
To Split or not to Split: Selecting the Right Server with Batch Arrivals

Esa Hyytiä1,∗, Samuli Aalto

Department of Communications and Networking
Aalto University, Finland

Abstract

We consider a dispatching system, where jobs, arriving in batches, are assigned to single-server FCFS queues. Batches can besplit
to different queues on per job basis. However, the holding costs arebatch-specific and incurred until the last member of the batch
completes the service. By using the first policy improvementstep of the MDP framework, we are able to derive robust dispatching
policies, which split arriving batches only when deemed advantageous. The approach is also demonstrated in numerical examples.

Keywords: job dispatching; task assignment; batch arrivals; parallel processing

1. Introduction

The question of splitting a task or a job arises in many inter-
esting situations. In the context of transportation of goods, one
can ask when splitting some deliveries is advantageous [1].In
distributed and parallel computing the key idea is to split the
tasks and process them concurrently whenever feasible. Thefi-
nal outcome becomes available only upon the completion of the
last sub-task. Similarly, in a custom and immigration inspec-
tion, e.g., at an international airport, group arrivals caneither
be split to several counters or assigned to a single one. A group
will wait until its last member is processed, i.e., the natural cost
structure is a batch specific.

The system considered in this paper is illustrated in Fig. 1.
Customers or tasks arrive according to a Poisson process in
batches and are assigned to single-server queues immediately
upon the arrival. It is possible tosplit a batch to several servers,
or keep it together. Scheduling in each queue is the first-
come-first-served (FCFS). We are interested in minimizing the
sojourn time of a whole batch, possibly weighted with some
batch-specific holding costs.

The described system is closely related to the basic dis-
patching or routing problem studied extensively in the literature
[2, 3, 4, 5, 6]. In the basic problem, single customers arriveto
a dispatcher and the typical task is to minimize the mean so-
journ time (i.e., the mean response time). In particular, ifone
restricts oneself to batch-specific policies that assign the whole
batch to the same server, each batch constitutes a macro-joband
the system with batch arrivals reduces to the basic dispatching
problem. However, in this paper, we do not make such a restric-
tion but allow the splitting of the batches.

∗Corresponding author
Email addresses:esa.hyytia@aalto.fi (Esa Hyytiä),

samuli.aalto@aalto.fi (Samuli Aalto)
1Postal address: Aalto University, School of Electrical Engineering, Depart-

ment of Communications and Networking, PO Box 13000, FI-00076 AALTO.

λ

n jobs

Join

arrival
Batch

Fork?

s queues

Figure 1: Customers arrive in batches and the costs are accrued until the last
member of the batch has completed the service.

In the so-called fork-join queue, each incoming task is un-
conditionally split tos available servers, each having its own
FCFS queue. This model was first considered by Flatto and
Hahn in [7]. Exact and approximate results for the mean delay
are available only fors= 2 servers [8]. We note that a fork-join
queue is equivalent to our model when the batch size is constant
and equal to the number of servers, and the dispatching policy
assigns each sub-task to a different server.

2. Model

We assume that jobs arrive in batches according to aPois-
son processwith rateλ. Each batch arrivali comprisesNi jobs,
where thebatch-sizes Ni are assumed to be i.i.d. random vari-
ablesNi ∼ N. Similarly, we letXi = (Xi,1, . . . ,Xi,Ni) denote the
service requirements of the arriving batchi. Two batches are
assumed to be i.i.d. so that the total offered load is

ρtot = λ · E[X1 + . . . + XN].

If the service requirements are independent of the batch size N,
but not necessarily pairwise independent within a batch, then

ρtot = λ · E[N] · E[X],

where X denotes the service requirement of a random job.
Later, in the numerical examples, we assume the latter while
the methodology is directly applicable also in the general case.

Preprint submitted to Operations Research Letters February 22, 2013

Jobs are served by a pool ofs parallel single-server FCFS
queues, with queue-specific service rates denoted byν1, . . . , νs.
We assume,

ρtot < ν1 + . . . + νs,

which is a necessary condition for a stable system. (addition-
ally, the dispatching policy must balance the load in such a man-
ner that no single queue is overloaded). We let random variables
Ui denote the current waiting time (backlog in time units) in
Queuei, i = 1, . . . , s. With full state information,Ui = ui , i.e.,
the exact (remaining) service times are available.

