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Abstract— The traffic matrix estimation based on the
measurements at the certain points of a fixed network
poses an interesting problem, which has also been studied
extensively in the literature. In this paper, we consider a
similar problem in the setting of dense multihop wireless
network. In particular, we assume a large number of nodes
with multihop routes using the shortest path routing, so
that the routes can be modelled as straight line segments.
Furthermore, we assume that we are able to measure the
number of transmissions occurring in the different parts
of the network during the measurement periods. In this
setting we study the problem of inferring the end-to-end
traffic demands (traffic matrix) based on the available
information. As this information is not sufficient we make
some additional Poissonian assumptions on the nature of
the traffic in order to have a well-defined problem with a
unique solution. Analysing the problem in the framework
of stochastic geometry, we are able to give an exact solution
for the formulated traffic matrix estimation problem. The
methodology is further illustrated by numerical examples.
Index Terms— traffic matrix, dense wireless multihop net-
work, sensor networks, Poisson point process

I. INTRODUCTION

The knowledge on the traffic matrix is valuable in-
formation for the IP network operators as it is the
prime input parameter for making decisions both on the
network design and also on how the current network
should be operated. The topic has been studied exten-
sively since the publication [1] by Vardi where the term
“network tomography” is used to describe the problem
of inferring the information on the end-to-end traffic
demands based on the partial information. For details on
different approaches and problem formulations we refer
to [2], [3], [4].

The same fundamental question can be presented also
for multihop wireless networks (MWN), i.e., based on
the “link activity” measurements what can we infer on
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the end-to-end traffic demands between the different
locations or parts of the network. The possible applica-
tions for this problem include both civilian and military
applications. For example, in military radio reconnais-
sance one important task is to obtain the information on
how the enemy units communicate. The necessary data
for the analysis can be collected by a sensor network
deployed, e.g., by an airplane flying over the enemy
territory. Similarly, in a multihop mesh network or in a
sensor network, the knowledge of the end-to-end traffic
demands may be useful, e.g., for the load balancing or
network design purposes.

In this paper we will present a framework based on the
stochastic geometry for inferring the end-to-end traffic
demands in a large scale MWN from the information
on the transmission activities in the different parts of
the network. The taken continuum approach is a valid
assumption for a dense MWN. For sparse MWNs, with
a smaller number of nodes, the presented approach still
provides a viable approximation for studying end-to-end
traffic demands.

The rest of the paper is organized as follows. In
Section II we describe the assumptions made on the
wireless network and the means how the measurements
are conducted. In Section III the mathematical frame-
work is presented together with the necessary results.
Section IV contains the formal problem formulation
and the exact solution to it. The framework is further
illustrated by numerical examples in Section V, and
Section VI concludes the paper.

II. M ODEL

We consider a dense multihop wireless network
(MWN), where, the nodes can be assumed to exist “ev-
erywhere” and the transmission range is several orders of
magnitude smaller than a typical distance between two
given nodes. At this limit the route taken by a packet can
be modelled as a continuous path from the source to the
destination. Moreover, if we assume the shortest paths
routing, then the routes correspond to the line segments
between the origin-destination pairs [5], [6], [7], [8].
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A. Measurements

In a fixed network one typically can measure the
link loads (or link packet counts), i.e., we know the
point-to-point traffic volumes between the neighbouring
nodes (considering the nodes as neighbours if there
is a link between them). However, the situation with
traffic measurements in a wireless multihop network is
quite different from the traditional fixed networks. In a
wireless environment one uses broadcast transmissions
and it is not possible to identify the receiver (or even
the transmitter in our case). Consequently, the direction
of the traffic must be inferred by indirect means.

We assume that the measurement data is based on the
observations of the transmission events in different parts
of the network. The actual content of the packets and, in
particular, their source and destination are not known to
us. For example, the packets may have been encrypted.
And, as mentioned already, we are not able to identify the
local direction of the packet, i.e., at each (measurement)
point we only know the number of packet transmissions
that occurred during the measurement time interval in
the given neighbourhood. This information allows as to
estimate the local traffic load in the measurement points.
By traffic load we mean, roughly speaking, the rate
of transmissions occurring in the neighbourhood of the
given node. We will give a more formal definition for the
traffic load later in Section III. Finally, we assume that
the retransmissions are so rare that they can be neglected,
or that we can identify them somehow and count each
packet only once (in the corresponding neighbourhood).

