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Abstract—We consider the load balancing problem in wireless
multi-hop networks. In the limit of a dense network, there is
a strong separation between the macroscopic and microscopic
scales, and the load balancing problem can be formulated as find-
ing continuous curves (“routes”) between all source-destination
pairs that minimize the maximum of the so-called scalar packet
flux (“traffic load”). In this paper we re-formulate the problem
by focusing entirely on the so-called d-flows (vector flow field
of packets with a common destination x) and by looking at the
equation these flows have to satisfy. The general solution to this
equation can be written in terms of a single unknown scalar
function, ψ(r,x), related to the circulation density of the d-
flow, for which function the optimization task can be presented
as a problem of variational calculus. In this approach, we avoid
completely dealing with systems of paths and calculating the load
distribution resulting from the use of a given set of paths. Once
the optimal solution for ψ(r,x) is found the corresponding paths
are obtained as the flow lines of the d-flows. In the example of a
unit disk with uniform traffic demands we are able to find a set of
paths which is considerably better than any previously published
results, yielding a low maximal scalar flux and an extraordinarily
flat load distribution. We further illustrate the methodology for
a unit square with comparable improvements achieved.

I. INTRODUCTION

In a wireless multi-hop network a typical path consists of

several hops and the intermediate nodes along a path act as

relays. Thus, each node has two functions. First, it can act

as a source or a destination for some flow, i.e., the nodes

can communicate with each other. Secondly, when necessary,

nodes have to relay packets belonging to the other flows.

Several types of wireless multi-hop networks have been

proposed each with different unique characteristics. For ex-

ample, wireless sensor networks are networks designed to

collect some information from a given area and to deliver

the information to one or more sinks [1]. Thus, the traffic

distribution in sensor networks is typically highly asymmetric

and the energy efficiency is often a critical design parameter.

Another example of wireless multi-hop networks are the

wireless mesh networks consisting of both mobile and fixed

wireless nodes and one or more gateway nodes through which

the users have access to the Internet [2], [3]. It has been

envisioned that these types of networks, depending on the
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application, may consist of a large number of nodes such that

a lot of relaying is needed to ensure end-to-end connectivity.

In this paper we study wireless multi-hop network in the

limit when the number of nodes is large. In this limit the

network is referred to as a dense network [4], [5]. In particular,

we assume a strong separation in spatial scales between the

macroscopic level, corresponding to typical distances between

the source and destination nodes, and the microscopic level,

corresponding to distances between the neighboring nodes.

This justifies modeling the routes on the macroscopic scale as

smooth geometric curves as if the underlying network fabric

formed a homogeneous and isotropic1 continuous medium.

The microscopic scale corresponds to a single node and

its immediate neighbors. At this scale the above assumptions

imply that only the direction in which a particular packet

is traversing is significant. Considering one direction at a

time there exists a certain maximum flow of packets a given

MAC protocol can support (packets per unit time per unit

length, ‘density of progress’). This maximal sustainable di-

rected packet flow depends on scheduling rules and possible

coordination between the nodes. Determining the value of this

maximum is not a topic of this paper but it is assumed to be

given (known characteristic constant of the medium). By a

simple time sharing mechanism this maximal value can be

shared between flows propagating in different directions. As

a result, the scalar flux (defined in Section III) of packets is

bounded by the given maximum, and the load balancing task

is to determine the paths in such a way that the maximum

flux is minimized. For instance, using shortest paths (straight

line segments in the current setting) typically concentrates

significantly more traffic in the center of the network than

elsewhere limiting the capacity of the network.

A. Our Contributions

In a series of papers we have dealt with the load balancing

problem in dense wireless multi-hop networks with progres-

sively improving results. In [6] we defined the basic concepts

of angular and scalar flux (borrowed from the neutron transport

theory [7]) and defined the load balancing problem as a

minmax problem of finding the set of paths that minimizes the

maximal scalar flux. Further we gave formulae for calculating

the scalar flux at a given point for any curvilinear set of paths.

1Homogeneity and isotropicity are not crucial but are assumed here to
simplify the discussion.



