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Abstract— We study the load balancing problem in a dense
wireless multihop network, where a typical path consists of large
number of hops, i.e., the spatial scales of a typical distance
between source and destination, and mean distance between
the neighbouring nodes are strongly separated. In this limit,
we present a general framework for analysing the traffic load
resulting from a given set of paths and traffic demands. We
formulate the load balancing problem as a minmax problem and
give two lower bounds for the achievable minimal maximum
traffic load. The framework is illustrated by an example of
uniformly distributed traffic demands in a unit disk with a few
families of paths given in advance. With these paths we are able
to decrease the maximum traffic load by factor of 33 − 40%
depending on the assumptions. The obtained traffic load level
also comes quite near the tightest lower bound.

I. I NTRODUCTION

In a dense wireless multihop network a typical path consists
of several hops and intermediate nodes along a path act as
relays. In this paper we focus on studying the traffic load in
such a network. By traffic load we mean, roughly speaking,
the rate at which packets are transmitted in the proximity
of a given node, and the objective of load balancing is to
find such paths that minimise the maximum traffic load in
the network. In particular, we assume a strong separation in
spatial scales between the macroscopic level, corresponding
to a distance between the source and destination nodes, and
the microscopic level, corresponding to a typical distance
between the neighbouring nodes. This assumption justifies
modelling the routes on the macroscopic scale as smooth
geometric curves as if the underlying network fabric formed
a homogeneous, continuous medium.

The microscopic scale corresponds to a single node and its
immediate neighbours. At this scale the above assumptions
imply that only the direction in which a particular packet is
traversing is significant. In particular, considering one direction
at a time there exists a certain maximum flow of packets a
given MAC protocol can support (packets per unit time per
unit length, “density of progress”). Generally, this maximal
sustainable directed packet flow depends on the particular
MAC protocol defining the scheduling rules and possible
coordination between the nodes. Determining the value of this
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maximum is not a topic of this paper but is assumed to be
given (known characteristic constant of the medium). By a
simple time sharing mechanism this maximal value can be
shared between flows propagating in different directions. As
a result, the scalar or total flux (to be defined in Section II)
of packets is bounded by the given maximum, and the load
balancing task is to determine the paths in such a way that the
maximum flux is minimised.

Under the assumption of a dense multihop network the
shortest paths (SP) are approximately straight line segments
[1]. Straight paths yield an optimal solution in terms of mean
delay when the traffic demands are low and there are no queue-
ing delays. However, they typically concentrate significantly
more traffic in the centre of network than elsewhere, and as the
traffic load increases the packets going through the centre of
the network start to experience queueing delays and eventually
the system becomes unstable when the maximal sustainable
scalar flux is exceeded. Hence, the use of shortest paths limits
the capacity of the multihop network unnecessarily and our
task is to minimise the maximum packet flux in the network
by a proper choice of paths on the macroscopic scale.

Our main contribution is the formulation of the traffic load
and the corresponding load balancing problem in a dense
multihop network. For the load balancing problem we provide
two lower bounds. Further, we show how the scalar flux can
be calculated for a given set of curvilinear paths. Even though
the results are valid only in the limit of a dense network (i.e.,
a large number of nodes and a small transmission range), they
give insight and can serve as useful approximations for more
realistic scenarios.

The rest of the paper is organised as follows. In Section II
we present the necessary mathematical framework. In Sec-
tion III two lower bounds for the achievable traffic load level
are presented. In Section IV the general expressions for the
traffic load with curvilinear paths are derived. In Section V we
demonstrate the load balancing in unit disk with three different
path sets yielding a better performance than the shortest paths
in terms of maximum traffic load. Section VI contains our
conclusions.

A. Related work

In [1] Pham et al., and later in [2] Ganjali et al., have
studied the load balancing using multipath routes instead of
shortest paths. The analysis is done assuming a disk area and



a high node density so that the shortest paths correspond to
straight line segments. In multipath situation the straight line
segments are replaced by rectangular areas where the width
of the rectangle is related to the number of multiple paths
between a given pair of nodes. In particular, multiple paths
are fixed on both sides of the shortest path.