The actual measurement data is as follows. Letn
denote the number of measurement points (or devices)
deployed in the given area. Using thesen devices we
have conductedK independent measurements, where at
each measurement point we have counted the number
of transmissions that occured in the neighbourhood of
the given measurement point (for simplicity we assume
that each packet is counted only once). Hence, our
sample set consists ofK · n values each representing
the transmission activity in the neighbourhood of a given
node during a certain time interval∆t. Let vectorsm(k)

denote the number of packets observed inn different
measurement points during thekth time interval,k =
1, . . . K. Then, the mean number of packets observed in
different points is given by

m̂ =
1

K

K
∑

k=1

m
(k), (1)

and the corresponding covariance matrix is given by,

Σ̂ =
1

K

K
∑

k=1

(m(k) − m̂)(m(k) − m̂)T. (2)

III. M ATHEMATICAL FRAMEWORK

Next we will give some mathematical definitions and
results which allow us the model and analyse the traffic
flows in MWN. In the limit of dense (wireless) network
the traffic matrix and traffic load can be expressed using
continuous functions. Thus, it is natural the define the
traffic matrix as follows:

Definition 1 (traffic matrix) The traffic matrix, de-
noted byλ(r1, r2) defines the rate at which packets are
generated from a small area ofdA aroundr1 to a small
area ofdA aroundr2.

The total packet generation rate in the network is simply,

Λ =

∫

A

∫

A

λ(r1, r2) d2
r2 d2

r1, (3)

whereA corresponds to the area (in plane) where the
network is located. As a part of our earlier work, in [7],
[8], we have formulated the spatial traffic load in this
setting as follows:

Definition 2 (traffic load in dense multihop network)
Traffic load, denoted byΦ(r), is the scalar packet flux.

A computational formula for the (scalar) packet flux
in a dense MWN is given in [7] and [8], and here we
briefly restate the definitions and the relevant results for
our purposes.

Let a(r, φ) denote the distance fromr to the boundary
of A in direction φ. The angular packet flux, denoted
by ϕ(r, φ), corresponds to the the rate at which packets
arrive from a differential angle interval(φ, φ+dφ) across
a perpendicular differential line segment atr divided by
the differential angledφ and the length of the differential
line segmentds. This is illustrated in Fig. 1. Thus, the
angular flux corresponds to the packet flux per unit angle,
per unit distance, and per unit time. As explained in [7]
the angular flux is given by

ϕ(r, φ) =

a1
∫

0

a2
∫

0

λ(r1, r2) · (t1 + t2) dt2 dt1 (4)

where r1 = r + t1 · (cos φ, sin φ), r2 = r + t2 ·
(cos(φ + π), sin(φ + π)), and a1 = a(r, φ) and a2 =
a(r, φ + π) correspond to the distance to the boundary
from r in the directionsφ + π andφ, respectively (see
Fig. 1). Consequently, thescalar packet flux is obtained
by taking an integral of (4) over all the possible angles,

Φ(r) =

2π
∫

0

a1
∫

0

a2
∫

0

λ(r1, r2) · (t1 + t2) dt2 dt1 dφ. (5)
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Fig. 1: The angular flux is the rate at which packets
originating from the shaded area cross the differential
perpendicular line segment at r divided by the
differential angle dφ and the length of the differential
line segmentds.

For details we refer to [7], [8]. We note that the concept
of packet flux is similar to fluxes encountered in physics
(see, e.g., [9]). For example, we have

Φ(r) = n(r) · v(r), (6)

wheren(r) is the packet density (per unit area) andv(r)
a constant (local) velocity at pointr. Moreover, for small
values ofd we can estimate the arrival rate of packets
into a r-centric disk with radiusd by

q(r, d) ≈ 2d · Φ(r), (7)

which justifies the use of the packet flux as the measure
of the traffic load in a dense MWN.

A. Common traffic

Next we will derive an expression for determining the
rate of packets, which are seen by two different nodes
with reception ranges equal tod. To this end, consider
two small non-overlapping disks with radiusd at points
r1 and r2 corresponding to the observation areas. The
situation is illustrated in Fig. 2.

The common traffic, corresponding to the packets trav-
elling through both disks, can be obtained by considering
the angular packet flux. Letφ denote the direction ofr2

from r1, a1 = a(r1, φ+ π) anda2 = a(r2, φ). Note that
here the role ofa2 has changed a bit, i.e.,a2 corresponds
to the distance to the boundary fromr2 (not from r1).
Consider next the packets which travel first through the
disk at r2, and then later through the disk atr1. The
height of the perpendicular “target area” atr1 is 2d
(cf. ds in Fig. 1). Similarly, the differential angledφ
from which the packets behind the disk atr2 may arrive
is equal to2d/t. Moreover, from (4) we can identify
that the fraction of the angular flux originating from a
distance further thant,

t = |r1 − r2|,
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Fig. 2: The rate of packets originating behind the
disk at r2 and travelling through the disk at r1 can
be related to the concept of angular flux.

is given by

a1
∫

0

t+a2
∫

t

λ(r1, r2) · (t1 + t2) dt2 dt1.