These results were then applied for the example of a

unit disk with uniform traffic demands with the total packet

stream Λ. Using shortest path routing, the maximal scalar flux

occurring at the center of the unit disk is 0.637 Λ. By using

so-called circular paths the maximal flux could be reduced

to 2/3 of the shortest path value, i.e. to 0.424 Λ. An even

better result was obtained by allowing multi-path routing and

carrying given proportions of the traffic on paths chosen from

three different sets. The minimum (over the mixture ratios)

of the maximal flux was 0.379 Λ. Lower bounds were also

established for the optimum. In the circular disk geometry a

sure lower bound, so-called distance bound, is 0.288 Λ.

Publication [8] is an extended version of [6], and notably

contains a new efficient formula for calculating the scalar flux

distribution in the disk geometry for the routing where each

path is a section of a curve in the so-called basic set of paths

(a one-parameter family of paths) or a rotation thereof. By

using certain type of modified circular paths the single-path

routing optimum could be brought down to 0.384 Λ.

An important new insight was given in [9], where we

introduced the concept of a d-flow J(r,x), which means

the vector flow field at r of the packets heading to a given

destination x. It was proven that no matter which routing

(multi-path, single-path or whatever) was used, the scalar flux

decreases (or certainly not increases) everywhere if the routing

is replaced with the single-path destination-based forwarding

(DBF), where the flow lines of the d-flow are used as the

paths. This means that the optimum can always be obtained

by single-path destination-based forwarding. By applying this

principle to the multi-path routing of the previous paper

the optimum decreased to 0.343 Λ, which is almost 50%
improvement in comparison with the shortest path routes.

In the present paper, we make a major conceptual leap

forward leading to a great simplification of the problem. Our

starting point is the observation that the d-flow field J(r,x)
has a given source density (the density of x-destined traffic

emanating at r and negative δ-function sink at x). Thus it

satisfies a so-called source equation whose all solutions differ

from each other by a pure circulation field defined by a single

scalar function, ψ(r,x), related to the circulation density. Thus

the whole optimization problem can be expressed in terms

of optimizing with respect to this function ψ(r,x), with no

reference to which routes are used. In particular, the difficult

step of calculating the scalar flux for a given set of paths

is completely avoided. When the optimal ψ(r,x) function is

determined, then the paths are afterwards obtained as the flow

lines of the resulting d-flow. Starting from a specific solution

for the source equation and using a simple trial function

ψ(r,x) with a single adjustable parameter, we obtain a result

0.329 Λ which is lowest result so far reported. The resulting

load distribution is remarkably flat, and we believe it is close

to the real optimum. The proposed approach is not limited to

any particular geometry and for a square area we find paths

yielding a 43% reduction in the maximum scalar flux.

The rest of this paper is organized as follows. Section II

presents related work. Then, in Section III we introduce

the necessary definitions and review some earlier results. In

Section IV we develop the new problem formulation, which

is illustrated in Section V by finding near optimal routes for

disk and square geometries. Section VI concludes the paper.

II. RELATED WORK

The research community has recently shown considerable

interest towards different routing problems in dense wireless

multi-hop networks. The idea of studying routes as continuous

curves at the macroscopic level was introduced in [10] and

[4]. However, the trajectory based forwarding (TBF) scheme,

proposed by Niculescu and Nath in [11], already provides the

connection between the macroscopic and microscopic levels.

In TBF, the source specifies the route as a continuous

curve to the destination (cf., dynamic source routing [12]).

Additionally, TBF defines how the nodes at the microscopic

level forward packets in order to approximately follow this

path. Another closely related concept is the so-called geo-

metric routing (or geographic routing) paradigm [13], [14],

[15], where each packet carries the information (directly or

indirectly) about the location of the destination node.

The shortest path routes, i.e., straight line segments, tend

to concentrate traffic in the center of the network. This is

particularly true with uniform traffic demands [16], [6], [17].

In [16], Pham and Perreau, and later, in [18], Ganjali and

Keshavarzian have studied the load balancing using k-shortest

paths instead of shortest path. The analysis assumes a disk area

and a high node density so that the shortest paths correspond to

straight line segments. In multipath situation the straight line

segments are replaced by rectangular areas where the width

of the rectangle is related to the number of multiple paths.

Considerable amount of recent work relies on strong anal-

ogy with physical systems. Also the irrotational solution for

the d-flow in the present paper stems from physical systems.