In [3] Dousse et al. study the impact of interference on the
connectivity of large ad hoc networks. They assume an infinite
area and the behaviour of each node to be independent of the
other nodes, which, together with interference assumptions,
defines the stochastic properties for the existence of links. With
these assumptions the authors study the existence of a gigantic
component, which is related to the network connectivity.

In [4] Sirkeci-Mergen et al. study a dense wireless network
with cooperative relaying, where several nodes transmit the
same packet simultaneously in order to achieve a better
signal-to-noise ratio. In the analysis an infinitely long strip is
studied and the authors are able to identify a so-called critical
decoding threshold for the decoder, above which the message
is practically transmitted to any distance (along the strip). The
analysis assumes a dense network similarly as in this paper.

In a dense network with shortest path routing the transmis-
sion of each packet corresponds to a line segment in the area of
the network. A line segment process with uniformly distributed
end points is similar to the so-called random waypoint (RWP)
mobility model commonly used in studies of wireless ad hoc
networks [5], [6], [7], [8]. In the RWP model the nodes move
along straight line segments from one waypoint to the next and
the waypoints are assumed to be uniformly distributed in some
convex domain. The similarity between the RWP process and
the packet transport with the shortest path routes is striking
and we can utilise the readily available results from [11] in
this case. For curvilinear paths the situation, however, is more
complicated and the new results derived in the present paper
allow us to compute the resulting scalar packet flux (i.e., traffic
load).

II. PRELIMINARIES

In this section we introduce the necessary notation and
definitions for analysing the transport of the packets and the
resulting traffic load in the network. LetA denote the region
where the network is located andA the area ofA. The packet
generation rate corresponding to traffic demand density is
defined as follows.

Definition 1 (traffic demand density) The rate of flow of
packets from a differential area elementdA about r1 to a
differential area elementdA aboutr2 is λ(r1, r2) ·dA2, where
λ(r1, r2) is called the traffic demand density.

Remark 1 The total packet generation rate is given by

Λ =
∫
A

d2r1

∫
A

d2r2 λ(r1, r2).

Each generated packet is transferred along a certain multihop
path. More formally,

Definition 2 Set of paths denoted byP defines for all source
destination pairs(r1, r2) a unique pathp ∈ P .

Remark 2 The mean path length, i.e., the mean distance a
packet travels, is given by

` =
1
Λ

∫
A

d2r1

∫
A

d2r2 λ(r1, r2) · s(P , r1, r2),

where s(P , r1, r2) denotes the distance fromr1 to r2 with
path setP .

Example 1 For the shortest paths we have

`sp =
1
Λ

∫
A

d2r1

∫
A

d2r2 λ(r1, r2) · |r2 − r1|. (1)

Probably the most important quantity for our purposes is
the packet arrival rate into the proximity of a given node.
This is described by the notion of scalar flux, which in turn
is defined in terms of the angular flux. These are similar to
corresponding concepts of particle fluxes in physics, e.g., in
neutron transport theory [10]. In our case, the packet fluxes
depend on the traffic demand densityλ(r1, r2) and the chosen
pathsP , and are defined as follows:

Definition 3 (angular flux) Angular flux of packets atr in
direction θ, denoted byΦ(r, θ) = Φ(P , r, θ), is equal to the
rate [1/s/m/rad] at which packets flow in the angle interval
(θ, θ + dθ) across a small line segment of the lengthdx
perpendicular to directionθ at point r divided bydx · dθ
in the limit dx→ 0 and dθ → 0.

Definition 4 (scalar flux) Scalar flux of packets [1/s/m] atr
is given by

Φ(r) = Φ(P , r) =

2π∫
0

Φ(P , r, θ) dθ.

With the above notation we can formulate the optimisation
problem.

Definition 5 (load balancing problem) Find such a set of
paths,Popt, that minimises the maximum scalar flux,

Popt = arg min
P

max
r

Φ(P , r).