Multiplying the above by2d · 2d/t gives us the rate of
packets observed first by the node atr2 and then later by
the node atr1. By considering the traffic flows from the
both directions,φ andφ+π, (note that (4) is symmetric)
one obtains that the rate of packets going through both
observation areas is given by

4d2

t

a1
∫

0

a2
∫

0

s(r1−t1u, r2+t2u) · (t + t1 + t2) dt2 dt1,

wheres(r1, r2) is thebidirectional packet rate density,

s(r1, r2) = s(r2, r1) = λ(r1, r2) + λ(r2, r1), (8)

andu is a unit vector fromr1 towards tor2,

u =
r2 − r1

|r2 − r1|
.

With a slight abuse of notation, letΦ(r1, r2) denote the
common packet flux (per unit distance to power of two)
travelling through bothr1 andr2, for which we have

Φ(r1, r2) =

1

t

a1
∫

0

a2
∫

0

s(r1−t1u, r2+t2u) · (t+t1+t2) dt2 dt1,
(9)

This relation turns out to be especially useful in the
context of the traffic matrix estimation, as, together with
some additional assumptions, it allows us to differentiate
between the different traffic flows. For a constant packet
rate density,s(r1, r2) = s, (9) reduces into

Φ(r1, r2) = s · a1 a2

(

1 +
a1 + a2

2t

)

.
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Additionally, note that withs(r1, r2) the expression for
the packet flux, (5), can be written as

Φ(r) =

π
∫

0

a1
∫

0

a2
∫

0

s(r1, r2) · (t1 + t2) dt2 dt1 dφ. (10)

IV. PROBLEM FORMULATION

In [7] we have studied the resulting traffic load in
a dense MWN when the end-to-end traffic demands are
known and the shortest paths are used. In [8] this work is
taken further by considering the load balancing problem
by using curvilinear paths instead of the shortest paths.
In this paper we address the inverse problem, i.e., we
try to determine the end-to-end traffic demands based
on the knowledge on the traffic load in different parts
of the network. In order to keep the problem tractable
we assume that the shortest paths, corresponding to line
segments, are used, and that the reception range of the
nodes is constant (or known which allows the scaling
the measured packet rates to equivalent rates). We are
interested in findingλ(r1, r2) in (5) for a given packet
flux Φ(r), for which we have the obvious estimate,

Φ̂(r) = m(r)/(2d · ∆t).

As we have no means to differentiate between the
packets travelling fromr1 to r2 and packets travelling
the opposite direction, fromr2 to r1, we have to settle us
with estimating the rate of bidirectional traffic,s(r1, r2),
given by (8) instead of the actual traffic matrixλ(r1, r2).

It is easy to convince oneself that, without making
any additional a priori assumptions, the problem of
determining the (bidirectional) traffic matrix based on
the knowledge of the spatial packet flux is strongly
underdetermined and the solution is not unique. Firstly,
the measurements are essentially a function fromR

2 to
R, while the quantity we are interested in is a function
from R

2×R
2 to R. Secondly, any path carrying a certain

amount of information can be split into several parts
which together have the same contribution to the traffic
load distribution. Thus, we have to make additional
assumptions in order to have a well-defined problem with
a unique solution.

A. Poisson point process

In particular, let us assume that during the observa-
tion period the number of packets (or bits) transmitted
between two locations obeys Poisson distribution with
some parameter and that the different traffic flows are
independent. More precisely, we assume that the packet
arrival process corresponds to a non-uniform Poisson
point process inR

2 × R
2 with unknown intensities

λ(r1, r2). In other words, letX(r1, r2; t1, t2) denote the
number of packets sent from the differential areadA
aroundr1 to the differential areadA aroundr2 during
a time interval of(t1, t2). Then, we assume thatX1 =
X(r1, r2; t1, t2) andX2 = X(r′1, r

′
2; t

′
1, t

′
2) obey Poisson

distributions with parametersλ(r1, r2) · dA2 · (t2 − t1)
and λ(r′1, r

′
2) · dA2 · (t′2 − t′1), respectively. Moreover,

if r1 6= r
′
1 or r2 6= r

′
2 or the time intervals(t1, t2) and

(t′1, t
′
2) do not overlap, thenX1 andX2 are independent.

