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Abstract— We consider a simplified model for the rate
control of TCP sources. In particular, we assume idealized
negative feedbacks upon reaching a certain total sending
rate, i.e., at the moment when the total sending rate
attains a given capacity limit c one of the TCP sources
is given a negative feedback and the source reduces its
sending rate in a multiplicative manner. Thus, the model
takes into account the interactions between different flows
appropriately at the microscopic level instead of assuming
independence. For this model we are able to derive steady
state equations and solve them. Furthermore, we are
able to compute several important performance measures
such as the mean and the variance of the total sending
rate. Moreover, we are able to characterize the packet
loss process at the bottleneck link and, in particular, the
correlations therein.

I. INTRODUCTION

Transmission control protocol (TCP) is without doubt
the most popular transmission rate control mechanism
due to its success in the Internet. The rate control
mechanism in TCP belongs to the family of the so-called
additive increase and multiplicative decrease (AIMD)
schemes, which have been studied extensively in the
literature, see, e.g., [1] and [2]. An introduction to
TCP rate control mechanism can also be found from
several text books, see, e.g., [3]. One important aspect
of bandwidth allocation protocols is the fairness, i.e.,
how the available bandwidth is allocated between the
traffic flows sharing the same resources. For example,
it is well-known that in TCP/IP networks the flows with
higher round trip times (RTT) tend to get smaller shares.
Perhaps the most famous results on TCP are the results
on the throughput analysis, e.g., the famous square root
formula for the TCP throughput by Floyd and Fall [4],
and the more accurate expression by Padhye et al. [5].
The above results provide the average throughput per
flow as a function of the packet loss probability.
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The common assumption in TCP throughput analysis
has been the independence between congestion epochs,
i.e., it is assumed that the packet losses occur in fixed
time intervals ([4], [5], [6], [7]), or originate from a (non-
uniform) Poisson process [8]. A more general approach
can be found from [9], where the losses are generated
by an arbitrary exogenous random process allowing one
to model correlations between inter-loss times.

In contrast to above work, in this paper we consider an
elementary model for the TCP rate control mechanism,
where the loss process gets explicitly defined by the
sending rates of all TCP sources, as the case also is in
practice. The aim is to characterize the behavior of the
concurrent TCP flows at the microscopic level, e.g., in
order to study the influence of the TCP traffic to other
traffic flows such as real time voice or video streams.
To this end, we study a single bottleneck link and make
several simplifying assumptions about the rate control
mechanism. Firstly, we consider a continuous model,
i.e., a fluid flow model, where the sending rates are
some non-negative real numbers. Secondly, the decision
to send a negative feedback is based on the current arrival
rate of the packets into the bottleneck link, not directly
on the occupancy level of the buffer (unfinished work).
Thirdly, we assume a constant delay before sources react
on the negative feedback signals (i.e., a constant RTT).

The model is analyzed in the standard framework
of Markov processes. First we present the steady state
equations for the underlying embedded Markov chain
with continuous state space. We are able to solve the
special case of two TCP flows exactly, while for more
than two flows the number of possible transitions in-
creases considerably and we resort to a flow aggregation
approach. In particular, we choose one flow as a targeted
flow and assume that the rest of the flows share the
remaining bandwidth equally. For this model we are
able to compute several important performance measures
such as the mean and the variance of the total sending
rate for different number of flows, the distribution for
the window size upon a negative feedback and full



characterization of times between congestion events. The
knowledge of the packet loss process at the bottleneck
link, and the correlations therein, allows us to further
present an elementary model for the loss process for the
UDP flow(s) sharing the same link.

The rest of the paper is organized as follows. First, in
Section II, we present our model in detail and comment
about the assumptions. Then, in Section III, we analyze
the model and derive expressions for several important
performance measures and characterize the loss process
caused by the TCP mechanism. In Section IV, we study
the correlations between the consecutive packet losses,
i.e., how often the buffer occupancy achieves the given
level and how the time intervals between such events are
correlated. Section V contains some numerical examples,
and finally, in Section VI, we present our conclusions and
comment on the future work.

II. TCP MODEL DESCRIPTION

We considern TCP flows in an idealized system where
the sending rate of one source is always reduced in
multiplicative manner when the total rate would exceed
the capacity of the (single) bottleneck link. In particular,
let ri(t) denote the sending rate of sourcei at timet, so
that the total sending rate is simply

R(t) =
∑

i

ri(t).

We can assume such a scaling that the total capacity of
the bottleneck link is one,c = 1, so that we have

R(t) =
∑

i

ri(t) ≤ 1, ∀ t.