Remark 3 (optimal maximum traffic load) With the load
balanced paths the maximum load is

Φopt = max
r

Φ(Popt, r) = min
P

max
r

Φ(P , r). (2)

In Def. 5 one needs the scalar fluxΦ(P , r). In Section IV
we will show how this can be calculated for a given set
of pathsP . The remaining problem of finding the optimal
paths is a difficult problem of calculus of variation. In this
paper, we do not search for a general solution but rather
study three heuristically chosen families of paths and compare
their performance with that of the shortest paths and with the
bounds introduced in the next section.
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Fig. 1. Cumulative progress in a small square.

III. L OWER BOUNDS FOR PACKET FLUX

Our next goal is to derive two lower bounds for achiev-
able load balancing, i.e., for a given traffic demand density
λ(r1, r2) we want to find bounds for the minimum of the
maximal traffic load that can be obtained by a proper choice
of paths. Let us start with two preparatory remarks that give
additional characterisations of the scalar flux.

Remark 4 Scalar flux of packets is equal to the rate at which
packets enter a disk with diameterd at point r divided byd
in the limit whend→ 0.

The proof follows trivially from the definitions. Note that
Remark 4 justifies the interpretation of the scalar packet flux
as a measure of spatial traffic load.

Remark 5 (density of cumulative progress rate)Scalar
flux Φ(r) can also be interpreted as the cumulative progress
[m] of packets per unit time [s] per unit area [m2] about
point r (rendering 1/s/m as its dimension).

Proof: Consider the packet flux within a small angle
interval dθ entering a square from the left side as illustrated
in Fig. 1. According to Def. 3, the rate of such packets is
Φ(r, θ) · h · dθ. The same flow departs the square from the
right side. Thus, inside the square the cumulative progress per
unit time (for packets moving within the angle intervaldθ) is
Φ(r, θ) · h · dθ · w. Per unit area the above yieldsΦ(r, θ) dθ.
Integrating overθ then gives thatΦ(r) corresponds to the
cumulative progress per unit time and unit area.

Proposition 1 (distance bound)

max
r

Φ(P , r) ≥ Λ · `
A

. (3)

Proof: The cumulative progress rate in the whole area is
obviouslyΛ · `. Thus, the right hand side equals the average
density of progress rate, i.e., the average scalar flux.

Remark 6 Combining(2) and (3) we have

Φopt ≥ Λ
A

min
P

`.

It is obvious that the minimum of` is obtained whenP consists
of the shortest paths. Denoting the corresponding mean path
length by`sp, cf. Eq.(1), we get

Φopt ≥ Λ · `sp
A

. (4)

Another bound is obtained by considering traffic flows
crossing an arbitrary boundary (cf., cut bound in wired net-
works).

Proposition 2 (cut bound) For any curveC which separates
the domainA into two disjoint subdomainsA1 andA2 it holds
that

Φopt ≥ 1
L

∫
A1

d2r1

∫
A2

d2r2 (λ(r1, r2) + λ(r2, r1)) ,

whereL is the length of the curveC and the double integral
gives the total rate at which packets cross the curveC (both
directions included).

Proof: Consider first a short line segmentds at r at some
point along the curveC. Let γ denote a direction perpendicular
to the curve atr such that the packets arriving from the angles
(γ−π/2, γ+π/2) crossds from outside to inside, and packets
arriving from (γ + π/2, γ + 3π/2) crossds from inside to
outside. The rateλ(r) ds at which packets move acrossds is
given by

λ(r) ds =

π/2∫
−π/2

cosα (Φ(r, γ+α)+Φ(r, γ+α+π)) dα ds.

As 0 ≤ cosα ≤ 1 for −π/2 ≤ α ≤ π/2 we get

λ(r) ds ≤
π/2∫

−π/2

Φ(r, γ + α) + Φ(r, γ + α + π) dα ds

= Φ(r) ds ≤ max
x∈A

Φ(x) ds.

Integrating over the curveC completes the proof.

IV. PACKET FLUX WITH CURVILINEAR PATHS

In this section, unless stated otherwise, we assume uniform
traffic demand density and a single pathp(r1, r2) between
source and destination locationsr1 and r2. We make the
assumption of uniformity mainly for notational simplicity. It
is easy to generalise the results for any distribution. Moreover,
we assume that the paths inP satisfy the so-called path
continuity constraint:

Definition 6 (path continuity)

If r ∈ p(r1, r2), thenp(r1, r2) = p(r1, r) + p(r, r2).