Thecost structureis batch specific, i.e., batchi accrues costs
at ratebi until all jobs of the batch have been served. We note
that the processing order within the same batch is thus irrele-
vant as the costs are incurred until the last member of the batch
has completed the service. Therefore, the dispatching deci-
sion can be characterized by ann-tuple d = (d1, . . . , dn) with
d j ∈ {1, . . . , s} defining the queue for taskj with n = Ni .

With unit holding cost,bi = 1 for all batchesi, the optimal
policy minimizes the mean sojourn time of a batch, which ac-
cording to Little’s result is equivalent to minimizing the mean
number of batches in the system (not jobs). For minimizing
the mean sojourn time of jobs in the system, the holding cost
is equal to the batch size, i.e.,bi = n, where we assume that
jobs also depart the system in batches (the join operation).Ad-
ditionally, one can envision situations where some batchesare
more important, which translates to a higher holding cost (rate)
in our model.

3. Greedy basic policy

A greedy dispatching policy (i.e., a batch of selfish cus-
tomers) minimizes the expected sojourn time of their own
batch. With a given decisiond, let I (d) denote the set of queues
receiving at least one new customer,

I (d) , (i : d j = i for somej),

andAi = Ai(d) the amount of work Queuei receives,

Ai ,
1
νi

n∑

j=1

1(d j = i) · X j.

Then the sojourn time of the batch is given by

S(X; d) , max
i∈I (d)

(Ui + Ai) .

The greedy action is the one minimizing the expectation,

argmin
d

E

[

max
i∈I (d)

(Ui + Ai)

]

,

Thus, in general one finds the optimal greedy decision by enu-
merating thens possible assignments and choosing the one with
the smallest expected sojourn time (which is independent ofthe
batch specific holding cost). Unfortunately, the general expres-
sion is not amenable for straightforward approaches due to the
expectation of the maximum. With the full state information,
the job sizes and waiting times become deterministic and the
task reduces to the basic enumeration. This facilitates also effi-
cient pruning of the search space.

4. Towards the Optimal Policy

In this section, we assume a central dispatcher which seeks
to minimize the long-term cumulative costs. In general, we as-
sume a size-aware system, where (remaining) service require-
ments are available. For each batch, the dispatcher has to weigh
between the “immediate costs” related to the sojourn time of
the given batch (known exactly) and the “future costs” related
to the later arriving batches (stochastic component).

Consider first dispatching policies where the same decision
applies to the whole batch, i.e., each customer of the batch is
assigned with the same queue. All these policies effectively
combine the jobs of the batch to a single macro-job, and the
system reduces to an ordinary dispatching system. We refer to
such policies asthe batch-specific policies.

Another important class of policies are the so-calledstate-
independent policies, where the dispatching decision is inde-
pendent of the past decisions and the queue states. It can, how-
ever, depend on the new batch including its jobs, their sizesand
the holding costb. The key property of state-independent poli-
cies is that the arrival process of macro-jobs to each queue is a
Poisson process.

Several well-studied examples of state-independent batch-
specific policies exists. First, one can carry out a Bernoulli-
split, i.e., independently of the other arrivals, earlier decisions
and queue states, the whole batch is assigned to Queuei with
probability of pi . Alternatively, the dispatching probabilities
can depend on customer or batch classes or such useful infor-
mation as the (expected) service requirements.

4.1. Policy Improvement

With state-independent batch-specific policies, the arriving
process to each Queuei is a Poisson process with some rate
λi , and the mean sojourn times, or the mean cost accruing rates
with arbitrary holding cost rates, follow from the Pollaczek-
Khinchine mean value formula for the whole batch. For such
policies, similarly as in our past work [9, 10], it is possible to
carry out the first policy iteration (FPI) step, yielding a new
improved state-dependent policy, which also splits batches to
several servers when deemed advantageous. To this end, one
needs the so-called value function for the whole system. How-
ever, when the basic policy is state independent and batch spe-
cific, the system separates and it is sufficient to know the value
functions of the corresponding individual M/G/1-FCFS queues,
and consider the macro-jobs comprising of the jobs of a batch
assigned to the same server.

Let z = ((∆1, b1), . . . , (∆m, bm)) denote a state of an ordinary
M/G/1-FCFS queue withm jobs, where∆k is the (remaining)
service time of jobk, andbk is its holding cost rate (per unit
time). Jobm is currently receiving service and job 1 is the most
recent arrival. The value function of an M/G/1-FCFS with re-
spect to arbitrary job-specific holding costs is [9, 10],

vz − v0 =

m∑

j=1




b j

j∑

k=1

∆k




+
λ · E[B]
2 (1− ρ)

u2
z , (1)

2

whereuz = ∆1 + . . . + ∆m denotes the backlog in statez, E[B]
the mean holding cost rate of later arriving jobs, andρ the pro-
portion of time that the server is busy (in the long run).

