To Split or not to Split: Selecting the Right Server with Batsrrivals

Esa Hyyti#*, Samuli Aalto

Department of Communications and Networking
Aalto University, Finland

Abstract

We consider a dispatching system, where jobs, arriving icHess, are assigned to single-server FCFS queues. Batmhbéssplit
to different queues on per job basis. However, the holding costsaach-specific and incurred until the last member of thetbatc
completes the service. By using the first policy improvenségp of the MDP framework, we are able to derive robust dispag
policies, which split arriving batches only when deemedsedageous. The approach is also demonstrated in numexaraipdes.

Keywords: job dispatching; task assignment; batch arrivals; pdnaitecessing

S queues

1. Introduction

Batch

The question of splitting a task or a job arises in many inter- arival
esting situations. In the context of transportation of goaohe A @@@ Fork? @ Join
can ask when splitting some deliveries is advantageoudijl].

n jobs

distributed and parallel computing the key idea is to spié t
tasks and process them concurrently whenever feasiblefi-The
nal outcome becomes available only upon the completioneof th
last sub-task. Similarly, in a custom and immigration irsspe
tion, e.g., at an international airport, group arrivals eéher
be split to several counters or assigned to a single one. épgro
will wait until its last member is processed, i.e., the nateost In the so-called fork-join queue, each incoming task is un-
structure is a batch specific. conditionally split tos available servers, each having its own
The system considered in this paper is illustrated in Fig. 1FCFS gqueue. This model was first considered by Flatto and
Customers or tasks arrive according to a Poisson process [#2hn in [7]. Exact and approximate results for the mean delay
batches and are assigned to single-server queues immigdiatd"® available only fos = 2 servers [8]. We note that a fork-join
upon the arrival. It is possible &plit a batch to several servers, dUeue is equivalentto our model when the batch size is consta
or keep it together. Scheduling in each queue is the first‘-”md. equal to the number of servers, and the dispatchingypolic
come-first-served (FCFS). We are interested in minimizivg t 2SSIgns each sub-task to dfelfent server.
sojourn time of a whole batch, possibly weighted with some
batch-specific holding costs. 2. Model

The described system is closely related to the basic dis- hat i L h . .
patching or routing problem studied extensively in theiditare We assume that jobs arrive in batg es acco_rdmg '.R‘”'a'
son proceswvith rated. Each batch arrivdlcomprises\; jobs,

[2, 3, 4,5, 6]. Inthe basic problem, single customers arndve ! - .
a dispatcher and the typical task is to minimize the mean soVNere thebatch-sizes Nare assumed to be i.i.d. random vari-

journ time (i.e., the mean response time). In particulapnié abIe_sNi ~ N._S|m|IarIy, we letX; = (Xiz, : -, Xin) denote the
restricts oneself to batch-specific policies that assignithole service requirements of the arriving baichTwo batches are

batch to the same server, each batch constitutes a macamgob assumed to be i.i.d. so that the totéleved load is

— 10 =10 =1
— 10 =10 =1
— 10 =10 =1

Figure 1: Customers arrive in batches and the costs areeatemtil the last
member of the batch has completed the service.

the system with batph grrivals reduces to the basic disbmjch_ Pot = A-E[Xg + ...+ Xn].
problem. However, in this paper, we do not make such a restric
tion but allow the splitting of the batches. If the service requirements are independent of the batet\siz

but not necessarily pairwise independent within a batam th

prot = 4 - E[N] - E[X],

*Corresponding author

Email addressesesa. hyytiaGaalto. 1 (Esa Hyytia), where X denotes the service requirement of a random job.
samuli.aalto@aalto.fi (Samuli Aalto)

1postal address: Aalto University, School of Electrical Begring, Depart- Later, in the num_eric_al example_s, we assume the latter while
ment of Communications and Networking, PO Box 13000, FIFB)AALTO. the methodology is directly applicable also in the geneaakc

Preprint submitted to Operations Research Letters February 22, 2013

Jobs are served by a pool sfparallel single-server FCFS 4. Towardsthe Optimal Policy
queues, with queue-specific service rates denoted,by., vs.