The above definition lets us characterise the paths according
to the direction at some pointx. In particular, the routing
decision made in each point depends only on the destination
of the packet, not the source. Letp(x, θ) denote a path going
through pointx and having a directionθ at that point. The
points along the curve (assumed to be smooth) are denoted by

p(x, θ, s), wheres ∈ [−a1, a2], anda1, a2 > 0,

so thatp(x, θ, 0) = x. Thus,a1 and a2 denote the distance
to the boundary along the path in opposite directions. Note



that this means that we limit ourselves to paths that start and
end at the boundary of the domain (no closed paths within the
domain allowed).

Definition 7 (path divergence) Let h(x, θ, s) denote the rate
with respect to the angleθ at which paths diverge at the
distance ofs,

h(x, θ, s) = lim
dθ→0

|p(x, θ + dθ, s)− p(x, θ, s)|
dθ

=
∣∣∣∣ ∂

∂θ
p(x, θ, s)

∣∣∣∣.
Proposition 3 (angular flux with curvilinear paths) For
uniform traffic demand density,λ(r1, r2) = Λ/A2, the
angular flux at pointx in direction θ is given by

Φ(x, θ) =
Λ
A2

a1∫
0

h(x, θ,−s′)
h(x′, θ′, s′)

a2∫
0

h(x′, θ′, s+s′) ds ds′, (5)

wherex′ = p(x, θ,−s′) and θ′ is the direction of the path at
x′ (see Fig. 2).

Proof: Without loss of generality we may assumeΛ = 1.
Assume that a particular source is located in a differential area
element about pointx′ (see Fig. 2 left)

x′ = p(x, θ, s′), s′ ≤ 0,

for which it clearly holds that

p(x′, θ′, s− s′) = p(x, θ, s).

Let dθ denote a differential angle atx. The differential source
area aboutx′ is given by (see Fig. 2 left)

As = h(x, θ, s′) · dθ · ds′.

Similarly, letdθ′ denote a small angle at pointx′, which yields
a destination area of

Ad =

a2∫
0

h(x′, θ′, s− s′) ds dθ′,

as illustrated in Fig. 2 (right). The height of the “target line
segment” perpendicular to the path at pointx is

hx = h(x′, θ′,−s′) · dθ′.

Thus, the contribution to the angular flux from the differential
source areaAs aboutx′ is

dΦ =
As · Ad

A2 · dθ · hx

=
1

A2
· 1
dθ
·
(

1
h(x′, θ′,−s′) · dθ′

)
·

(
h(x, θ, s′) · dθ · ds′

)
·

a2∫
0

h(x′, θ′, s− s′) ds dθ′

=
1

A2
· h(x, θ, s′)
h(x′, θ′,−s′)

·
a2∫
0

h(x′, θ′, s− s′) ds ds′.
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Fig. 2. Derivation of expression (5) for the scalar flux.

Consequently, the angular flux atx in directionθ is given by

Φ(x, θ) =
1

A2

0∫
−a1

h(x, θ, s′)
h(x1, θ′,−s′)

a2∫
0

h(x′, θ′, s−s′) ds ds′.

The proposition follows upon substitutions′ ← −s′.

Remark 7 (angular flux with non-uniform λ(r1, r2)) It is
straightforward to generalise(5) to the case of non-uniform
traffic demand densityλ(r1, r2). In this case, the angular flux
at x in direction θ is given by

Φ(x, θ) =

a1∫
0

h(x, θ,−s′)
h(x′, θ′, s′)

·
a2∫
0

λ(x′,p(x′, θ′, s+s′)) · h(x′, θ′, s+s′) ds ds′.

Example 2 (shortest paths)For the shortest paths

h(x, θ, s) = |s|,
and the angular flux is given by

Φ(x, θ) =

a1∫
0

a2∫
0

λ(r1, r2) · (s + s′) ds ds′,

wherer1 = r − s′ eθ, and r2 = r + s eθ, with eθ denoting
the unit vector in directionθ. Consequently, for uniform traffic
demand density,

Φ(x, θ) =
Λ
A2

a1∫
0

a2∫
0

(s+s′) ds ds′ =
Λ

2A2
a1a2(a1+a2),

in accordance with the result on RWP model in [9].

