
Criticality of Large Delay Tolerant Networks via
Directed Continuum Percolation in Space-Time
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Abstract—We study delay tolerant networking (DTN) and in
particular, its capacity to store, carry and forward messages to
their final destination(s). We approach this broad question in
the framework of percolation theory. To this end, we assume an
elementary mobility model, where nodes arrive to an infinite
plane according to a Poisson point process, move a certain
distance `, and then depart. In this setting, we characterize the
mean density of nodes required to support DTN style networking.
Under the given assumptions, we show that DTN communication
is feasible when the mean node degree ν is greater than 4 · ηc(γ),
where parameter γ= `/d is the ratio of the distance ` to the
transmission range d, and ηc(γ) is the critical reduced number
density of tilted cylinders in a directed continuum percolation
model. By means of Monte Carlo simulations, we give numerical
values for ηc(γ). The asymptotic behavior of ηc(γ) when γ tends
to ∞ is also derived from a fluid flow analysis.

Index Terms—DTN, capacity, percolation, criticality, mobility

I. INTRODUCTION

Delay-tolerant networking (DTN) is a last-resort networking
paradigm for mobile nodes when direct and multi-hop con-
nections are infeasible, i.e., the network is not connected and
nodes have to carry the messages to the next node (store-carry-
forward). We study the capacity of DTN to deliver a message
to its destination(s) in the framework of the percolation theory.
To this end, we assume an elementary mobility model where
nodes arrive according to a Poisson point process on a plane,
move a certain distance `, and then depart. Nodes perform
epidemic routing, i.e., whenever two nodes meet, all messages
are exchanged [6]–[8]. We are interested in finding the cir-
cumstances under which the lifetime of a message becomes
infinite (with some positive probability) so that the message
could reach a recipient located at an arbitrary distance from
the source. We obtain a fundamental criticality condition that
characterizes the sufficient mean density of nodes to this end.
The criticality condition takes form ν > νc(γ) = 4 ηc(γ),
where ν denotes the mean node degree (number of neighbors),
γ is the ratio of ` to the transmission range d, and ηc(γ) is
an unknown function, which we determine in this paper.

For a mobile DTN, we find that νc(γ) ≤ 1.52 for all
γ. In contrast, (non-DTN) multi-hop ad-hoc communication
becomes feasible only at ν ≈ 4.51, where a gigantic connected
component emerges [1]. In other words, DTN communication
is possible over a very sparse network provided that the
network’s topology changes in time. A convenient character-
ization in fact is to say that DTN is a network that is super-
critical in space-time. In practice, DTN is often sub-critical at

a random time instant and the messages reach the destinations
through the store-carry-forward routing in space-time.

This work is motivated by different opportunistic network-
ing schemes. One such scheme is Floating Content, where
nodes replicate messages only within the area where each
message is deemed relevant. A criticality condition for long
mean message lifetime was established in [2] assuming mobile
nodes and point contacts (a short transmission range compared
to the dimension of the area). Similarly, in Beachnet [3] the
aim is to produce quasi-periodic “information waves” carried
by an underlying field of immobile nodes (say, devices on a
beach). Similar concepts for one-to-many content dissemina-
tion include hovering information [4] and ad-hoc podcasting
[5], but our model naturally covers the special case of one-
to-one messaging. DTN-style communication introduces many
interesting problems. Perhaps the most fundamental question
is whether a network can transport messages to their intended
destinations or not, and this is also our focus in this paper.

Percolation theory [9], [10] has been succesfully applied to
study the performance of wireless multi-hop networks since
the early work by Gilbert [11]. Similarly as in [11], most of the
work utilizes undirected planar continuum percolation models
to argue, e.g., about the network’s connectivity or capacity. In
contrast, in [12], we assumed stationary nodes and showed that
opportunistic content dissemination schemes can be analyzed
by using a three-dimensional continuum percolation model.
The third dimension is time and, due to the causality, only
the post-contact part of an object belongs to the given cluster.
We adapt the same approach, but instead of approximating
the process by undirected percolation model, we consider the
actual directed percolation characterizing the dissemination of
messages by mobile nodes exactly in a DTN network. In this
setting, we obtain a fundamental result for the minimum mean
node degree for DTN communication as a function of the ratio
of movement to the transmission range.