In our case, we need to adjust (1) slightly in order to take
into account the batch-specific cost structure. We assume that
the current state is arbitrary, i.e., batches may have been split
among several servers, but all the future arrivals will be as-
signed according to a state-independent batch-specific policy.
In particular, we can consider macro-jobs, i.e., the jobs ofa
batch assigned to the same queue, and let∆k denote the ser-
vice time of macro-jobk. For each batch, we setbk = 0 for all
macro-jobsk except for the one that is scheduled to depart last
from the given batch (note that the departure order gets fixed
upon dispatching). Then (1) holds for each queue.

Let Z = (z1, . . . , zs) denote the state of the whole system
comprisings parallel queues. Due to Poisson arrivals, the sys-
tem separates and the value function is

v(z1,...,zs) − v0 =

s∑

i=1

vzi − v0

=

s∑

i=1





mi∑

j=1




bi, j

j∑

k=1

∆i,k




+
λi · E[Bi]
2 (1− ρi)

u2
i




.

(2)

Let ai denote the amount of work added to Queuei with a given
decisiond, andb the holding cost of the new batch. Then define

i∗ , argmax
i∈I (d)

(ai + ui),

i.e., i∗ = i∗(d) denotes the queue from which the last job of the
new batch will depart. LetZ⊕ d denote the resulting state after
dispatching the new batch according to decisiond. From (2), it
follows that theadmittance cost, c(d) = vZ⊕d − vZ, is given by

c(d) =

=immediate
︷ ︸︸ ︷

b(ai∗ + ui∗)+

=future
︷ ︸︸ ︷
∑

i∈I (d)

λiE[Bi]
2(1− ρi)

(

2uiai + a2
i

)

, (3)

where (λi ,E[Bi], ρi) denote the arrival rate, the average holding
cost, and the offered load of Queuei, respectively, all accord-
ing to the chosen state-independent batch-specific basic policy.
The latter sum term, indicated with “future”, corresponds to the
expected increase in cumulative costs the later arriving batches
experience with the given basic policy. According to FPI, one
choosesd that minimizesc(d),

argmin
d

c(d).

Note that starting FPI with a batch-specific basic policy is not
such a big restriction as it may first seem. Especially, if there is
uncertainty about the backlogs, choosing more queues simply
increases the chances that one of them turns out to progress
slower than expected.

Here we assume a size-aware system with known (remain-
ing) service times. In passing, we note that by conditioningthe
obtained admittance cost can be generalized to situations where
backlogs and service requirements are random variables [11].

5. Numerical Examples

Next we illustrate the framework by numerical examples. For
comparison, we consider the following heuristic policies:

1. Random (RND) chooses the queue uniformly in random (thus
balancing the load).

2. Size-Interval-Task-Assignment (SITA) [12, 13, 14] usess + 1
thresholdsξi, 0 = ξ0 < ξ1 < . . . < ξs = ∞, and chooses Queuei if
the sizex of a job/batch belongs to theith interval,ξi−1 ≤ x < ξi .
Theξi can be optimized with aid of Pollaczek-Khinchine formula
[5, 6]. For simplicity, we consider SITA-E, where theξi are cho-
sen in such a way that each queue receives an equal load [13].

3. Join-the-shortest-queue (JSQ) chooses the queue with the small-
est number of jobs, argmini mi .

4. Least-work-left (LWL) chooses the queue with the smallest back-
log, argmini ui .

With JSQ and LWL, the possible ties are broken in favor of
the queue with a smaller id. For all above, we apply both (i)
batch-wise and (ii) job-wise assignment, yielding 4 batch-and
4 job-specific policies.

The RND and SITA policies are state-independent, i.e., their
decisions are independent of the states of the queues. Another
state-independent policy is the Number-In-Batch-Assignment
(NIBA) given in Algorithm 1. As the name suggests, it utilizes
the batch-size information (i.e., the number of jobs in the new
batch), and assigns the batches with thesame number of jobsto
the same servers while balancing the load at the same time. The
rationale is the same as with SITA, i.e., it aims to seggregate
short batches from the long ones thus decreasing the chancesof
a short batch waiting behind a long one. Algorithm 1 assumes
s identical servers, but it is straightforward to generalizeNIBA
also for a heterogeneous case.