We assume, In this section, we assume a central dispatcher which seeks
Prot <Vit...+Vs, to minimize the long-term cumulative costs. In general, e a
which is a necessary condition for a stable system. (adhditio SUme a size-aware system, where (remaining) service equir
ally, the dispatching policy must balance the load in suclaam ments are available. For each batch, the dispatcher hasgb we
ner that no single queue is overloaded). We letrandom viasab between the “immediate costs” related to the sojourn time of
U; denote the current waiting time (backlog in time units) in the given batch (known exactly) and the “future costs” edat
Queus, i = 1,...,s With full state informationl; = u;, i.e.,, tothe later arriving batches (stochastic component).
the exact (remaining) service times are available. Consider first dispatching policies where the same decision
Thecost structurds batch specific, i.e., batéraccrues costs applies to the whole batch, i.e., each customer of the batch i
at rateb; until all jobs of the batch have been served. We noteassigned with the same queue. All these policisctively
that the processing order within the same batch is thuseirrel combine the jobs of the batch to a single macro-job, and the
vant as the costs are incurred until the last member of trehbat System reduces to an ordinary dispatching system. We @fer t
has completed the service. Therefore, the dispatching decsuch policies athe batch-specific policies
sion can be characterized by aftupled = (dy,...,d,) with Another important class of policies are the so-calitate-
d; € {1,..., s} defining the queue for tagkwith n = N;. independent policigsvhere the dispatching decision is inde-
With unit holding costb; = 1 for all batches, the optimal pendent of the past decisions and the queue states. It oan, ho
policy minimizes the mean sojourn time of a batch, which ac-ever, depend on the new batch including its jobs, their sinels
cording to Little’s result is equivalent to minimizing theean the holding cosb. The key property of state-independent poli-
number of batches in the system (not jobs). For minimizingcies is that the arrival process of macro-jobs to each queae i
the mean sojourn time of jobs in the system, the holding cosPoisson process.
is equal to the batch size, i.dy, = n, where we assume that Several well-studied examples of state-independent batch
jobs also depart the system in batches (the join operathal). specific policies exists. First, one can carry out a Bermoull
ditionally, one can envision situations where some batehes split, i.e., independently of the other arrivals, earliecidions
more important, which translates to a higher holding cadejr and queue states, the whole batch is assigned to Queitle

in our model. probability of p;. Alternatively, the dispatching probabilities
can depend on customer or batch classes or such useful infor-
3. Greedy basic policy mation as the (expected) service requirements.

A greedy dispatching policy (i.e., a batch of selfish cus—4 1. Policy |
tomers) minimizes the expected sojourn time of their own ™~ olicy Improvement

batch. With a given decisiot, let | (d) denote the set of queues \yjith state-independent batch-specific policies, the agiv

receiving at least one new customer, process to each Quelids a Poisson process with some rate
I(d) £ (i : d; =i for somej), i, and the mean sojourn times, or the mean cost accruing rates
)) with arbitrary holding cost rates, follow from the Pollakze
andA; = A(d) the amount of work Queuereceives, Khinchine mean value formula for the whole batch. For such
1 policies, similarly as in our past work [9, 10], it is possitib
A £ - Z 1(dj=1i)- X;. carry out the first policy iteration (FPI) step, yielding aane
bl improved state-dependent policy, which also splits batdbe
Then the sojourn time of the batch is given by several servers when deemed advantageous. To this end, one
n needs the so-called value function for the whole system.-How
S(X;d) = E%(Ui +A). ever, when the basic policy is state independent and batsh sp

cific, the system separates and it isfigient to know the value
functions of the corresponding individual/#/1-FCFS queues,
and consider the macro-jobs comprising of the jobs of a batch
’ assigned to the same server.

.) . . Letz = ((A1, by),. .., (Am, bm)) denote a state of an ordinar
Thus, in general one finds the optimal greedy decision by enul_/I/G/l-FC(F(Slqule)ue wi(tmgjoﬁ)s? whered, is the (remaining)y
merating then® possible assignments and choosing the one with * .~ * . ! —k :

) X S service time of jolk, andby is its holding cost rate (per unit
the smallest expected sojourn time (which is independethieof . . s . : .
o) time). Jobmis currently receiving service and job 1 is the most

batch specific holding cost). Unfortunately, the generafes- . . i . :

L . recent arrival. The value function of an/@/1-FCFS with re
sion is not amenable for straightforward approaches dueeto t spect to arbitrary job-specific holding costs is [9, 10]
expectation of the maximum. With the full state information T
the job sizes and waiting times become deterministic and the m i
task reduces to the basic enumeration. This facilitateseflis Vy — Vo = Z b > Ad|+ A-E[B] w2, 1)
cient pruning of the search space. = 4 2(1-p)

The greedy action is the one minimizing the expectation,

argmink
d

g}gg(ui + Aj)

k=

whereu, = A; + ... + Ay, denotes the backlog in stateE[B]
the mean holding cost rate of later arriving jobs, aritie pro-
portion of time that the server is busy (in the long run).

