, which consists of kz(x) + 1
statistically independent areas. The area of a phase starting
with an initial backlog of u from size x customers’ point of
view is given by

u2

2
+ λF (x)u · E[X | X < x]

1− ρ
· u

2
=

u2

2(1− ρ(x))
. (16)

Defining

g(x) =
b(x) f(x)

(1− ρ(x))2
,

then gives

h2 =
λ

2
(∆2

1 + . . .+ ∆2
n)

∫ ∆2

0

g(x) dx

+
λ

2
((∆1 + ∆2)2 + ∆2

3 + . . .+ ∆2
n)

∫ ∆3

∆2

g(x) dx+ . . .

+
λ

2
(∆1 + . . .+ ∆n)2

∫ ∞
∆n

g(x) dx.

For example, when x > ∆n, all current n jobs in System
1 have a higher priority constituting a single phase with u =
∆1 +. . .+∆n, etc. Next define the integration intervals, ∆̃1 =
0, ∆̃i = ∆i for i = 2, . . . , n, and ∆̃n+1 = ∞. Substituting
these into the above gives

h2 =
λ

2

n∑
i=1

(i∑
j=1

∆j

)2
+

n∑
j=i+1

∆2
j

)2 ∆̃i+1∫
∆̃i

b(x) f(x)

(1− ρ(x))2
dx,

which completes the proof.

B. M/G/1-SRPT

While SPT was optimal in the class of non-preemptive
schedules, the SRPT discipline is the optimal preemptive
schedule [25]. For SRPT, a sufficient state description is z =
((∆1, b1); . . . ; (∆n, bn)), where, without loss of generality, we
again can assume that job 1 is currently receiving service (if
any) and ∆1 < ∆2 < . . . < ∆n. For the total higher priority
workload we have uz(∆i) =

∑i−1
j=1 ∆j .

Proposition 5: For the size-aware value function in an
M/G/1-SRPT queue with arbitrary holding cost it holds that

vz − v0 =

n∑
i=1

bi

(∑i−1
j=1 ∆j

1−ρ(∆i)
+

∫ ∆i

0

1

1−ρ(t)
dt

)

+
λ

2

n∑
i=0

[
(n− i)

∫ ∆̃i+1

∆̃i

x2 b(x) f(x)

(1 − ρ(x))2
dx

+

(
i−1∑
j=1

∆j

)∫ ∆̃i+1

∆̃i

b(x) f(x)

(1 − ρ(x))2
dx

]
(17)

where b(x) = E[B | X = x] and

∆̃i =

 0, i = 0
∆i, i = 1, . . . , n
∞, i = n+ 1.

Proof: Again, we consider System 1 initially in state z
and System 2 initially empty, and find expressions for h1 and
h2 corresponding to the cost the n jobs initially present (only)
in System 1 incur, and the difference in cost the later arriving
customers incur between the two systems.

In a M/G/1-SRPT queue at state z = (∆1, . . . ,∆n), the
mean remaining sojourn time of a job with a (remaining) size
∆ and an unfinished work uz(∆) ahead in the queue is given
by [19]

E[Rz(∆)] =
uz(∆)

1− ρ(∆)
+

∫ ∆

0

1

1− ρ(t)
dt, (18)

which gives the expected cost the current n jobs4 present in
System 1 incur,

h1 =

n∑
i=1

bi

(∑i−1
j=1 ∆j

1− ρ(∆i)
+

∫ ∆i

0

1

1− ρ(t)
dt

)
.

For the later arriving jobs, we can again write

t̃(x) = E

[∫ ∞
0

λ f(x)

[(
x+

Uz(x, t)

1− ρ(x)
+

∫ x

0

ρ(t)

1− ρ(t)
dt
)

−
(
x+

U0(x, t)

1− ρ(x)
+

∫ x

0

ρ(t)

1− ρ(t)
dt

)]]
,

=
λ f(x)

1− ρ(x)
E

[∫ ∞
0

Uz(x, t)− U0(x, t) dt

]
,

which describes the expected difference in the cumulative
sojourn times between System 1 and System 2 for size x jobs.

With SRPT also the jobs in System 1 initially longer than
x affect the result as eventually, one at a time, they decrease

4Note that we assume the opposite order than [19].

Y1

(1) x

time

time

System 1

initially in
state z:

System 2

empty:

initially

z(x)u

decreases below x, and

becomes a higher priority

job to jobs with size x.

A job, initially longer than x,

Y2

(1)

T
(1)

1 T
(1)

2 T1

(2)

Y1

(2)Y1

(1)

uz(x)

uz(x)

b
a

c
k
lo

g
b

a
c
k
lo

g

(mini) busy period

area A

same arrival pattern to two systems

area A

x

x

Fig. 14. Derivation of value function for an M/G/1-SRPT queue.

below the threshold x and trigger a new higher priority
workload present only in System 1 (see Fig. 14). Consequently,
we have one phase starting with a backlog of uz(x), and
then nz(x) phases starting with a backlog of x, where nz(x)
denotes the number of jobs longer than x in state z. In some
sense, this is the same as with SPT, but the difference is the
initial backlog size x jobs see: with SPT it is ∆i instead of x
for later phases. Hence, each of these phases reduce to (16),
which gives

t̃(x) =
λ f(x)

[
uz(x)2 + nz(x)x2

]
2(1− ρ(x))2

,

As h2 =
∫
b(x) t̃(x) dx, and both uz(x) and nz(x) are

(monotonic) step functions having jumps at x = ∆1, . . . ,∆n,
we proceed by integrating in parts. Defining

g(x) =
f(x) b(x)

(1− ρ(x))2
,

then gives

h2 =
λ

2

∫ ∆1

0

nx2 g(x) dx

+
λ

2

∫ ∆2

∆1

(∆2
1 + (n− 1)x2) g(x) dx+ . . .

+
λ

2

∫ ∞
∆n

(∆1 + . . .+ ∆n)2 g(x) dx,

and recalling that vz − v0 = h1 + h2 then gives (17).