We consider an elementary system with four identical servers
(s = 4) each processing jobs with unit service rate,νi = 1, for
i = 1, . . . , s. Batches arrive according to a Poisson process with
rateλ. The batch sizeN is either 1, 2 or 3 with probabilities of
1/4, 1/2 and 1/4, respectively. The service requirementsX are
also independent and identically distributed with mean 1:

1. U(0.5, 1.5): uniform distribution on interval (0.5, 1.5).
2. Exp(1): exponential distribution with mean 1.
3. Bounded Pareto distribution with parameters (a, b, α) =

(0.33959, 1000, 1.5), where (a, b) is the interval andα is
the shape parameter. Thus, CDF fora ≤ x ≤ b is

P{X < x} =
1− (a/x)α

1− (a/b)α
.

The offered load per server isρ = ρtot/s = λE[N] E[X]/s =
λ/2. A load-balancing routing matrix for NIBA is

P =





1 0 0 0
1/4 1/2 1/4 0
0 0 1/3 2/3




,

i.e., batches with one job are assigned to Queue 1, batches with
two jobs to Queues 1, 2 and 3, and batches with three jobs to
Queues 3 and 4. As a result, all queues receive the same load,
ρ = λ/2 (as E[X] = 1).

3

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1

E
[T

]
/ E

[T
jo

b-
LW

L
]

ρ

Relative Sojourn Time of Batch

(batch) RND
(batch) NIBA
(batch) SITA

(job) LWL

(batch) JSQ(batch) LWL

(job) JSQ

(jo
b) R

ND

(jo
b) S

ITA

FPI-RND

FPI-SITA

FPI-NIBA

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1
E

[T
]

/ E
[T

jo
b-

LW
L

]
ρ

Relative Sojourn Time of Batch

(batch
) R

ND

(jo
b)

 R
ND

(batch) JSQ(batch) LWL
(job) JSQ

(job) LWL

(job) SITA

(batch) S
ITA

(batch
) N

IBA

FPI-RND
FPI-NIBA

FPI-SITA

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1

E
[T

]
/ E

[T
jo

b-
LW

L
]

ρ

Relative Sojourn Time of Batch

(jo
b)

 R
N

D

(batch) RND / NIBA

(batch
) S

ITA

(jo
b) S

ITA

(batch) JSQ
(batch) LWL

(job) JSQ

(job) LWL

FPI-RND FPI-NIBA

FPI-SITA

X ∼ U(0.5,1.5) X ∼ Exp(1) X ∼ Bounded Pareto

Figure 2: The mean relative sojourn time of a batch with different dispatching policies against the job-specific LWL.

As for the cost structure, we consider three scenarios: (i)
minimization of the mean number of batches (B = 1), (ii) min-
imization of the mean number of jobs (B = N) assuming jobs
also depart in batches (join operation), and (iii) minimization of
the mean cost rate with two priority classes.

Algorithm 1 Number-In-Batch-Assignment (NIBA).
p j,i = 0 ∀ i, j {Routing matrix:i=queue,j=batch size}
i = 1; a = E[N]/s
j = 1; b = j · P{N = j}; q = 1
while i ≤ s do

if a ≤ q · b then
p j,i = a/b; q = q− a/b
i++; a = E[N]/s {next queue}

else
p j,i = q; a = a− q · b;
j++; b = j · P{N = j}; q = 1 {next batch size}

end if
end while

5.1. Example: Sojourn time

Let us first consider the mean sojourn time (mean delay) of
batches, i.e.,B = 1 for all batches. As just explained, we con-
sider nine heuristic policies: the job- and batch-specific RND,
SITA, JSQ and LWL, and the batch-specific NIBA. The batch-
specific RND, SITA and NIBA are also state-independent, and
thus they can serve as basic policies for the FPI step. To
this end, we need to determine the queue-specific batch ar-
rival ratesλi , the mean holding cost rates E[Bi] and the of-
fered loadsρi for each basic policy, in accordance with (3).
As hereB = 1, we trivially have E[Bi] = 1. Similarly, as
we have chosen to consider only load-balancing basic policies,
ρi = ρ = ρtot/s, ∀ i. The arrival ratesλi , however, depend on
the basic policy. For RND, we haveλi = λ/s, and for NIBA,
(λ1, λ2, λ3, λ4) = (9, 6, 5, 4) · λ/24. For SITA the queue-specific
arrival ratesλi depend on the job size distribution and are deter-
mined numerically at the same time as the SITA thresholdsξi .
As the workload in a batch is a random sum,X1+. . .+XN, no el-

ementary expression exists for the (load-balancing) thresholds
with the chosen example job size distributions.