In our case, we need to adjust (1) slightly in order to take

5. Numerical Examples

Next we illustrate the framework by numerical examples. For
comparison, we consider the following heuristic policies:

into account the batch-specific cost structure. We assuate th 1. Random (RND) chooses the queue uniformly in random (thus

the current state is arbitrary, i.e., batches may have bglén s

among several servers, but all the future arrivals will be as 2-

signed according to a state-independent batch-specificypol
In particular, we can consider macro-jobs, i.e., the jobs of
batch assigned to the same queue, and\jedenote the ser-
vice time of macro-jolk. For each batch, we sbt = 0 for all

macro-jobsk except for the one that is scheduled to depart last
from the given batch (note that the departure order gets fixed

upon dispatching). Then (1) holds for each queue.
LetZ = (z,...,zs) denote the state of the whole system

balancing the load).

Size-Interval-Task-Assignment (SITA) [12, 13, 14] uses 1
thresholds, 0= & < &1 < ... < & = o0, and chooses Queud
the sizex of a jolybatch belongs to thigh interval,&_; < x < &.
The&; can be optimized with aid of Pollaczek-Khinchine formula
[5, 6]. For simplicity, we consider SITA-E, where téeare cho-
sen in such a way that each queue receives an equal load [13].
3. Join-the-shortest-queue (JSQ) chooses the queue wigmthll-
est number of jobs, argmim.

Least-work-left (LWL) chooses the queue with the smabesk-
log, argminu;.

4.

comprisings parallel queues. Due to Poisson arrivals, the sys-

tem separates and the value function is

/ll E[B]uz (2)
2(1-p) ™

5

i=1

o)

Leta denote the amount of work added to Quéwudth a given

>

=1

With JSQ and LWL, the possible ties are broken in favor of
the queue with a smaller id. For all above, we apply both (i)
batch-wise and (ii) job-wise assignment, yielding 4 batuoid
4 job-specific policies.

The RND and SITA policies are state-independent, i.e.f thei
decisions are independent of the states of the queues. énoth
state-independent policy is the Number-In-Batch-Assignin
(NIBA) given in Algorithm 1. As the name suggests, it utikize
the batch-size information (i.e., the number of jobs in tee/n

decisiond, andb the holding cost of the new batch. Then definebatch), and assigns the batches withgame number of jolis

i* £ argmax(a; + u;),
il (d)

the same servers while balancing the load at the same tinge. Th
rationale is the same as with SITA, i.e., it aims to seggeegat
short batches from the long ones thus decreasing the chahces

i.e.,i* = i*(d) denotes the queue from which the last job of the@ short batch waiting behind a long one. Algorithm 1 assumes

new batch will depart. LeZ @ d denote the resulting state after
dispatching the new batch according to decigiofrrom (2), it
follows that theadmittance costt(d) = Vzeq — Vz, IS given by

=future

=immediate
o(d) = b(a- +u)+ % (2ua +a?). (3)

ield)

sidentical servers, but it is straightforward to generaitBA
also for a heterogeneous case.

We consider an elementary system with four identical server
(s = 4) each processing jobs with unit service rates 1, for
i =1,...,s Batches arrive according to a Poisson process with
rated. The batch sizé\ is either 1, 2 or 3 with probabilities of
1/4,1/2 and Y4, respectively. The service requiremeKtare
also independent and identically distributed with mean 1:

where (i, E[Bj], pi) denote the arrival rate, the average holding 1. y(05, 1.5): uniform distribution on interval (8, 1.5).

cost, and the ffered load of Queug respectively, all accord-
ing to the chosen state-independent batch-specific babaypo
The latter sum term, indicated with “future”, correspormlgte
expected increase in cumulative costs the later arrivinghes
experience with the given basic policy. According to FPlgon
choosedl that minimizesc(d),

argminc(d).
d

Note that starting FPI with a batch-specific basic policyas n
such a big restriction as it may first seem. Especially, ifetie

uncertainty about the backlogs, choosing more queues wimpl
increases the chances that one of them turns out to progress

slower than expected.