Similarly, Kalantari and Shayman, in [10] study dense wireless

multi-hop networks by leaning to theory of electrostatics and

consider a routing problem where a large number of nodes

send data to a single destination. In this case the optimal

paths are obtained by solving a set of partial differential

equations similar to Maxwell’s equations. Using a similar

analogy with electrostatics, Toumpis and Tassiulas, in [19],

consider a related problem of optimal placement of the nodes

in a dense sensor network. It is assumed that at any point of

the network the information flows exactly to one direction.

Furthermore, Catanuto et al., in [20], [21], have optimized

the routes by exploiting the analogy with geometrical optics.

The communication cost, which is related to the index of

refraction in the analogy, is defined as a function of the node

density. In [22] Popa et al. study the load balancing problem

and by using linear programming approach are able to show

that the optimal paths can be expressed as ray trajectories of

geometrical optics. This implies two things. Firstly, the optimal

paths correspond to shortest paths with a certain metric (index

of refraction). Secondly, the optimal load balancing can be

achieved by single path routes, a result obtained independently

in [9] by using a different approach. The only obstacle with



the approach seems to be the technical difficulties in actually

computing the resulting traffic load and paths. Finally, a

comprehensive survey on different modeling approaches and

problem formulations is given by Toumpis [5].

III. PRELIMINARIES

In this section we give basic definitions and review some

earlier results. Let A denote the area of the network. In

our setting the nodes form a continuum and therefore it is

convenient to define the traffic demands as densities:

Definition 1 (traffic demand density) The rate of flow of

packets from a differential area element dA about r to a

differential area element dA about x is λ(r,x) · dA2, where

λ(r,x) is called the traffic demand density [pkts/s/m4].

The total offered traffic, denoted by Λ [pkts/s], is given by,

Λ =

∫

A

∫

A

λ(r,x) d2
x d2

r.

The load balancing problem in dense multi-hop networks can

be defined as a minmax problem for the scalar packet flux.

Scalar packet flux in turn is defined in terms of so-called

angular packet flux (see Fig. 1):

Definition 2 (angular flux) Angular flux of packets at r in

direction θ, denoted by ϕ(r, θ), is equal to the rate [1/s/m/rad]

at which packets flow in the angle interval (θ, θ+dθ) across a

small line segment of the length ds perpendicular to direction

θ at point r divided by ds · dθ in the limit when ds, dθ → 0.

Definition 3 (scalar flux) Scalar flux of packets [1/s/m] at r

is given by

Φ(r) =

2π
∫

0

ϕ(r, θ) dθ. (1)

To elaborate this, we define progress as the advance a packet

makes in a given time interval in the direction of its path.

Remark 1 (density of cumulative progress rate) Scalar

flux Φ(r) corresponds to the cumulative progress [m] of

packets per unit time [s] per unit area [m2] about point r

(rendering 1/s/m as its dimension).

Given the traffic demand density λ(r,x), the scalar flux

depends on the set of paths P used for routing. The load

balancing problem in the context of dense multi-hop network

can now be stated as follows [6], [8], [9], [22]:

Definition 4 (load balancing problem) Find the set of paths

Popt which minimizes the maximum scalar flux,

Popt = arg min
P

max
r

Φ(P, r). (2)

The corresponding maximum scalar flux is denoted by Φopt.

In [6], we derived two lower bounds for Φopt. Here we

present the more useful of them.

dθ

θ

ds

r

Fig. 1. Angular flux ϕ(r, θ) is the rate of packets crossing a small line
segment ds in angle (θ, θ + dθ) divided by dθ · ds at the limit dθ, ds→ 0.

Proposition 1 (distance bound)

max
r

Φ(P, r) ≥ Λ · ℓ
A

, (3)

where ℓ denotes the mean path length of the set of paths P .

The proposition says that the maximum of the local density

of the cumulative progress rate is at least as great as the cor-

responding mean density. Obviously the shortest path routes

have the lowest mean path length, denoted by ℓsp, which yields

Φopt ≥
Λ · ℓsp
A

. (4)

In the analysis it is convenient to consider the packets

having a given destination x. To this end, we need some

additional definitions.

Definition 5 (angular d-flux density) Angular d-flux den-

sity, denoted by ϕ(r, θ;x) [1/s/m3/rad], is equal to the angular

flux ϕ(r, θ) resulting from the packets having their final

destination in small area dA about x divided by dA in the

limit when dA→ 0.