The key property we will utilize is the independence.
Let {Xi} be a set of independent random variables,
and A =

∑

i∈IA
Xi, and B =

∑

i∈IB
Xi. Then the

covarianceCov [A, B] is simply the sum of the variances
of the common terms,

Cov [A, B] =
∑

i∈IA∩IB

V [Xi] .

For Poisson random variableXi ∼ Poisson(λi) we have
E [Xi] =V [Xi] =λi, and consequently

Cov [A, B] =
∑

i∈IA∩IB

λi.

Note that the assumptions on the nature of the traffic are
essentially the same as in [1] for the fixed networks.

B. Traffic matrix estimation problem

For our model of MWN, (5) gives the mean packet rate
seen atr, and (9) the mean rate of the common traffic
seen at two different locationsr1 andr2. Consequently,

E [m(r)] = 2d · Φ(r) · ∆t,

E [m(r1, r2)] = 4d2 · Φ(r1, r2) · ∆t.

Note that the above relations depend only on the (mean)
end-to-end traffic demandsλ(r1, r2). Moreover, as we
are not able identify the packets, we cannot measure the
common trafficm(r1, r2) directly. On the other hand,
with the Poissonian assumption for the traffic we have

m(r) ∼ Poisson(2d · Φ(r) · ∆t),

m(r1, r2) ∼ Poisson(4d2 · Φ(r1, r2) · ∆t).

Moreover, the covariance between the packet counts
measured at two different locations,r1 andr2, is equal
to the expected mean number of common packets, i.e.,

Cov [m(r1), m(r2)] = 4d2 · Φ(r1, r2) · ∆t. (11)

By performing enough measurements we can, in theory,
estimate bothΦ(r) andΦ(r1, r2). Thus, we can formu-
late the traffic matrix estimation problem as follows:

Definition 3 (traffic matrix estimation problem)
Find such end-to-end traffic demandss(r1, r2) for a
given scalar packet flux,Φ(r) and a common packet
flux, Φ(r1, r2), that satisfy both(10) and (9).
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C. Solution

Consider an arbitrary line segmentℓ = ℓ(r1, r2)
cutting the areaA from boundary to boundary on which
points r1 ∈ A and r2 ∈ A reside. LetL denote the
length of the line segmentℓ, andr1 and r2 denote the
distance from the arbitrarily chosen end point ofℓ to the
pointsr1 andr2, respectively. Without loss of generality
we can assume that0 < r1 < r2 < L, and (9) becomes

z(r1, r2) =

r1
∫

0

L
∫

r2

s(t1, t2) · (t2 − t1) dt2 dt1, (12)

where
z(r1, r2) = (r2 − r1) · Φ(r1, r2).

Taking the partial derivate of (12) in respect to bothr1

andr2 yields

s(r1, r2) = −
1

r2 − r1
·

∂2

∂r1∂r2
z(r1, r2), (13)

which is an explicit formula for computing the end-
to-end traffic demand densities,s(r1, r2), for a given
Φ(r1, r2) (the measurement data).

D. Finite number of measurements

Assume next that instead of having unrealistically
distributed the measurement devices everywhere, we
have only deployed a finite set ofn devices, as illustrated
in Fig. 3. The assumption of a dense MWN implies that
the distance between any two measurement devices is
large when compared to the length of a typical hop.

Let the ri denote the locations of the measurement
devices inA, and random variablesmi the corresponding
measured packet counts during a time interval of∆t. A
straightforward approach is to use the linear interpolation
to estimate the packet countsm(r) outside the measure-
ment points{ri}. Then, for eachr ∈ A we have

m(r) =
∑

i

ai(r) · mi,

where the sum of the interpolation constantsai(r) is
equal to1. The covariance is linear and we obtain

Cov [m(r1), m(r2)] =
∑

i,j

ai(r1) aj(r2)Cov [mi, mj ] ,

and consequently,

Φ̂(r1, r2) =
1

4d2 ∆t

∑

i,j

ai(r1) aj(r2)Cov [mi, mj ] . (14)

Let Σ denote the covariance matrix withCov [mi, mj]
as its elements, anda(r) the row vector consisting of

1 2 3

87

4

9

65

Fig. 3: Example: 3×3-measurement grid andd=0.1.

the linear interpolation weightsai(r). Then (14) can be
written in matrix form,

Φ̂(r1, r2) =
1

4d2 ∆t
a(r1)Σa(r2)

T (15)

Combining (13) with (14) (or (15)) allows us to deter-
mine the end-to-end traffic demand densities,s(r1, r2),
between any two given locationsr1 and r2. Note that
even though (13) is an exact result, there are two sources
in the proposed approximation contributing to the overall
error: 1) the finite number ofn measurement points
causing inaccuracy in the areas between the measure
points, and 2) the finite number ofK measurements
causing inaccuracy in the estimate for the covariance (2).