2. Exp(1): exponential distribution with mean 1.
3. Bounded Pareto distribution with parameteaish(a) =
(0.33959 1000 1.5), where &,b) is the interval andr is

the shape parameter. Thus, CDFdot x < bis
1-(a/x)*
P(X < x} = 1= (@b

The dtered load per server js = pioi/S = AE[N]JE[X]/s =
/2. A load-balancing routing matrix for NIBA is

1 0 0 0
P=|14 12 14 o],
0 0 Y3 2/3

Here we assume a size-aware system with known (remain-e., batches with one job are assigned to Queue 1, batcltes wi

ing) service times. In passing, we note that by conditiortirey
obtained admittance cost can be generalized to situatibesav

backlogs and service requirements are random variablgs [11 p = 1/2 (as EK]

3

two jobs to Queues 1, 2 and 3, and batches with three jobs to
Queues 3 and 4. As a result, all queues receive the same load,

= 1).

Relative Sojourn Time of Batch Relative Sojourn Time of Batch Relative Sojourn Time of Batch
22

22 [(batch) RND T 22 R §/
(batch) NIBA ~~ (batch) RND / NIBA
2 | (batchy SITA. S 2 NI v\},\e o 2 la] (bateh)
SFS O S
1.8 foestt 2 18 NS 18
[& T & (&
e . L & ¢
— 16 — 16 NG — 16 %
2 e (e 2) s / ey,
2) g, 2 2 < X
8 14 gy, R RN 5 @, N
) : Ly [N fih (b) R BT (bag e, o
T, - s, T oLl (batchy WLb) e h Jsg T) Ly, (ORI
= = . (joby ISQ e S~ = g fee
t (COTRVEN I SR = —— o - wn t (job) LWL
1 I 1 I D S . LTS S St
FPI-NIBA FPI-RND (job) LWL FPI-RND = > FPI-RND Fpi
08 08 FPI-NIBA 08 I-NIBA
: EPISITA : S,
06 06 06 24
0.4 0.4 0.4
0 0.2 0.4 06 08 1 0 02 0.4 06 08 1 0 0.2 0.4 06 08 1
p P p
X ~U(05,15) X ~ Exp(1) X ~ Bounded Pareto

Figure 2: The mean relative sojourn time of a batch witfedént dispatching policies against the job-specific LWL.

As for the cost structure, we consider three scenarios: (igmentary expression exists for the (load-balancing) Holes
minimization of the mean number of batch& 1), (i) min- with the chosen example job size distributions.
imization of the mean number of jobB (= N) assuming jobs The numerical results are depicted in Fig. 2. Each graph
also depart in batches (join operation), and (iii) mininiaof ~ shows the performance of ftkrent policies against the job-

the mean cost rate with two priority classes. specific LWL as a function of theffered loadp. First we
observe that it is advantageous to process batches in qlarall
Algorithm 1 Number-In-Batch-Assignment (NIBA). whenever the fiered load is sficiently low. However, the sit-

uation gets more interesting when the load increases.

The optimal decision naturally depends on the available in-
formation. JSQ is aware of the number of jobs in each server
but not on their (remaining) service times. Consider, for ex
ample, the case with exponentially distributed job sizeisi e
figure). Initially, wherp is small, the job-specific JSQ is clearly
a better option. A switch-over point is about@ats 0.8, after
which one should no longer split a batch to several servers.

p;ji = 0Vi, j {Routing matrixii=queue j=batch siz¢
i=1,a=E[N]/s
j=Lb=j-PN=jq=1
whilei < sdo
if a<qg-bthen
pji = a/b;q=q-a/b
i++; a = E[N]/s{next queug

else
pi=ga=a-q-b; SITA policies are aware of the exact service time(s) of the
j++;b=j-P(N = j}; g = 1 {next batch size new jolybatch, but not the state of the queues. They are known
end if to (typically) perform well when service times vary a lot, iai
end while can be observed also here. LWL and FPI are aware of the actual
backlogs in each queue and achieve clearly the lowest mean so
journ times. In particular, with exponential and boundereRa
distributed job sizes, FPI-SITA appears to be a good chaiece e
5.1. Example: Sojourn time pecially under a heavy load.