Thus, by definition

ϕ(r, θ) =

∫

A

ϕ(r, θ;x) d2
x. (5)

Definition 6 (d-flow intensity) Destination flow intensity or

for short d-flow intensity of packets at r having destination x,

denoted by J(r,x) [1/s/m3], is equal to

J(r,x) =

2π
∫

0

ϕ(r, θ;x) eθ dθ, (6)

where eθ is the unit vector in direction θ.

The angular d-flux density ϕ(r, θ;x) defines the specific

intensity, in each direction θ, of the flow of packets having

their final destination about x. The d-flow intensity J(r,x) is

a vector sum of these flows, i.e., it represents the net flow at r

of packets destined to x. For a given destination x the d-flow

intensity J(r,x) defines a vector field in the variable r. Note

that while the net packet flow J(r) =
∫

J(r,x) d2
x may be

zero everywhere, e.g., in the case of symmetric traffic matrix

λ(r,x) = λ(x, r) and bidirectional routes, the d-flow intensity

J(r,x) can still be non-zero.



In [9] we have shown an important result that the optimal

solution to the load balancing problem can be obtained using

the destination-based forwarding. To be precise, we define:

Definition 7 (destination-based forwarding (DBF))

Routing where the forwarding direction of a packet depends

only on the current location r and the packet’s destination

x is referred to as the destination-based forwarding. The

corresponding forwarding direction is denoted by ϑ(r,x).

Note that the DBF defines a single path between each source-

destination pair. For example, the most elementary DBF

scheme is the shortest path (SP) routes, for which we have

ϑSP(r,x) = arg(x − r). Because in DBF all packets located

at r and destined to x are forwarded in the same direction

ϑ(r,x), it follows in view of (6) that

ϕ(r, θ;x) = |J(r,x)| · δ(θ − ϑ(r,x)),

where δ(·) denotes the Dirac’s δ-function, and ϑ(r,x) =
arg J(r,x). Then by (1) and (5) we have

Φ(P, r) =

∫

A

|J(r,x)| d2
x. (7)

Thus, for DBF all relevant quantities (paths, traffic demands

and the corresponding scalar packet flux) can be easily ob-

tained once the d-flow J(r,x) is known. Moreover, any routing

system can be transformed in a straightforward manner to a

corresponding DBF based routing by using the field lines of

the d-flow field J(r,x) of the original system as routes to x. It

can be shown that in this transformation the scalar flux Φ(r)
at any points remains the same or decreases. This observation

is at the core of the optimality of the DBF-paths [9].

IV. NEW FORMULATION OF THE PROBLEM

As just discussed, the optimal routes for the load balancing

problem are single-path, destination-based routes. No matter

how a routing is originally done, let it be multi-path or non-

destination-based, one can always obtain at least the same or

better performance by using the flow lines of the d-flow field

J(r,x) as routes leading to a destination x. Irrespective of the

routing, the d-flow J(r,x) must always satisfy the equation

∇ · J(r,x) = λ(r,x) − Λ(x)δ(r− x), ∀ r,x, (8)

where the right hand side represents the source density of a

d-flow with destination x, i.e., a positive source density when

r 6= x and a singular sink at x. Here Λ(x) =
∫

λ(r,x)d2
r

is the density of the total traffic destined to x per unit area

about x. In addition, J(r,x) satisfies the boundary condition

J(r,x) · n̂(r) = 0 for all points r on the boundary, where

n̂(r) in unit normal vector of the boundary at r, i.e., there is

no flow across the boundary.

The solution to (8) is not unique; different routings obvi-

ously lead to different d-flow fields. If J0(r,x) is a specific

solution to (8), then the general solution is of the form

J(r,x) = J0(r,x) + k̂ ×∇ψ(r,x), (9)

where k̂ is the unit vector perpendicular to the plane. The

proof is given in the Appendix, see also, e.g., [23]. The

above expression satisfies (8) since ∇ · k̂ × ∇ψ(r,x) = 0.