V. UNIT DISK WITH UNIFORM TRAFFIC DEMANDS

In this section we will demonstrate how the proposed
framework can be applied. To this end, we consider a special
case of a unit disk with uniform load,

A = {r ∈ R
2 : |r| < 1}, and, λ(r1, r2) = Λ/π2.
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Fig. 3. Left figure illustrates the three path sets considered: straight line segments (SP), radial paths with outer (Rout) and inner (Rin) angular ring transitions.
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three path sets (SP, Rout and Rin) and for a randomised combination of SP and Rout (dashed curve) as a function of distanced from the centre.

We study the performance of three simple families of paths:
outer and inner radial ring paths and circular paths. The
performance of these path sets is compared with that of the
shortest paths, and with the appropriate lower bounds for the
minimal maximum traffic load.

Example 3 (shortest paths for unit disk) For transport ac-
cording to the straight line segments we can rely on the results
for the RWP model (see [11]). Accordingly, the scalar flux at
distanced is given by

Φsp(d) =
2(1− d2) · Λ

π2

π∫
0

√
1− d2 cos2 φ dφ.

In particular, the maximum flux is obtained at the centre,

Φsp(0) =
2
π
· Λ ≈ 0.637 · Λ. (6)

Example 4 (distance bound for unit disk) The distance
bound gives a relationship between the obtainable maximum
load and the mean path length. With shortest paths we have
`sp = 128/45π which upon substitution in (4) yields

Φopt ≥ Λ · 128
45π2

≈ 0.288 · Λ.

Example 5 (greatest sensible mean path length)With the
aid of (6) we can write the distance bound (3) in terms of
Φsp,

max
r

Φ(P , r) ≥ Φsp · `/2.

Shortest paths are not optimal set of paths for uniform traffic
demand density. But the above relation says that in searching
for a better set of paths (which necessarily has` ≥ `sp) one
can outright reject such path sets for which` > 2 since for
them the maximal scalar flux surely is greater than that for
the shortest paths. That is, in order to lower the maximal flux
one has to bend the paths away from the loaded region but
without increasing the mean length of the paths too much at
the same time.

Example 6 (cut bounds for unit disk) Let us consider two
curves, a diameterC1 separating the unit disk into two semi-
circles, and a concentric circleC2 with radiusd, 0 < d < 1.
For the packet rateλ1 acrossC1 it holds thatλ1 ≥ Λ/2, and

Φopt ≥ Λ
4

= 0.25 · Λ.

Similarly, the packet rate acrossC2 is bounded byλ2(d) ≥
2d2(1−d2) · Λ, which corresponds to radial flux

Φr(d) =
2d2(1 − d2)

2πd
· Λ =

d− d3

π
· Λ.

By the cut bound we haveΦopt ≥ Φr(d). The tightest lower
bound is obtained by maximisingΦr(d) with respect tod,

Φopt ≥ Φr(1/
√

3) =
2

3
√

3 · π · Λ ≈ 0.123 · Λ.

We see that in the case of uniform traffic demand density
the distance bound provides the tightest lower bound for the
solution of the minmax problem (2).

A. Radial ring paths

Let us consider next the three actual path sets illustrated in
Fig. 3. The shortest paths (SP) are equivalent to RWP model as
has been already mentioned. The two radial path sets, referred
to as “Rin” and “Rout”, are similar in the sense that each path
consists of two sections. One section is a radial path towards
(or away from) the origin, and the other section is an angular
path along a ring with a given radius. The difference between
the two sets is the order of sections, “Rout” uses the outer
angular rings and “Rin” the inner ones, as the names suggest.
Note that locally, at any point, the packets are transmitted
only in 4 possible directions (2 radial and 2 angular), which
may simplify the possible implementation of the time division
multiplexing.