The numerical results are depicted in Fig. 2. Each graph
shows the performance of different policies against the job-
specific LWL as a function of the offered loadρ. First we
observe that it is advantageous to process batches in parallel
whenever the offered load is sufficiently low. However, the sit-
uation gets more interesting when the load increases.

The optimal decision naturally depends on the available in-
formation. JSQ is aware of the number of jobs in each server
but not on their (remaining) service times. Consider, for ex-
ample, the case with exponentially distributed job sizes (middle
figure). Initially, whenρ is small, the job-specific JSQ is clearly
a better option. A switch-over point is about atρ ≈ 0.8, after
which one should no longer split a batch to several servers.

SITA policies are aware of the exact service time(s) of the
new job/batch, but not the state of the queues. They are known
to (typically) perform well when service times vary a lot, which
can be observed also here. LWL and FPI are aware of the actual
backlogs in each queue and achieve clearly the lowest mean so-
journ times. In particular, with exponential and bounded Pareto
distributed job sizes, FPI-SITA appears to be a good choice es-
pecially under a heavy load.

5.2. Example: Holding cost according to the size of the batch

Next, the holding cost is equal to the size of the batch,B =
N. This type of a cost structure arises, e.g., in the immigration
inspection when minimizing the individual sojourn time with
group arrivals. It turns out that in this case FPI-NIBA and FPI-
RND are equivalent due to the fact that (cf. (3)),

λi E[Bi]
2(1− ρi)

=
ρ

2(s− ρ) E[X]
,

for both. That is, from the view point of FPI, all queues receive
equivalent streams of batches. With RND, the arrival processes
to all queues are statistically identical, while with NIBA this
obviously is not the case, but, e.g., the mean batch size varies.
With SITA, the situation is again somewhat more complicated
and bothλi and E[Bi] are determined numerically as a function
of the SITA thresholdsξ j .

4

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1

E
[C

]
/ E

[C
jo

b-
LW

L
]

ρ

Relative Mean Cost with Batch-size Holding Costs

(batch) RND / NIBA

(batch) SITA

(batch) JSQ(batch) LWL

(jo
b) R

ND

(jo
b)

 S
IT

A

(job) JSQ
(job) LWL

FPI-RND/NIBA/SITA

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1
E

[C
]

/ E
[C

jo
b-

LW
L

]
ρ

Relative Mean Cost with Batch-size Holding Costs

(batch) R
ND / N

IBA

(batch) SITA

(jo
b) R

ND
(job) SITA

(batch) JSQ
(batch) LWL

(job) JSQ

(job) LWL

FPI-RND/NIBA

FPI-SITA

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1

E
[C

]
/ E

[C
jo

b-
LW

L
]

ρ

Relative Mean Cost with Batch-size Holding Costs

(batch) RND / NIBA

(jo
b)

 R
N

D

(batch
) S

ITA

(jo
b) S

ITA

(batch) JSQ
(batch) LWL

(job) JSQ

(job) LWL

FPI-RND/NIBA FPI-BSITA

X ∼ U(0.5,1.5) X ∼ Exp(1) X ∼ Bounded Pareto

Figure 3: The mean holding cost of a batch with different dispatching policies compared against the job-specific LWL, when holding cost is equal to the batch size.

Simulation results are similar as in the previous example and
depicted in Fig. 3. For example, with exponential and bounded
Pareto distributed job sizes, the batch-specific JSQ and LWL
become better than the job-specific JSQ when the offered load
exceeds a certain threshold. Similarly, we observe that FPI-
SITA is again significantly better than the job-specific LWL
when service times vary a lot. Asρ → 1, FPI-SITA outper-
forms the job-specific LWL by a factor of 2 with the bounded
Pareto distributed job sizes.