The boundary condition of J(r,x) implies that the tangential

component for ∇ψ(r,x) at the boundary has to vanish, which

means that ψ(r,x) is constant on the boundary. Otherwise

the function ψ(r,x) is arbitrary. Note that (9) is the general

solution, i.e. it exhausts the set of all possible d-flows to

destination x, including all routing possibilities. In passing,

we note that

∇× (k̂×∇ψ(r,x)) = k̂∇2ψ(r,x),

i.e., ∇2ψ(r,x) gives the rotation or circulation density of the

added vector field. Given the d-flow (9) in terms of ψ(r,x),
the scalar flux can be calculated with the aid of (7). We are

now ready to give a new formulation for the load balancing

problem of minimizing the maximum of the flux:

Definition 8 (load balancing problem) Find ψ(r,x) such

that it is constant at the boundary ∂A, ψ(r,x) = c ∀ r ∈ ∂A,

and minimizes the maximum scalar flux,

min
ψ

max
r

∫

|J0(r,x) + k̂ ×∇ψ(r,x)| d2
x. (10)

Note that in contrast to the original formulation of the load

balancing problem (2), where Φ(P, r) is a complex functional

of the used path system P (indeed finding this functional

dependence itself is a difficult task, to the solution of which

we have devoted considerable effort in [6] and [8]), the new

equation (10) does not refer to the paths at all and is an explicit

variational problem in terms of the unknown function ψ(r,x).
This makes the new formulation much more easily amenable

to systematic numerical approaches.

In summary, finding the optimal paths is accomplished as

follows. First a specific solution J0(r,x) is obtained, e.g., by

using the shortest paths for which the JSP(r,x) is straightfor-

ward to calculate. Then, using (10) and appropriately chosen

parameterized family of functions {ψ(r,x)}, one numerically

finds the parameter values that yield optimal ψ(r,x). Finally

the corresponding paths are obtained as flow lines of the

resulting J(r,x) given by (9). It should be emphasized that in

this new approach the actual paths are not explicitly part of

the formulation (10), and are not needed in the optimization

process. The paths are, however, straightforward to obtain

afterwards. The advantage of this formulation is that finding

a scalar function ψ(r,x) that realizes the minimum of (10)

is conceptually a considerably easier task than working with

all possible paths in a given area and computing the resulting

scalar flux at each step (the approach taken in [6], [8], [9]).

In [22] the authors have studied the same problem by using

optical paths. The optimization parameter in this case is the

index of refraction and the paths are defined by the trajectory

of a light path between the given points. However, determining

a path or a local forwarding direction with a given index of

refraction leads to a classical problem of variational calculus,

which is not trivial to solve in general. Similarly, it is also
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Fig. 2. Notation for the d-flow intensity JSP(r,x) with the shortest paths.

tedious to use paths referred to as basic path set in [8], where

one needs to determine the corresponding basic path from the

given set by solving some equation before the forwarding di-

rection of a packet can be deduced after appropriate rotations.

In contrast, the presented new approach provides a convenient

way to express the paths and forwarding directions by means

of d-flow density J(r,x), i.e., ϑ(r,x) = arg J(r,x). In some

sense the paths are obtained in parallel with no extra effort

when minimizing the maximal scalar flux. Assuming J(r,x)
can be expressed in a compact form (e.g., by suitable Taylor

series) one simply needs to provide this information to all

nodes. This is demonstrated in the next Section V.

V. EXAMPLES

In this section we explore the use of the new formulation

for the load balancing problem in disk and square geometries.

We start by considering specific solutions to (8) and then

proceed to finding an approximate solution ψ(r,x) of the

minmax problem (10). We assume uniform traffic demands,

λ(r,x) = Λ/A2, for which the d-flow intensity of the shortest

paths is given by

JSP(r,x) =
Λ

A2

(

d+
d2

2

)

(x − r), (11)

where d = b/a and for a and b we refer to Fig. 2.

A. Unit Disk

First we consider the standard example of a unit disk.

1) Specific solutions: In (9) any specific solution J0(r,x)
can be used; any other solution can be obtained by an

appropriate choice of ψ(r,x). As noted above, one solution

is readily available, namely the d-flow field associated with

the shortest path routing. For unit disk with uniform traffic

demands, λ(r,x) = Λ/π2, we have from (11) for a sink on

the x-axis at the point (x, 0),

JSP(r, x) =
Λ

2π2
·

"

`

x(x−rx)+
p

(x−rx)2+(1−x2)r2y
´2

((x−rx)2+r2y)2
−1

#

(x−rx,−ry).