II. MODEL AND NOTATIONS

Let us start by describing the model, including the arrival
process, nodes’ mobility and the assumptions regarding the
radio communication. Throughout this paper, we implicitly
assume a large network and a long distance, either in space
and/or in time, between the source and the destination.

1) Node mobility: We assume that nodes arrive according
to a Poisson point process on an infinite plane with rate
density λ [node/m2/s]. Mobility is specified by distance ` and
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Figure 1: Node mobility in space-time: (left) during time t, a node
moves a distance of ` = L to a random direction in (x, y)-plane and
departs. (right) The volume covered corresponds to a tilted cylinder.

time duration t: during time t nodes move distance ` to a
random direction (isotropic), and depart. Both ` and t are
fixed. The arrival-departure cycle can be interpreted as the
time when a mobile node is participating in the DTN activity,
e.g., the “departure” can correspond to an information content
replacement event in the node. The node density in plane is

ñ , λ · t,

In the basic case, ` = 0 and the nodes remain stationary for
the time t and depart. The node mobility model applies to the
intermediate nodes, while the source and destination node can
be two permanent nodes located far apart from each other.

2) Information dissemination: Whenever two nodes are
within each others’ transmission range d, they immediately
exchange the messages. The fixed transmission range is often
referred to as the Gilbert’s disc or boolean model [11]. The
mean number of neighbors a node has, i.e., the mean node
degree, is ν = ñ · πd2. In the percolation theory, two objects
are connected if they overlap and thus the corresponding radius
r is half of the transmission range,

r = d/2.

3) Space-time: The movement and the radio coverage of a
node in space-time, comprising (x, y)-plane and the time axis,
are depicted in Fig. 1. The radio coverage at any time instant
is a disc. As nodes move in time, the coverage in 3D space-
time is a sheared cylinder. The tilt of the cylinder is defined
by the ratio of the movement to the transmission range,

γ ,
`

d
=

`

2r
.

Somewhat counter-intuitively, the number density of nodes
(cylinders) in space-time is equal to the arrival rate λ,1

n = λ.

Instead of number density, the density of objects is often
expressed using either the reduced number density η,

η , n · V,

where V is the volume of the shape, or the volume fraction
φ, for which it holds that φ = 1− e−η .

In our case, V = πr2 ·t independently of γ. Without lack of
generality, we can scale the space-time. The time axis can be

1Consider a volume V = AT , with area A in (x, y)-plane and height T .
The mean number of nodes in V is λV , i.e., the node density n is λ.
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Figure 2: Small sample realization with γ=1 and η=0.3.

scaled by constant α, e.g., so that t = 1. Similarly, the (x, y)-
plane can be scaled by constant β, e.g., so that 2 · `+ d = 1.
The ratio γ is clearly invariant under such scalings. Similarly,

n ∝ α−1β−2 and V ∝ αβ2,

and thus also the reduced number density η = n · V and the
volume fraction φ are invariant.

III. ANALYSIS

In this section, we study the percolation model characteriz-
ing the dissemination of a message in space-time, estimate the
the critical percolation threshold by Monte Carlo simulations,
and derive an asymptotic scaling law for the threshold.

A. Directed continuum percolation

We consider a dynamic system in space-time, where each
node corresponds to a (tilted) cylinder as depicted in Fig. 1.
Two nodes can communicate whenever the distance between
them is less than the transmission range d. The process
describing the evolution of a message in the infinite plane
corresponds to a directed continuum percolation of aligned
(sheared) cylinders in three dimensions [12]. The radius r
of the cylinders with respect to percolation is d/2, and the
holding time t corresponds to the height of the cylinders. The
moment two r-cylinders touch each other, messages can be
transmitted. The causality imposes that the information flows
only in the direction of the positive time axis.

To illustrate the directed percolation, consider a sample
cluster depicted in Fig. 2 with mobile nodes. The time axis
points towards the top-right corner and due to the mobility,
cylinders are not aligned along the time axis. The dark red
node (cylinder) indicates the source, light yellow color means
that a node has not yet obtained the message, and the green
color means that the node has it (at the given time). Nodes
never obtaining the message have been omitted for clarity. The
information “flows” only in the positive direction of time.