5.3. Example: High priority batches

Finally, we consider a case with two classes: a high priority
Class 1 having a holding cost rate ofb = 4, and a low priority
Class 2 withb = 1. The batch sizes and service requirements
are i.i.d. and obey the same distributions for both classes.Frac-
tion of high priority Class 1 batches is 25% and the remaining
75% of the batches are Class 2. As the local scheduling disci-
pline in each queue is FCFS, the only place where the high pri-
ority customers can be favored is at the dispatcher. All heuristic
policies, whether batch-specific or not, areblind to the holding
costs and behave the same way as in the previous examples.

Additionally, we define a specific state-independentclass-
awarepolicy, referred to as the HP25 policy, which seggregates
the high priority requests from the other by assigning all high
priority batches to Queue 1, and the rest in random to Queues
2-4. As a result, the arrival process to each queue is a Poisson
process with rateλ/4 and loadρ = ρtot/4 = λ/2. Therefore,
the performance of HP25 and RND is actually equal. While
dedicating more capacity to the high priority class would give
us a better class-aware policy, HP25 is already sufficient for our
purposes. With HP25, the mean holding cost for Queue 1 is triv-
ially E[B1] = 4 and for the other queues E[Bi] = 1. Therefore,
when HP25 is used as the basic policy for FPI, yielding FPI-
HP25, Queue 1 has a special role via the mean holding cost.
We note that in addition to HP25, all FPI policies also take the
holding cost structure into account.

As the other basic policies, i.e., the batch-specific RND,
NIBA and SITA, are blind to holding costs, we have E[Bi] =
E[B] for them. Also the queue-specific arrival ratesλi and of-
fered loadsρi are determined for each basic policy similarly as

earlier in order to enable the policy improvement step.
The simulation results are depicted in Fig. 4. Again, with

the uniformly distributed job sizes, the FPI policies are only
marginally better than the job-specific LWL. With exponen-
tially distributed job sizes, FPI-NIBA, FPI-HP25 and FPI-SITA
outperform LWL whenρ → 1. As the job sizes vary more
(bounded Pareto distribution), the FPI policies start to shine. In
particular, FPI-SITA achieves over 50% reduction in the mean
holding cost under a heavy load.

Fig. 5 illustrates the fraction of batches split to several servers
with the exponentially distributed job sizes (batch-specific poli-
cies are omitted for the obvious reason). The behavior with
other job size distributions was similar. When the offered load
is very low, all batches with more than one task (i.e. 75% of
the batches) are split and processed in parallel, as expected. As
the offered load increases, all policies, and the FPI policies in
particular, start to avoid splitting more and more. We believe
that also the optimal policy behaves in a similar way, i.e., the
fraction of batches split decreases as the offered load increases.

6. Conclusions

Traditional dispatching problem addresses the problem of
server selection for arriving tasks. In this paper, we have ad-
dressed the joint-problem of splitting the tasks and choosing
the server for each sub-task, i.e., the task assignment problem
with batch arrivals. The possibility to split some tasks enables
parallel processing. The server system is assumed to comprises
single-server FCFS queues. Each batch has somebatch-specific
holding cost rateand the task is to minimize the long-term mean
cost rate. The model is related to the fork-join queues, where
the splitting is not optional but the default action. This type of
dynamic decision problems arise frequently, e.g., in the context
of parallel and distributed computing [8].

We approached the dispatching problem in the MDP frame-
work, which allows one to improve any state-independent
batch-specific basic policy in a straightforward manner. The
choice of a good basic policy (with respect to policy improve-
ment) depends on the particular setting (cost structure, arrival

5

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1

E
[C

]
/ E

[C
jo

b-
LW

L
]

ρ

Relative Mean Cost of Batch

(batch) RND / HP25
(batch) NIBA
(batch) SITA

(jo
b) R

ND

(jo
b)

 S
IT

A

(batch) JSQ(batch) LWL

(job) JSQ
(job) LWL

FPI-HP25

FPI-RND FPI-NIBA
FPI-SITA

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1
E

[C
]

/ E
[C

jo
b-

LW
L

]
ρ

Relative Mean Cost of Batch

(jo
b)

 R
ND

(batch) R
ND / H

P25 NIBA

(batch) SITA

(job) SITA

(batch) JSQ
(batch) LWL

(job) JSQ
(job) LWL / FPI-RND

FPI-HP25

FPI-SITA

FPI-NIBA

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1

E
[C

]
/ E

[C
jo

b-
LW

L
]

ρ

Relative Mean Cost of Batch

(jo
b)

 R
N

D

(batch) RND / HP25 / NIBA

(batch
) S

ITA

(jo
b) S

ITA

(batch) JSQ

(batch) LWL

(job) JSQ

(job) LWL / FPI-RND

FPI-NIBA
FPI-HP25
FPI-SITA

X ∼ U(0.5,1.5) X ∼ Exp(1) X ∼ Bounded Pareto

Figure 4: The mean holding cost of a batch with different dispatching policies compared against the job-specific LWL. Here 25% of the batches are high priority
and have a four times higher holding cost than the rest.