Furthermore, we assume a proportional marking, i.e.,
upon reaching the capacity limitc the flow to be
downsized is chosen randomly with the probabilities
proportional to the sending ratesri. With c = 1 the
probability of choosing flowi is simply ri(t). Let ν be
the multiplicative factor, i.e., upon a negative feedback
flow i reduces its rate according to

ri(t + dt) = ν · ri(t).

Thus, the drop in total sending rate is(1−ν) · ri(t) with
probability of ri and, consequently, the mean drop in
total rate (conditional to the current stater) is given by

E [∆R | r] = (1 − ν) ·
∑

i

r2
i .

Moreover, the mean time to achieve the same total rate
after a negative feedback is given by

E [∆T | r] = (1 − ν) ·
∑

i

r2
i ,

time t

flow 1

flow 2

(2) (1) (1) (1) (2)R(t)

c

Fig. 1. Sample realization of two competing flows.

with an appropriate scale of time, i.e., when the linear
increase factor is equal to1, d/dt R(t) = 1. With this
choice of the time scale we can write

∆R = ∆T = ∆.

A. Relationship to real systems

As mentioned already, this is a rather idealized model
for TCP congestion control. Firstly, we consider a con-
tinuous model where sending rate of each source is some
positive real number. This is rather standard assumption
in the analysis of the TCP. Secondly, the decision to send
a negative feedback signal (either by explicit congestion
notification (ECN) [10] or by dropping a packet) is not
based on the (averaged) occupancy level of the buffer,
but the total sending rate of the sources sharing the same
bottleneck link. Thirdly, we neglect the delays in the
feedback loop, or rather assume that the delay is some
constant for all sources, which yields the same additive
increase rate for all sources.

Next we comment a bit on the second assumption
as it is unique to this model. In practice the IP routers
base their decisions on the (averaged) occupancy level
of the buffer (see, e.g., random early detection in [11]).
However, if the arrival rate is substantially lower than
the service ratec, no queue accumulates in the router.
Thus, if during each epoch the drop in the total sending
rate is large enough for the router to empty the buffer,
the assumption of the negative feedback criteria based
on the current arriving rate is not really limiting. This
should be the case with a small number of TCP flows
(i.e., access network).

III. A NALYSIS

A. Embedded Markov chain

The process described in the previous section clearly
constitutes a Markov process. In particular, we can
associate an embedded Markov chain to this process
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by considering, e.g., the time instances when the total
rate attains the capacity of the bottleneck link. LetX(k)

denote the sending rates of the TCP sources at thekth

point, k = 1, 2, . . .. Then, with the probability ofX(k)
i

the next stateX(k+1) of the embedded Markov chain is

(X
(k)
1 + ∆∗, . . . , νX

(k)
i + ∆∗, . . . , X(k)

n + ∆∗),

where ∆∗ = (1 − ν)X
(k)
i /n. We note that the above

Markov chain has a state space inRn dimensional
hyperplane,

∑n
i=1 Xi = 1 with Xi ∈ (0, 1) ∀ i.

Note that, if the multiplicative factorν and the initial
stateX(0) of the system are fractional numbers,ν ∈ Q

and X(0) ∈ Qn, then the system remains inQn, i.e.,
X(k) ∈ Qn ∀ k = 0, 1, . . .. However, in this paper
we consider only “smooth solutions”, which are relevant
from the practical point of view.

B. Solution for 2 flows

With two flows andX1 = x the state of the embedded
Markov chain is(x, 1 − x). The transitions to the next
embedded point (withν = 1/2) are then as follows.

(x, 1 − x)

(

1+3x

4
, 3−3x

4

)

(

3

4
x, 1 − 3

4
x
)

1 − x

x

where, e.g., at state(x, 1 − x) the reduction occurs for
flow 1 with probability of x and the embedded Markov
chain moves to state(3x/4, 1 − 3x/4). Let f(x) denote
the pdf for the state of the flow1 at the embedded points,
P {x < X1 ≤ x + dx} = f(x) dx. We define explicitly,

f(x) = 0 ∀ x < 0 andx > 1.

Due to the symmetry we also have

f(x) = f(1 − x). (1)

In order to determine the exact form off(x) we
write the global balance equations. In particular, we can
consider a small interval(x, x + dx) and the probability
flows to and from it. For a small intervaldx there are no
self-transitions in this system and the flow out is simply

flow out = f(x) · dx.