b Letus f'rSt ci)n3|der the mean sojourn time (mean delay) OIS.Z. Example: Holding cost according to the size of the batch
atches, i.e.B = 1 for all batches. As just explained, we con-)] _
sider nine heuristic policies: the job- and batch-specifitDR Next, the holding cost is equal to the size of the baih;
SITA, JSQ and LWL, and the batch-specific NIBA. The batch-N- This type of a cost structure arises, e.g., in the immigrati
specific RND, SITA and NIBA are also state-independent, andnSpection when minimizing the individual sojourn time it
thus they can serve as basic policies for the FPI step. TEOUP arrlvalg. It turns out that in this case FPI-NIBA and-FP
this end, we need to determine the queue-specific batch aRND are equivalent due to the fact that (cf. (3)),
rival ratesJ;, the mean holding cost rates] and the of- A E[B]

. . . . i il P
fered loadsp; for each basic policy, in accordance with (3). 2(1-p) _ 2(5-p)EIN’
As hereB = 1, we trivially have EB] = 1. Similarly, as p P
we have chosen to consider only load-balancing basic pslici for both. That is, from the view point of FPI, all queues reeei
pi = p = pwt/S Yi. The arrival ratesl;, however, depend on equivalent streams of batches. With RND, the arrival preegs
the basic policy. For RND, we havg = 1/s, and for NIBA, to all queues are statistically identical, while with NIBAig
(A1, A2, A3, 14) = (9, 6,5,4) - 1/24. For SITA the queue-specific obviously is not the case, but, e.g., the mean batch sizes:ari
arrival ratest; depend on the job size distribution and are deterWith SITA, the situation is again somewhat more complicated
mined numerically at the same time as the SITA threshdlds and bothi; and EB;] are determined numerically as a function
As the workload in a batch is arandom suXas. . .+ Xy, noel- of the SITA thresholds;.

4

Relative Mean Cost with Batch-size Holding Costs Relative Mean Cost with Batch-size Holding Costs Relative Mean Cost with Batch-size Holding Costs

22 22 22 —5
0 ﬂ\")'*mg\ﬂ e 5/ "~ (batch) RND / NIBA
2 TS AR (S cad AANS 2 2
B $Z25) S
,,,,,, ZS < &}
§ S A /
18 18 . oV 18 / . -
sy N N
— 16 Tt (g — 16 N) e — 16 o 2 —
o iteh) o X > o &
E s .JSO s \)ov\ E / .
2 14 - a’““”,;h s § 14 [s batch) gy 8 1.4 i G, o o
O : O s S o (bageyy 0] N
o _— o (batchj [T o / - ')"L‘W-L»., “So
= 12 = 12 e B : - = 12 -~ -
5 pIsQ 5 = @IS —— e S \
e e (job) LWL R (job) LWL S I T fob)LWL | e
EPI:RND/NIBA/SITA FPI-RND/NIB; FPI:RND/NIBA o,
> 8,

0.8 0.8 FPI-SITA 0.8 S/

06 06 06

04 0.4 04

o 02 04 06 0.8 1 0 02 0.4 06 038 1 0 02 04 06 0.8 1
p P p
X ~U(05,15) X ~ Exp(1) X ~ Bounded Pareto

Figure 3: The mean holding cost of a batch witffelient dispatching policies compared against the job-8péal/L, when holding cost is equal to the batch size.

Simulation results are similar as in the previous examptke anearlier in order to enable the policy improvement step.
depicted in Fig. 3. For example, with exponential and bodnde The simulation results are depicted in Fig. 4. Again, with
Pareto distributed job sizes, the batch-specific JSQ and LWkhe uniformly distributed job sizes, the FPI policies arayon
become better than the job-specific JSQ when fiered load marginally better than the job-specific LWL. With exponen-
exceeds a certain threshold. Similarly, we observe that FPlially distributed job sizes, FPI-NIBA, FPI-HP25 and FAFS
SITA is again significantly better than the job-specific LWL outperform LWL wheno — 1. As the job sizes vary more
when service times vary a lot. As — 1, FPI-SITA outper- (bounded Pareto distribution), the FPI policies start iaeshin
forms the job-specific LWL by a factor of 2 with the bounded particular, FPI-SITA achieves over 50% reduction in the mea