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 B
at

ch
es

 S
pl

it

ρ

Splitting when minimizing the holding costs

(job) LWL (job) JSQ

FPI-HP25 F
P

I-N
IB

A

FP
I-S

ITA

FPI-RND

X ∼ Exp(1)

Figure 5: The fraction of batches split to several servers when minimizing the
mean holding cost per batch in the example with high- and low priority classes.

patterns and the pool of parallel servers). It appears to be ben-
eficial for FPI, if the basic policy associates each queue with a
certainrole, e.g., one queue is expected to receive mainly short
jobs and another the longer ones.

Assigning a batch to servers with a given cost structure is
a very challenging and important problem, e.g., for the perfor-
mance analysis and optimization of parallel and distributed sys-
tems. Only few optimality results exist for the traditionaldis-
patching problem, and the opportunity to split tasks to parallel
servers simply complicates the situation. The FPI step tells us
to which direction a given policy should be developed to, while
finding the optimal policy would require consecutive policyit-
eration rounds. Unfortunately, it is more difficult to determine
the value function once the dispatching policy no longer is batch
specific. On the other hand, the FPI step often yields the largest
improvement towards the optimal solution.

[1] C. Archetti, M. Savelsbergh, M. Speranza, To split or notto split: that is
the question, Transportation Research - Part E 44 (1) (2008)114–123.

[2] A. Ephremides, P. Varaiya, J. Walrand, A simple dynamic routing prob-
lem, IEEE Transactions on Automatic Control 25 (4) (1980) 690–693.

[3] W. Whitt, Deciding which queue to join: Some counterexamples, Opera-
tions Research 34 (1) (1986) 55–62.

[4] Z. Liu, D. Towsley, Optimality of the round-robin routing policy, Journal
of Applied Probability 31 (2) (1994) 466–475.

[5] H. Feng, V. Misra, D. Rubenstein, Optimal state-free, size-aware dis-
patching for heterogeneous M/G/-type systems, Performance Evaluation
62 (1-4) (2005) 475–492.

[6] E. Bachmat, H. Sarfati Analysis of SITA policies, Performance Evalua-
tion 67 (2) (2010) 102–120.

[7] L. Flatto, S. Hahn, Two parallel queues created by arrivals with two de-
mands, SIAM Journal on Applied Mathematics 44 (1984) 1041–1053.

[8] O. Boxma, G. Koole, Z. Liu, Queueing-theoretic solutionmethods for
models of parallel and distributed systems, in: Performance Evaluation of
Parallel and Distributed Systems Solution Methods, 1994, pp. 1–24.

[9] E. Hyytiä, A. Penttinen, S. Aalto, Size- and state-aware dispatching prob-
lem with queue-specific job sizes, European Journal of Operational Re-
search 217 (2) (2012) 357–370.

[10] E. Hyytiä, S. Aalto, A. Penttinen, Minimizing slowdown in heterogeneous
size-aware dispatching systems, ACM SIGMETRICS Performance Eval-
uation Review 40 (2012) 29–40.

[11] E. Hyytiä, S. Aalto, A. Penttinen, J. Virtamo, On the value function of
the M/G/1 FCFS and LCFS queues, Journal of Applied Probability 49 (4)
(2012).

[12] M. E. Crovella, M. Harchol-Balter, C. D. Murta, Task assignment in a dis-
tributed system: Improving performance by unbalancing load, in: Proc.
of SIGMETRICS ’98, Madison, Wisconsin, USA, 1998, pp. 268–269.

[13] M. Harchol-Balter, M. E. Crovella, C. D. Murta, On choosing a task as-
signment policy for a distributed server system, Journal ofParallel and
Distributed Computing 59 (1999) 204–228.

[14] M. Harchol-Balter, A. Scheller-Wolf, A. R. Young, Surprising results on
task assignment in server farms with high-variability workloads, in: Proc.
of SIGMETRICS, ACM, New York, NY, USA, 2009, pp. 287–298.

6