For the flow in we need to consider transitions from
two intervals corresponding to transitions up and down
as illustrated in Fig. 2. Hence, the probability flow into
small interval(x, x + dx) is

f

(

4x − 1

3

)

·
4

3
dx ·

4

3
(1 − x) + f

(

4x

3

)

·
4

3
dx ·

4

3
x.

These probability flows are equal in the steady state,
which yields

f(x) =

(

4

3

)2 [

(1−x)f

(

4x − 1

3

)

+xf

(

4x

3

)]

. (2)

Letting f(1/2) = a we obtain

f(1/2) = a =

(

4

3

)2 [

(1/2) f

(

1

3

)

+ (1/2) f

(

2

3

)]

=

(

4

3

)2

· f

(

1

3

)

,

and we get

f(1/3) = f(2/3) =

(

3

4

)2

· a.

Similarly, for eachx =
(

3
4

)n
· 14 we can recursively obtain

an accurate value. Thus,

f(1/2) = a f(1/4) =
a

4
f(9/64) =

a

48

f(1/3) =

(

3

4

)2

· a f(3/16) =
a

12

Recursively, one obtains

f

(

1

4

(

3

4

)n)

=
a

4 · 3n
·

(

3

4

)n(n−1)/2

= a ·

√

3n2−3n

4n2−n+2
, ∀ n = 0, 1, 2, . . .

The above suggests a solution for intervalx ∈ (0, 1/4],

f(x) =
a

4
·

√

3n(n−3)

4n(n−1)
=

a

8

(

2

3

)n

x(n−1)/2 (3)

with n =
log 4x

log 3/4
.

The other values in(1/4, 1) can be computed recursively
using the identities (1) and (2), and the constanta follows
from the normalization condition. The resulting pdf is
illustrated in Fig. 3. The distribution has a mean0.5
and varianceσ2 ≈ 0.0192. Note that in order to get
the time averages for the actual sending rate one must
integrate overf(x) with appropriate weights (f(x) is
merely the steady state distribution of the embedded
Markov chain!).
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two competing flows.

C. General case

The above Markov chain is a special case of a discrete
time Markov process with a continuous state space in
(0, 1) of R with the transition probabilities according to

x

a1 · x + (1 − a1)

a2 · x

1 − x

x

where0 < a1 < 1 and0 < a2 < 1. Let α1 = 1/a1, and
α2 = 1/a2. Then theglobal balance equationsfor this
system can be written as

f(x) = α2
1 · (1 − x) · f(1 − α1 + α1x)

+ α2
2 · x · f(α2x).

(4)

Again, we know that

f(x) = 0 ∀ x < 0 andx > 1.

In particular, for 0 ≤ x ≤ 1 − a1 no transitions are
possible fromt to x, for t < x, and (4) simplifies to

f(x) = α2
2 · x · f(α2x). (5)

Values forx > 1− a1 can then be computed recursively
using (4) once the solution for (5) is known. In particular,
it turns out that for0 < x ≤ 1− a1 andn = 0, 1, . . . we
have

f(x) = α
(n2+3n)/2
2 · xn · f(αn

2x),

which can be written as

f(an
2x) = a

(n2−3n)/2
2 · xn · f(x).

Choosingx = 1 − a1 (the upper bound of the interval),
we have

f(an
2 (1 − a1)) = a

(n2−3n)/2
2 · (1 − a1)

n · f(1 − a1).

Letting r = an
2 (1 − a1) we finally have a continuous

solution for the intervalx ∈ (0, 1 − a1),

f(r) = a
(n2−3n)/2
2 · (1 − a1)

n · f(1 − a1), (6)

with

n =
log r − log(1 − a1)

log a2
.

The valuef(1− a1) is obtained by normalization. With
a1 = a2 = 3/4 the above reduces into (3).

D. Flow aggregation approach

Generally there arem TCP flows sharing the same
bandwidth. The straightforward analysis, however, leads
to complicated equations as the number possible transi-
tions from each state increases linearly as a function of
m. In order to reduce the complexity of the model let us
next consider an approximation where we havem − 1
aggregated flows and a “targeted flow”1.

Let X1 = x denote the sending rate of flow1 upon
a negative feedback signal, so that the aggregated flows
have a total sending rate of1 − x. We assume that the
aggregated flows share this bandwidth of1 − x equally
at the point of time when the negative feedback signal
is generated.