(12)

Alternatively, one can find a specific solution to (8) that is

irrotational. Synonymously, an irrotational vector field is also

called a potential flow, as it can expressed as the gradient of

a scalar potential. Such a solution is provided by well-known

physical systems such as heat or electrical conduction in a

planar area with constant heat or electrical conductivity. In [9]

we noted that a solution for the heat conduction between point

source at x1 and sink at x2 in a unit disc, i.e., the irrotational,

∇× K(r;x1,x2) = 0, solution for the equation

∇ · K(r;x1,x2) = δ(r− x1) − δ(r− x2),

is given by (with r = (x, y))

K(r;x1,x2) = − 1

4π
∇ log

(

(x− x2)
2 + (y − y2)

2

(x− x1)2 + (y − y1)2
·

1 − 2xx2 − 2yy2 + (x2 + y2)(x2
2 + y2

2)

1 − 2xx1 − 2yy1 + (x2 + y2)(x2
1 + y2

1)

)

.

From this, the solution to (8) can be obtained by integrating

over the source points. To be precise, the d-flow intensity as

defined in [9] is given by

J(r,x) =

∫

λ(x′,x)K(r;x′,x) d2
x
′.

For a system with uniform traffic demands, however, this is

unnecessarily complicated. A simpler way is provided by the

observation that if J(r,x1) is the d-flow density to x1 at r,

then the d-flow density to x2 is

J(r,x2) = J(r,x1) +
Λ

π
K(r;x1,x2),

together with the observation that for sink at the origin x1 = 0

we have complete symmetry and the irrotational flow field is

trivially a pure inward radial flow

J(r,0) = −Λ

π

1 − r2

2πr
r̂,

where r̂ is the radial unit vector. Thus the irrotational solution

for the unit disk with uniform traffic demands is,

JNR(r,x) =
Λ

π

(

−1 − r2

2πr
r̂ + K(r;0,x)

)

.

Explicitly we have in polar coordinates for a sink at (x, 0),

JNR(r, θ, x)r =
Λ

2π2

1 − r2

r
·

(

(1 + r2)x− (1 + x2) r cos θ

(r2−2rx cos θ+x2)(r2x2−2rx cos θ+1)
x− 1

)

,

JNR(r, θ, x)θ = − Λ

2π2
·

(1 + r2)(1 + x2) − 4 rx cos θ

(r2 − 2rx cos θ + x2)(r2x2 − 2rx cos θ + 1)
x sin θ.

(13)

The d-flows corresponding to this solution are depicted in

Fig. 6 for different destinations on the positive x-axis.

2) Optimizing ψ(r,x): From the principal point of view, it

is immaterial which specific solution is used as the starting

point in (9), since all solutions can be obtained from any

one by adding k̂ ×∇ψ. For numerical optimization methods

JNR(r,x) is, however, a better starting point than JSP(r,x)
as it alone gives a lower maximal scalar flux.

Without loss of generality assume that the destination x

is on the positive x-axis at the point (x, 0). The specific

solution J0(r,x) has mirror symmetry with respect to the x-

axis. We require that also the added term in (9) has the same
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Fig. 3. Shape of the ψ-function of (14) for any destination on the positive
x-axis. In the upper half disk there is a hill and the lower half disk a valley.

symmetry. One easily sees that this implies that ψ(r,x) has

to be antisymmetric with respect to the x-axis. This in turn

implies that ψ(r,x) is 0 on the x-axis, and further because

ψ(r,x) is constant on the perimeter, this constant is 0.

A function ψ(r,x) that turns (eastward) flow away from the

center is of the type that it has a hill in the upper half disk and

a mirror symmetric valley in the lower one; in between and

on the perimeter the ground level is zero. On the south side

of a hill the gradient points to the north and k̂ × ∇ψ points

to the west. Similarly, considering other sides of the hill, we

find that the field k̂×∇ψ circulates around the hill clockwise.

For a valley, the field circulates in counter clockwise direction.

Adding a clockwise circulation in the upper half and a counter

clockwise circulation in the lower half, turns the flow away

from the center; the flow intensity becomes lower in the middle

and larger closer to the perimeter. This demonstrates also the

trade-offs. As the only degree of freedom one can play with

is adding a divergence-free pure circulation field of type k̂ ×
∇ψ, then if one decreases the flow intensity somewhere then

necessarily the intensity grows somewhere else; the flow is

just pushed (routed) to another place.