Pareto distributed job sizes. holding cost under a heavy load.
Fig. 5illustrates the fraction of batches split to seveeavsrs
5.3. Example: High priority batches with the exponentially distributed job sizes (batch-sfiepioli-

Finally, we consider a case with two classes: a high prioritycies are omitted for the obvious reason). The behavior with
Class 1 having a holding cost ratelof= 4, and a low priority ~ Other job size distributions was similar. When thféeced load
Class 2 withb = 1. The batch sizes and service requirementdS Very low, all batches with more than one task (i.e. 75% of
are i.i.d. and obey the same distributions for both cladsexc- the batches) are split and processed in parallel, as expetse
tion of high priority Class 1 batches is 25% and the remaininghe dfered load increases, all policies, and the FPI policies in
75% of the batches are Class 2. As the local scheduling discRarticular, start to avoid splitting more and more. We balie
pline in each queue is FCFS, the only place where the high prihat also the optimal policy behaves in a similar way, ilee, t
ority customers can be favored is at the dispatcher. Alliséar fraction of batches split decreases as tiiered load increases.
policies, whether batch-specific or not, &land to the holding
costs and behave the same way as in the previous examples.

Additionally, we define a specific state-independelass-
awarepolicy, referred to as the HP25 policy, which seggregates
the high priority requests from the other by assigning ajhhi Traditional dispatching problem addresses the problem of
priority batches to Queue 1, and the rest in random to Queueserver selection for arriving tasks. In this paper, we hale a
2-4. As a result, the arrival process to each queue is a Roissa@lressed the joint-problem of splitting the tasks and chapsi
process with ratel/4 and loadp = pwt/4 = A/2. Therefore, the server for each sub-task, i.e., the task assignmentegmnob
the performance of HP25 and RND is actually equal. Whilewith batch arrivals. The possibility to split some tasksi#aa
dedicating more capacity to the high priority class woulsegi parallel processing. The server system is assumed to ce@spri
us a better class-aware policy, HP25 is alreadficiant for our ~ single-server FCFS queues. Each batch has $atoh-specific
purposes. With HP25, the mean holding cost for Queue 1 is trivholding cost rateand the task is to minimize the long-term mean
ially E[B4] = 4 and for the other queuesE] = 1. Therefore, cost rate. The model is related to the fork-join queues, wher
when HP25 is used as the basic policy for FPI, yielding FPIthe splitting is not optional but the default action. Thipeyof
HP25, Queue 1 has a special role via the mean holding cogdynamic decision problems arise frequently, e.g., in theed
We note that in addition to HP25, all FPI policies also take th of parallel and distributed computing [8].

6. Conclusions

holding cost structure into account. We approached the dispatching problem in the MDP frame-
As the other basic policies, i.e., the batch-specific RNDwork, which allows one to improve any state-independent
NIBA and SITA, are blind to holding costs, we haveB][= batch-specific basic policy in a straightforward manner.e Th

E[B] for them. Also the queue-specific arrival ratgsand of- choice of a good basic policy (with respect to policy improve
fered loadg; are determined for each basic policy similarly asment) depends on the particular setting (cost structurajaar

5

Relative Mean Cost of Batch

Relative Mean Cost of Batch

Relative Mean Cost of Batch

22

22

2.2
Eg:i:; RIBA Fg o/ o 4 Q/'\(balch)RND/HPZSINIBA
2 | (batch) SIT. el \aé \/\> 2 "Vyv & / -
o/ S = N
N EEAS B <+ N
7S N S 2 N
18
p s
- B g
- - e — 16 S)
< o s & H ——_\
5 (bafch o) = . 2 /// S
g ‘”aiéh" g o (batch § 14y \\
O) o .. oaeh) JsQ I A arcp) ey \Jos)
)) tch) L. . o) Lwy 7 RN
=~ 12 P = 129 e =~ 12y - X
o (o0)JSQ PR o ~ T ob) LWL/ FPLRND © /// T A\
T = job) LWL T e—_— (job) -RND. T gl (job) LWL/ FPL-RND R
- FPINIBA
- FPI-NIBA— N BA
08 FPIRND EpisitA~ 08 FPI-NIBA 08 e Fpy, R
. - FPI-HP25 > ’ B A
\ “Ro, e
- 04
06 06 FPLSITA 06 "
R
0.4 0.4 0.4
0 0.2 0.4 06 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 0.8 1
P p P
X ~U(05,15) X ~ Exp(1) X ~ Bounded Pareto

Figure 4: The mean holding cost of a batch witffefient dispatching policies compared against the job-BpédVL. Here 25% of the batches are high priority

and have a four times higher holding cost than the rest.