In this case the state transition probabilities are as fol-
lows. With probability of1−x at statex (corresponding
to the sending rate of flow1) the negative feedback is
sent to one of the aggregated flows corresponding to a
decrease in the sending rate equal to

∆ = (1 − ν) ·
1 − x

m − 1
,

so that the next state of the embedded chain is

x +
∆

m
=

x(m2 − m) + (1 − x)(1 − ν)

m(m − 1)

=
m2 − m + ν − 1

m(m − 1)
· x +

1 − ν

m(m − 1)
.

Similarly, with the probability ofx the rate of flow1 is
reduced and the decrease is

∆ = (1 − ν)x,

and the next state of the chain is

νx +
∆

m
=

(m − 1)ν + 1

m
· x.

In particular, this corresponds to the model described at
the start of Section III-D with

a1 =
m2 − m − (1 − ν)

m2 − m
and a2 =

(m − 1)ν + 1

m
.

With ν = 1/2 the above reduces into

a1 =
2m2 − 2m − 1

2m2 − 2m
and a2 =

m + 1

2m
. (7)
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Fig. 4. Steady state distributiong(x) of the embedded Markov chain
in aggregated flow approach withm = 2, 3, 4, 5 flows.

The steady state distributiong(x) of this system is
illustrated in Fig. 4 form = 2, 3, 4, 5 flows. It can be
seen that as the number of flows increases the mean and
the variance of the distribution decrease, as expected.

In summary, constantsa1 anda2 depend on the num-
ber of flowsm and the multiplicative factorν according
to (7), and the possible transitions and total decrements
from a given statex are as follows:

trans. P(·) new state decrement∆
up 1 − x a1x + (1 − a1) m((1−a1) − (1−a1)x)

down x a2x
m

m − 1
(1 − a2)x

E. Mean period and mean sending rate

Let random variable∆ denote the drop in the total
sending rate upon a negative feedback, which, with
our choice of time scale, also corresponds to the time
between two negative feedbacks (i.e., packet losses).
During a long time interval of lengthT there are on
averageM = T/E [∆] periods. The total “area” of these
triangles is (on average)M · 1

2 ·E
[

∆2
]

. Hence, the mean
sending rate is given by

E [R] = 1 −
1

2

E
[

∆2
]

E [∆]
. (8)

Generally one can consider a single epoch during which
the sending rateR(t) is given by R(t) = t + 1 − ∆.
Hence, we immediately obtain for thenth moment,

E [Rn] =

E

[
∫ ∆

0
(t+1−∆)n dt

]

E [∆]
=

1−E
[

(1−∆)n+1
]

(n + 1) · E [∆]
.

In order to evaluate the mean sending rate,E [R], we
need to know the first two moments of random variable

∆. Generally, we have

E
[

∆k
]

=

1
∫

0

x f(x) · [(1 − ν)x]k dx

+

1
∫

0

(1 − x) f(x) ·

[

(1 − ν)
1 − x

m − 1

]k

dx,

which reduces into

E
[

∆k
]

= (1−ν)k
1

∫

0

f(x)

[

xk+1+
(1−x)k+1

(m−1)k

]

dx. (9)

Substituting (9) into (8) gives us then an expression for
determining the mean sending rate withm flows,

E [R] = 1 −
1

2
·
E

[

∆2
]

E [∆]

= 1 −
(1−ν)

2
·

1
∫

0

f(x)

[

x3+
(1 − x)3

(m − 1)2

]

dx

1
∫

0

f(x)

[

x2+
(1 − x)2

m − 1

]

dx

. (10)

Note that even though the constantν does not explicitly
exist in the integrand(s), the pdff(x) depends on it.
Furthermore, due to our idealized assumption of imme-
diate negative feedback signals, the optimalν is clearly
1−ǫ, which yields a constant total sending rate of1.
In practice this is of course not possible due to strictly
positive RTT’s, but one must choose a smallerν, e.g.,
ν = 1/2, in order to ensure stability in the network.

At the limit m → ∞ (10) reduces into

E [R] = 1 −
1 − ν

2
·
E

[

X3
]

E [X2]
, (11)

where the random variableX denotes the rate of the
targeted flow1 at the moment when the capacity limit
is reached and a negative feedback is sent.

1) two flows withν = 1/2: In this case we can easily
write the pdf for the drop in total sending rate by giving
each event “sending rate is reduced by∆” a weight
according to the duration of the event, i.e., also∆ in our
case. If the capacity limit is reached with sending rates
X1 = x andX2 = 1−x for flows 1 and2, respectively,
then with probability ofx the drop∆ is equal tox/2
and with probability of1−x it is equal to(1−x)/2. Pdf
f(x) corresponds to the steady state distribution ofX1

and we obtain for the pdfh(x) of random variable∆,

h(x) = 8x · f(2x),
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which is illustrated in Fig. 5. Consequently, we have

E
[

∆k
]

= 21−k · E
[

Xk+1
]

,

and the following numerical values:

E [∆] = 0.269, σ2
∆ = 0.0044,

E
[

∆2
]

= 0.0769, E [R] = 0.857.