A possible systematic expansion for the ψ(r, x) presented

in polar coordinates, ψ(r, θ, x), with the required symmetries

is provided by the Fourier series,

ψ(r, θ, x) =
∞
∑

n=1

∞
∑

m=0

cn,m(x) sinnθ sinmπr.

Then (10) becomes a variational problem for determining the

system of functions of one variable cn,m(x). In our numerical

examples we use the simple expression

ψ(r, θ, x) =
Λ

2π2
c x r(1 − r2) sin θ, (14)

with a single adjustable parameter c, see Fig. 3. With this

trial, by optimizing c we obtain extremely good results. The

minimum of the maximal Φ(r) is 0.329 Λ (obtained with c =
0.898) and is to our knowledge the best result reported so far

(we presented the result 0.343 Λ in [9]). We believe that this

new result is indeed very close to the optimal. For comparison

recall that the maximal flux with SP is 0.637 Λ and with the

routes defined by the irrotational d-flows of (13) it is 0.434 Λ.

The distance bound (4) gives the lower bound 0.288 Λ.

The load distribution Φ(r) is very flat as shown in Figs. 4

and 5. The d-flows are depicted in Fig. 6 for heat flow (lower
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Fig. 4. Scalar flux distributions Φ(r) corresponding to shortest paths (SP),
irrotational d-flows of (13) (irrot.), and optimized d-flows of (14) (opt.).

i) shortest ii) heat flow iii) optimized

Fig. 5. Scalar flux distribution Φ(r) with shortest paths (12), paths according
to heat conduction (13), and optimized paths of (14) with c = 0.898.

row) and optimized paths (upper row). The effect of the

added circulation field is particularly visible in cases where

the destination is close to the perimeter. The field lines are

turned away from the central area assuming a slightly bell-

shaped form. In addition, at the left part of the x-axis the

field lines emanate from it approximately at right angle.

In general there may be several optimal solutions to a given

load balancing problem. In [9] we defined the area where all

optimal solutions obtain the maximum scalar flux Φopt as the

bottleneck area. Outside the bottleneck area there obviously

is some degree of freedom (slack) with regard to the choice

of the paths. This is similar to the load balancing problem in

wired networks, where the optimal solution (found by solving

an LP problem) often is such that in the central part of the

network the links are fully utilized while elsewhere some links

remain underloaded. In [9] it was argued that in the bottleneck

area the optimal paths are unambiguous and bidirectional, i.e.,

the same path is used in both directions, r → x and x → r.

A closer inspection of the optimized paths illustrated in Fig. 6

reveals that these paths are not entirely bidirectional, which

suggests that some small further improvement is still possible.

B. Unit Square

Here we consider a multi-hop network in unit square with

uniform traffic demands, λ(r,x) = Λ.

1) Shortest paths and lower bound: Scalar flux for the

shortest paths (SP) is straighforward to compute also in this

case (cf., [24]), yielding the maximum at the origin,

ΦSP(0, 0) =
Λ

2

(√
2 + arcsinh 1

)

≈ 1.148 Λ.
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Fig. 6. Heat conduction paths and optimized paths in a disk for different locations of the destination.

The mean path length with SP routes, ℓSP, is (1/15) ·
(

2 +
√

2 + 5 log(1 +
√

2)
)

and the distance bound (4) gives

Φopt ≥
Λ · ℓSP

A
= Λ · ℓSP ≈ 0.521 Λ.

2) Heat flow and optimizing ψ(r,x): Similarly as in the

case of a disk it is advantageous to start from a specific

solution JNR(r,x) that is irrotational. This can again be found

using the tools of complex analysis. Using the map u(z) =
sin πz we get the complex flow field J(z) = Jx(z)− iJy(z),

J(z, z0) =
u′(z)

2π

( 1

u(z) − u(z0)
+

1

u(z) − u(z0)∗

)

for the flow in a semi-open tube y > 0, −1
2 ≤ x ≤ 1

2 with a

sink at z0. We can close the tube to form a square by the mirror

image method leading to a rapidly converging series (excellent

accuracy with six terms), add the flow Jx = 0, Jy = y from

the uniform source density, and finally shift the whole pattern

downwards by 1
2 to get the square in the position −1

2 ≤ y ≤ 1
2 .