Splitting when minimizing the holding costs [1]
0.8
[2
3 3
G 06 S &
£ FPI-HP25 — %
g 93 (4]
: 5
(=} v
w 1
[6]
0.2 -
1

0.2 0.4

p
X ~ Exp(1)

0.6 0.8

Figure 5: The fraction of batches split to several servererwhinimizing the
mean holding cost per batch in the example with high- and loaripy classes.

patterns and the pool of parallel servers). It appears tcebe b [10]
eficial for FPI, if the basic policy associates each queub wit
certainrole, e.g., one queue is expected to receive mainly shoft1]
jobs and another the longer ones.

Assigning a batch to servers with a given cost structure i?lz]
a very challenging and important problem, e.g., for theqrerf
mance analysis and optimization of parallel and distrithstes-
tems. Only few optimality results exist for the traditioris-
patching problem, and the opportunity to split tasks to lkera
servers simply complicates the situation. The FPI step tell
to which direction a given policy should be developed to,levhi
finding the optimal policy would require consecutive polity
eration rounds. Unfortunately, it is morefiitiult to determine
the value function once the dispatching policy no longesisb
specific. On the other hand, the FPI step often yields thetirg
improvement towards the optimal solution.

(13]

(14]

C. Archetti, M. Savelsbergh, M. Speranza, To split or twosplit: that is
the question, Transportation Research - Part E 44 (1) (2DD8}123.

A. Ephremides, P. Varaiya, J. Walrand, A simple dynanaiating prob-
lem, IEEE Transactions on Automatic Control 25 (4) (1980)-8303.

W. Whitt, Deciding which queue to join: Some counterexdes, Opera-
tions Research 34 (1) (1986) 55-62.

Z. Liu, D. Towsley, Optimality of the round-robin routinpolicy, Journal
of Applied Probability 31 (2) (1994) 466—475.

H. Feng, V. Misra, D. Rubenstein, Optimal state-freezesaware dis-
patching for heterogeneous/@J-type systems, Performance Evaluation
62 (1-4) (2005) 475-492.

E. Bachmat, H. Sarfati Analysis of SITA policies, Perfaance Evalua-
tion 67 (2) (2010) 102-120.

L. Flatto, S. Hahn, Two parallel queues created by alsiveath two de-
mands, SIAM Journal on Applied Mathematics 44 (1984) 100531

O. Boxma, G. Koole, Z. Liu, Queueing-theoretic solutiorethods for
models of parallel and distributed systems, in: Perforradfxaluation of
Parallel and Distributed Systems Solution Methods, 19941p24.

E. Hyytia, A. Penttinen, S. Aalto, Size- and state-adispatching prob-
lem with queue-specific job sizes, European Journal of Gpeal Re-
search 217 (2) (2012) 357-370.

E. Hyytia, S. Aalto, A. Penttinen, Minimizing slowdown heterogeneous
size-aware dispatching systems, ACM SIGMETRICS Perforadtval-
uation Review 40 (2012) 29-40.

E. Hyytia, S. Aalto, A. Penttinen, J. Virtamo, On thedua function of
the M/G/1 FCFS and LCFS queues, Journal of Applied Probability 49 (4)
(2012).

M. E. Crovella, M. Harchol-Balter, C. D. Murta, Task &ssment in a dis-
tributed system: Improving performance by unbalancingloa: Proc.
of SIGMETRICS '98, Madison, Wisconsin, USA, 1998, pp. 26892

M. Harchol-Balter, M. E. Crovella, C. D. Murta, On chadog a task as-
signment policy for a distributed server system, JourndPafallel and
Distributed Computing 59 (1999) 204-228.

M. Harchol-Balter, A. Scheller-Wolf, A. R. Young, Suiging results on
task assignment in server farms with high-variability woeds, in: Proc.
of SIGMETRICS, ACM, New York, NY, USA, 2009, pp. 287-298.