Thus, the rate of the negative feedback signals in this
system is about3.71 of which half belong to each
particular flow.

2) m− 1 aggregated flows:In this case, forν = 1/2
andm = 2, 3, 4, 5, the mean dropE [∆] is

E [∆] =
(

0.27, 0.17, 0.13, 0.10
)

,

and the standard deviation of∆, similarly,

σ∆ =
(

0.067, 0.036, 0.022, 0.020
)

.

Consequently, the mean total rateE [R] for m = 2, 3, 4, 5
TCP flows is approximately

E [R] =
(

0.86, 0.91, 0.93, 0.95
)

.

Using (11) instead of (10) gives

R̂ =
(

0.93, 0.95, 0.97, 0.97
)

.

F. Constant bit rate UDP flow

In this model UDP flow(s) simply consume a fraction
of the total capacityc. When reaching the capacity limit
the negative feedback is sometimes sent (erroneously) to
UDP source, which does not adjust its sending rate, and
consequently, another negative feedback will be sent (or
the packet dropped).

Let rudp denote the rate of the (CBR) UDP traffic
andc the total capacity of the link. Then, each time the
total rate achieves the link capacity (with Bernoulli trial
assumption) on average

rudp

c − rudp
,

UDP packets are dropped (unnecessarily). Thus, we have
an elementary model for the loss process in UDP flows.

R(t)
c

E [R]

time t

∆k

∆k ∆k+1∆k−1

Fig. 6. Random variable∆k corresponds to the drop in total sending
rate upon a negative feedback, and also, to the time intervalbetween
two consecutive negative feedback signals.

IV. CORRELATIONS IN THE LOSS PROCESS

Let us again first consider ideal TCP flows sharing a
bottleneck link with unit capacity,c = 1. In the previous
sections we have derived, both accurate and approxi-
mative, expressions for the pdff(x) corresponding to
the bandwidth sharing at the time instances when the
system reaches the capacity limitc = 1 for different
number of TCP flows sharing the bottleneck link. At
those time instances a negative feedback signal is sent
to a randomly chosen source based on their current
sending rates causing a reduction in the total sending
rate∆ = R(t−)−R(t+) according to the multiplicative
decrease scheme. As before, we let∆k denote thekth
drop in the total sending rate upon a negative feedback,
i.e.,∆k is also the time interval between thekth and the
(k+1)th packet loss (or more generally, the time interval
between two negative feedback signals), as illustrated
in Fig. 6. The random variables∆k, however, are not
independent, i.e., the consecutive time intervals between
packet losses have a correlation which we will study in
this section.

A. Two TCP flows

Assuming two TCP flows and a multiplicative factor
of 1/2 we have

∆k+1=

{ 3
4 ∆k, with probability of 3

2 ∆k,

1
2−

3
4 ∆k,with probability of 1−3

2 ∆k.
(12)

This is an interesting expression as it defines a Markov
chain between two consecutive time intervals. Moreover,
from (12) we obtain the conditional expectation,

E [∆k+1 |∆k] =
1

2

(

3

2
∆k

)2

+
1

2

(

1 −
3

2
∆k

)2

=
9

4
∆2

k −
3

2
∆k +

1

2
. (13)
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These are illustrated in Fig. 7 wherex-axis corresponds
to ∆k andy-axis to∆k+1. The covariance between two
consecutive time intervals between packet losses is

Cov [∆k, ∆k+1] = E [∆k∆k+1] − E [∆k] · E [∆k+1]

= E [E [∆k∆k+1 |∆k]] − E [∆]2

= E

[

9

4
∆3

k −
3

2
∆2

k +
1

2
∆k

]

− E [∆]2 .

=
9

4
E

[

∆3
]

−
3

2
E

[

∆2
]

+
1

2
E [∆] − E [∆]2 ,

where the last two terms can be also written as

E [∆] (1/2 − E [∆]).

The different moments of random variable∆ can be
computed using (9). Numerically we obtain

E
[

∆3
]

≈ 0.0231,

and get,
Cov [∆k, ∆k+1] ≈ −0.00134.