Using the heat flow paths, the maximum of the scalar flux,

attained at the origin, is 0.770 Λ.

For the ψ-function we use the trial

ψ(r,x) = c Λ k̂ · x × r

(

1

4
− r21

)d (

1

4
− r22

)d

,

where the factor
(

1
4 − r21

)d (

1
4 − r22

)d
ensures that the bound-

ary conditions are satisfied, and the vector product k̂ · x × r

provides the desired circulation effect for paths to avoid the

congested center; c and d are free optimization parameters.

The optimum is obtained at c = 5.99 and d = 1.06 with

max
r

Φ(r) ≈ 0.650 Λ,

corresponding to a 43 % improvement to the shortest path

routing. The resulting scalar flux distribution, shown in Fig.

7, is flat except near the corners. Field lines of the heat flow

and optimized paths are shown in Fig. 8. For comparison, the

same trial ψ-function with fixed d = 1 when applied to SP

routes yields a maximal flux of about 0.671 Λ with c = 21.1.

To the best of our knowledge, the problem of finding paths

that minimize the scalar flux in a rectangular area has not

been studied explicitly in the literature. For example, Popa et

al. in [22] propose a heuristic path set for unit disk referred

SP
irrot.

opt.
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Fig. 7. Scalar flux in square for shortest paths, heat flow paths, and optimized
paths. In each pair of curves the upper curve is along a cut from the origin
to the center of a side and the lower curve along a diagonal cut.

to as curveball routes. They do evaluate these paths also for

square area, for which they report a decrease of the maximal

scalar flux by 18% to 24% in comparison to shortest paths

depending on the parameter values. Consequently, we believe

that the optimized paths presented in this paper yield the best

reported performance in terms of load balancing.

VI. CONCLUSIONS

In this paper we have studied the routing problem in

dense wireless multi-hop networks. In this limit the paths can

be modeled as continuous curves between source-destination

pairs. The objective in the load balancing problem is to find

such paths that minimize the maximal scalar flux. Our main

contribution is the new formulation of the problem entirely

in terms of so-called d-flows. The most general solution for

a d-flow can be expressed in terms of a scalar function

ψ(r,x) and the load balancing problem can be written as

an optimization problem regarding this function. When the

solution is available, the actual routes are obtained as the flow

lines of the d-flows. In the given form, the problem is amenable

to systematic numerical approaches. In particular, the new

approach is notably more efficient than the previous one,

where the problem formulation requires working explicitly

with all possible paths for which the computation of the scalar

flux is itself a complex and computationally heavy task.

The new methodology was illustrated with two example

multi-hop networks with uniform traffic demands. By using

simple trial functions, we were able to find paths that yield
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Fig. 8. Heat conduction paths and optimized paths in a square for different locations of the destination.

considerably better results than any of the previously published

work to the best of our knowledge. The solution obtained for

unit disk has a very flat load distribution, which is presumably

very close to the real optimum. Also for unit square the

resulting traffic load distribution is flat except near the corners.

The future work includes developing efficient algorithms to

find optimal paths in distributed and scalable fashion. Another

topic for future research is to investigate how well the optimal

geometric routing works in real large scale networks.
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APPENDIX

A. Proof of (9)

We need to show that the general solution to partial differ-

ential equation,

∇ · J(x, y) = s(x, y),

can be expressed as

J(x, y) = J0(x, y) + k̂ ×∇ψ(x, y),

where J0(x, y) is a specific solution and ψ(x, y) a function

R
2 → R.

Proof:

Let J denote an arbitrary solution and define E ≡
(E1, E2) = J − J0. The task is to show that E is of form

k̂×∇ψ =
(

∂ψ
∂y
,−∂ψ

∂x

)

for some ψ = ψ(x, y). Clearly,

∇ · E =
∂E1

∂x
+
∂E2

∂y
= 0.

One can always find ψ∗(x, y) such that E1 = ∂
∂y
ψ∗(x, y).

Substituting this into the above equation yields

∂2ψ∗

∂x∂y
+
∂E2

∂y
= 0 ⇒ E2 = −∂ψ

∗

∂x
+ f(x).

Defining ψ(x, y) = ψ∗(x, y) − F (x), where ∂F (x)/∂x =
f(x), then gives

E1 =
∂ψ

∂y
and E2 = −∂ψ

∂x
.