When studying the arrival rate into a small area at the
distance ofd from the origin one needs to consider both radial
and angular ring movement. The radial component of the flux
is the same for both path sets, i.e.,

Φr(d) =
d− d3

π
· Λ. (7)
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1) Outer radial ring paths:Let us next consider outer radial
ring paths. We want to determine the flux along the ring at
the distance ofd. To this end, consider a small line segment
from (−d, 0) to (−d − ∆, 0) as the target line segment, as
illustrated in Fig. 3 (middle). Packets originating from a small
source areaAs at the distance ofd in directionθ travel through
the target line segment if their destination is in the destination
areaAd. The size of the source area is

As = d ·∆ · dθ,

while the possible destination area is

Ad =
θ · πd2

2π
=

d2

2
· θ.

Combining the above withλ = Λ/π2, and taking into account
the symmetries, gives the angular flux at the distance ofd,

Φθ(d) =
4Λ

∆ π2

π∫
0

d2

2
· θ ·∆ dθ = d3 · Λ.

Hence, the total flux at the distanced for the outer path set is
given by

ΦRout(d) = Φr(d) + Φθ(d) =
(π − 1)d3 + d

π
· Λ.

The maximum flux is obtained at pointd = 1,

ΦRout(1) = Λ.

2) Inner radial ring paths: For inner paths the possible
destination area of packets is

(1 − d2)/2 · θ,
and we have,

Φθ(d) =
4Λ

∆ · π2

π∫
0

1− d2

2
· θ · d ·∆ dθ = (d− d3) · Λ.

Combining the above with (7) gives

ΦRin(d) =
(π + 1)(d− d3)

π
· Λ.

The maximum is obtained at pointd = 1/
√

3,

ΦRin(1/
√

3) ≈ 0.507 · Λ.

Hence, the outer version leads to a higher maximum load
than the shortest paths while the inner version yields a slightly
better solution. The resulting packet fluxes are illustrated in
Fig. 3 (right) as a function of the distanced from the centre.

B. Circular paths

As the last path set we consider curvilinear paths, referred
to as circular paths, which consist of such sections of circum-
ference of circles that cross the unit disk at the opposite points
as illustrated in Fig. 4 (left). From the figure it can be seen that
these paths smoothly move some portion of the traffic away
from the centre of the area.

The angular flux can be calculated using Proposition 3, and
the scalar flux is obtained by integration (cf., Def. 4). The
resulting scalar flux is depicted in Fig. 4 (right). It can be
seen that the traffic load is fairly well distributed in the area.
The maximum flux is obtained at the centre of the disk, where
the flux is0.424. In fact, it is possible to determine the packet
flux at the centre analytically (see Appendix). For this we have

Φ(0) =
4
3π
· Λ ≈ 0.424 · Λ,

which is exactly2/3 of the packet flux with the shortest paths
(cf., Ex. 3) and is also smaller than the maximal scalar fluxes
with the ring paths.

C. Randomised path selection approach

One option to achieve a lower maximum load is to allow
the use of several paths for each pair of nodes (similarly as in
[1], [2]). In particular, let us relax our assumptions and allow
a finite number of path sets{Pi}, wherei = 1, . . . , n. Upon
transmission of a packet the source node chooses a path from
path setPi with probability of pi, i = 1, . . . , n.

Remark 8 (packet flux with randomised path sets)
Randomised path upon transmission selection from path sets
{Pi} with probabilities pi, i = 1, . . . , n, yields a scalar
packet flux of

Φ(r) =
∑

i

pi ·Φ(Pi, r).

Example 7 Consider uniform traffic demand density in unit
disk and two path sets, 1) shortest paths, and 2) the outer radial



paths. Weightsp1 = 0.61 andp2 = 0.39 give a packet flux of

Φ(d) = 0.61 · Φsp(d) + 0.39 · ΦRout(d).

The resulting flux is almost constant as illustrated by the
dashed line in Fig. 3. The maximum is0.397 · Λ. The same
technique can be taken further, e.g., by combining all three
path sets as follows

Φ(d) = 0.52 ·Φsp(d) + 0.37 ·ΦRout(d) + 0.11 ·ΦRin(d),

which gives a maximum flux of0.379 · Λ.