V. NUMERICAL EXAMPLES

The numerical examples assume a regularm×m-grid
depicted in Fig. 3 with a measurement node located
in the middle of each cell. Thus, there are in total
n = m2 measurement points and, consequently,m4

cross-covariances between the measurement points. For
simplicity, and due to the lack of space, we will only
briefly describe two simple examples with a3 × 3 grid.

A. Uniform traffic demands

The first example is with the uniform end-to-end traffic
demands. The nodes are enumerated as illustrated in
Fig. 3 and the area is also3 × 3. The reception range
is assumed to bed = 0.1. The traffic rate density
is a constant,λ(r1, r2) = 1, the measurement time
interval ∆t = 1 and the number of samples isK =
100000. With these, the (normalized) theoretical cross-
covariances corresponding to the amount of common
traffic between the number of observed packets in node
1 and nodei, i =, 2, . . . , 9 are
(

1.50, 0.31, 1.50, 3.00, 0.39, 0.31, 0.39, 0.63
)

,

while the numerical simulation gives,
(

1.57, 0.38, 1.44, 2.47, 0.54, 0.44, 0.59, 0.60
)

.

The resemblance is obvious even though the scenario is
rather far from the assumptions of the model.
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B. Mesh network with gateway nodes

Mesh networks are a special case of the general
problem. The mesh network consists of one (or few)
gateway nodes which are connected to the backbone
network (e.g., Internet). All the traffic in the network
can be assumed to be between the nodes and the gate-
way(s), i.e., at each point of the network (except at the
gateways) the packets are traversing either to or from the
nearest gateway. This is in strike contrast to the previous
example, where no node has a special role.

In this case, it should be rather easy to identify the
locations of the gateways as they correspond to the
local maximums of the traffic load (i.e., the packet flux).
Moreover, when moving radially away from the gateway
and considering the rate at which traffic load decreases
one can determine the rate of packets between the current
position and the gateway.

In the example we have located the gateway node in
the middle with the measurement point5. The theoretical
(normalized) covariances between node5 and nodei are

(

1.25, 0.625, 1.25, 0.625, −, 0.625, 1.25, 0.625, 1.25
)

,

while the similar simulation setup gives
(

1.033, 0.858, 1.027, 0.852, −, 0.835, 1.001, 0.848, 1.046
)

.

Other cross-covariances were close to zero, which is
also the correct behaviour as in this case there is no
common traffic between the other node pairs.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an analytical framework for esti-
mating the traffic matrix in a wireless environment based
on the transmission rates measured in the different parts
of the network. In particular, we have assumed a dense
wireless multihop network where a typical distance be-
tween two nodes is several magnitudes longer than the
transmission range. In this limit, the paths the packets
traverse can be assumed to be straight line segments.
The analysis is carried out in the framework of stochastic
geometry. The packet arrival process is modelled us-
ing a Poisson point processes in4-dimensional space
corresponding to the origin-destination pairs in a two-
dimensional areaA the network is located in.

In this setting, the spatial traffic load can be related
to a concept of (scalar) packet flux. Together with the
Poissonian assumptions, we were able to give an exact
expression for the covariance between the measured traf-
fic volumes in two different locations of the network as
a function of the end-to-end traffic demands. The traffic
matrix estimation problem is the inverse problem, i.e.,
the problem of inferring the end-to-end traffic demands
from the knowledge of the traffic volume statistics in the

different locations of the network. For this we were able
to give an explicit result.

The exact result relies on the capability to measure
the scalar packet flux in all pointsr∈A, which is a
rather unrealistic assumption. Instead, in a more realistic
scenario a finite number of measurement devices have
been deployed in the area of interest. By using linear
interpolation between the measurement points we were
able to give an explicit expression for the end-to-end
traffic demands also in this case. The finite number of
measurement points and samples implies inaccuracy to
the estimate, which is a topic of future research.

The approach taken in this paper shares the similar
Poissonian assumptions on the nature of traffic as the
methodology developed by Vardi in [1] for the traffic
matrix estimation in fixed networks. Since then several
other approaches have been proposed in the context of
fixed networks. The future research includes studying
the applicability of such approaches for the traffic matrix
estimation problem in wireless multihop networks.
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