Thus, the correlation coefficient is

ρ =
Cov [∆k, ∆k+1]

√

V [∆k] · V [∆k+1]
≈ −0.303.

Note that if time intervals∆k and∆k+1 were indepen-
dent the covariance would be equal to zero, and this
clearly is not the case (not even approximately when the
number of flows is small).

B. General case,m flows

We note that for the general case (i.e., the flow aggre-
gation approach) a similar analysis is straightforward by
first conditioning on the state of the system,Xk = x, just
before the first negative feedback. On this condition there
are two possible outcomes for drop∆k, and recursively,
2 · 2 = 4 possible outcomes for the pair(∆k,∆k+1).
Combining this with an appropriate pdff(x) allows one
to compute the covariance in the general case. Due to
lack of space we omit the details here.

V. NUMERICAL EXAMPLES

It should be emphasized again that the purpose of this
model is not to model the behavior of the actual TCP
variant accurately, but rather to serve as an elementary
model for studying the behavior of TCP-like congestion
control mechanism at the microscopic level, i.e., at the
time scales of the time interval between packet losses.

Next we will, however, discuss how the model param-
eters can be chosen in order to match a realistic scenario
in some degree. The nature of the fluid model implies
that the model is only accurate when the packet size
(MTU) is small when compared to the product of the
link capacity (c) and the round trip time (RTT), i.e.,

MTU ≪ c · RTT. (14)

In congestion avoidance phase, a TCP source is supposed
to increase its window approximately by one packet per
round trip time (RTT), i.e.,

∆W

∆t
=

1

RTT
.

On the other hand, the sending rate of a TCP source
equals the current congestion window,W, times the
maximum segment size,MTU, divided by the RTT,

ri =
W · MTU

RTT
,

and consequently,

∂ri

∂t
=

MTU

RTT2 .

In our model we have scaled the maximum capacity to
1 and the time so that the linear increase rate equals to
1/m, wherem is the total number of TCP flows. Let

ri = α · r∗i , and t = β · t∗,

where the starred versions correspond to the rates and
the time in our model. With these,

∆ri

∆t
=

α∆r∗i
β∆t∗

=
α

β
·

1

m
,

and hence
α

β
=

m · MTU

RTT2 .

Next we must fix the level at which a negative feedback
is sent (or reaches the source to be exact). To this we
can choose anyα for which

α · E [R] < c,

wherec corresponds to nominal link service rate (stabil-
ity condition). We note that the interesting area is when

c < α < c /E [R] ,
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Fig. 8. The packet loss probabilityp according to (15) form =
2, 3, 4, 5 flows (from lowest to highest) as a function of quantity
z = MTU/(c · RTT).

as then the arrival rate exceeds the service rate mo-
mentarily and the transmission queue builds up causing
queueing delays within the router.

The blocking probabilitywe can estimate as follows.
The average total sending rate (in packets/s) is equal to

α ·
E [R]

MTU
.

On the other hand, there are on the average

∆T

β · E [∆]

packet losses during a long time interval of∆T . Thus,

p =
MTU

αβ · E [∆] · E [R]
=

MTU

αβ · (E [∆]−E [∆2] /2)

≈

(

MTU

c · RTT

)2

·
m

E [∆]
. (15)

The behaviour of the loss probability is illustrated in
Fig. 8 for m = 2, 3, 4, 5 flows (using the flow aggrega-
tion approximation).

Example: Consider a10 Mbit/s link with MTU = 576
bytes andRTT = 20 ms, i.e.,

MTU

c · RTT
≈ 0.023.

The packet loss probabilities form = 2, 3, 4, 5 flows are

p =
(

0.0039, 0.0091, 0.016, 0.026
)

.

VI. CONCLUSIONS

We have presented an elementary model for TCP
congestion control mechanism where the focus has been
on the interactions between the concurrent TCP flows at
the microscopic level. In contrast to the previous work

on the TCP analysis, this model manages to catch the
coupling with different concurrent TCP flows correctly
(a lost packet in one flow allows higher window sizes
in the other flows). Especially, the correlation between
the consecutive time intervals between the packet losses
is modelled appropriately instead of assuming indepen-
dence among them (the usual approach). We were also
able to solve the proposed model by analytical means and
compute several key performance figures numerically.

Moreover, by using this model it is possible to char-
acterize the loss process of TCP and UDP flows sharing
the same bottleneck link. The future work includes incor-
porating unequal RTT times in the model and evaluating
the accuracy of the model against simulation results and
actual measurements from the network.
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