VI. CONCLUSIONS

In this paper we have presented a general framework for
analysing traffic load and routing in a large dense multihop
network. The approach relies on strong separation of spatial
scales between the microscopic level, corresponding to the
node and its immediate neighbours, and the macroscopic level,
corresponding to the path from the source to the destination.
In a dense wireless network with this property the local traffic
load can be assimilated with the so-called scalar packet flux.
The packet flux is bounded by a maximal value that the
network with a given MAC and packet forwarding protocol
can sustain. The packet flux depends on traffic demand density
λ(r1, r2) and the chosen set of routing pathsP . The load
balancing problem thus comprises of determining the set of
routing paths such that the maximal value of the flux in the
network is minimised. While the general solution of this dif-
ficult problem remains for future work, our main contribution
in this paper consists of giving bounds for the packet flux and
giving a general expression for determining the packet flux at
a given point for a given set of curvilinear paths.

The results are illustrated by numerical examples with three
different sets of paths in unit disk. Future work also includes
investigating how to find nearly optimal load balancing in a
distributed fashion.
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APPENDIX

A. Flux at the centre with circular paths

In order to illustrate the framework and the steps involved
we will next determine analytically the scalar packet flux at
the centre of unit disk for the circular paths. Furthermore, a
uniform traffic demand density is assumed. The situation is
depicted in Fig. 5. For pointz1 we get,

s′ · sin dθ = R · cos(dθ′ − dθ)−
√

R2 − 1,
s′ · cos dθ = R · sin(dθ′ − dθ).

For small values ofx we have

sin x ≈ x, cosx ≈ 1− 1
2
x2, and

√
1− x ≈ 1− 1

2
x.

Thus, we get

s′ · dθ = R ·
(

1− 1
2
(dθ′ − dθ)2

)
−

√
R2 − 1,

s′ · (1− 1
2
dθ2) = R · (dθ′ − dθ).

According to Fig. 5dθ′−dθ = s′/R. Substituting that into
former equation above yields

s′

R
· dθ = 1− 1

2

(
s′

R

)2

− 1 +
1
2
· 1
R2

=
1− s′2

2R2
,

and consequently,

dθ =
1− s′2

2R · s′ .
Hence, asdθ′ − dθ = s′/R, we have

dθ ≈ 1− s′2

2Rs′
and dθ′ ≈ 1 + s′2

2Rs′
.

For the height of the “target line segment”,H , we have

H = R−
√

R2 − 1 ≈ 1
2R

.

The destination area is composed of the half segmentA1,

A1 ≈ 2
3
H ≈ 1

3R
,

and the area of the sectorA2,

A2 =
dθ

2
≈ 1− s′2

4Rs′
.

Consequently,
a2∫
0

h(x, θ′, s + s′) ds =
1

dθ′
(A1 + A2)

≈ 2Rs′

1 + s′2
·
(

1
3R

+
1− s′2

4Rs′

)
≈ 3 + 4s′ − 3s′2

6(1 + s′2)
.



Moreover, we have

h(x, θ,−s′) =
s′ · dθ

dθ
= s′,

h(x, θ′, s′) =
H

dθ′
≈ 1

2R
· 2Rs′

1 + s′2
=

s′

1 + s′2
.

Hence,

h(x, θ,−s′)
h(x, θ′, s′)

=
s′ · (1 + s′2)

s′
= 1 + s′2,

and the angular packet flux at the centre of the unit disk is

Φ(0, θ) =
Λ
A2

1∫
0

h(x, θ,−s′)
h(x′, θ′, s′)

1∫
0

h(x′, θ′, s + s′) ds ds′

=
Λ

6π2

1∫
0

3 + 4s′ − 3s′2 ds′ =
2

3π2
· Λ.

Finally, the packet flux at the centre is given by

Φ(0) =

2π∫
0

Φ(0, θ) dθ =
4
3π
· Λ ≈ 0.424 · Λ,

which is exactly2/3 of the packet flux with the shortest paths
consisting of straight line segments (cf., Ex. 3).
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Fig. 5. Notation used in the derivation of the packet flux with the circular
paths at the centre of the unit disk.