Formally, let a  b denote that a path from node a to
node b exists in space-time in the sense that a could send a
message to b (potentially via a multi-hop connection). Due to
the causality,  is not a symmetric relation,

a b ; b a.

Moreover,  is not even transitive,

a b and b c ; a c,
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as a message from a to b may arrive too late for b to deliver
it to c. Let S(a) denote the set of nodes reachable from a,

S(a) = {b : a b}.

We are interested in the size (i.e., the cardinality) of S(a), and
let random variable S, cluster size, denote this quantity,

S , |S(a)|.

When the number density of the cylinders (in space-time) is
above the critical threshold, denoted by nc, there is a positive
probability that a random cylinder reaches an infinite cluster.
Mathematically the critical percolation density is defined as,

nc , inf{n | P{S =∞} > 0}.

This means that with a positive propability a message get
distributed “everywhere” instead of becoming extinct. The
critical density is often expressed using either the critical
reduced number density ηc or the critical volume fraction φc,
which are both invariant to scaling as explained earlier. It
depends on the shape and the alignment of the objects. For the
tilted cylinders, the critical density depends on the tilt ratio,
ηc = ηc(γ). Formally,

ηc(γ) , inf{η | P{Sγ =∞} > 0}. (1)

Two larger sample clusters are shown in Fig. 3. The cluster
on the left is finite and the message goes to extinction after
some time, while the cluster on the right appears to lead to an
infinite cluster, i.e., the system percolates implying2 η > ηc.

The volume of the cylinders is V = πr2t and the number
density in space-time is n = λ. Thus, η = πr2 · λt, yielding

ν = 4 η. (2)

For the criticality condition we have

νc(γ) = 4 ηc(γ). (3)

An infinite cluster with respect to the directed percolation
is an infinite cluster also with respect to the undirected perco-
lation. In [12], we already determined the critical undirected
percolation threshold for aligned cylinders, η∗c = 0.3312(1),
which thus serves as a strict lower bound for the directed
percolation with ` = γ = 0, i.e., ηc(0) > η∗c (0) = 0.3312(1).

DTN network percolating in space-time means that there is
a positive probability that a message can reach destinations
arbitrarily far (in space). In this sense, the criticality condition
(3) is a fundamental result for the transport capacity of DTN.

B. Methodology

An elegant way to determine the percolation threshold is
based on the asymptotic behavior of the cluster size S. In
particular, the tail behaves according to

P{S ≥ s | η} ∼ As2−τ f((η − ηc)sσ),

2What happens when η = ηc is not known in general, but for η < ηc, by
definition, no infinite cluster emerges.

η = 0.37. η = 0.40.

Figure 3: Sample realizations of message dissemination with station-
ary nodes. (Left) a finite cluster of 33 nodes obtained with η = 0.37.
(Right) a higher number density η = 0.40 enables percolation.

where τ and σ are the so-called universal exponents and A is
some (non-universal) constant. In three dimensions [13],

τ = 2.18906± 0.00006,
σ = 0.4522± 0.0008.

(4)

Near the percolation threshold, where η ≈ ηc. The Taylor
series for f(x) is f(x) = 1 +Bx+ . . ., which gives

P{S ≥ s | η} · sτ−2 ∼ A+AB(η − ηc)sσ + . . . ,

i.e., the quantity on the left-hand side becomes a constant when
η = ηc. The critical ηc is then determined as follows [12],
[14]–[16]. First one collects a large sample set of cluster sizes
and stores the results to bins so that the kth bin, denoted by
Bk, corresponds to the number of samples with cluster size
s ≥ 2k. For η = ηc, the quantity Bk · (2k)τ−2 then has a
constant tail. Thus, by trial and error such η is determined.

In general, there are fewer results for the directed percola-
tion than for the undirected case, e.g., the universal exponents
(4) may be different. In Section IV, we study the directed
percolation by Monte Carlo experiments and observe that the
universal exponents appear to be the same.

C. Asymptotic behavior
Before proceeding with the numerical results, let us first

discuss the asymptotic behavior when the distance ` is much
longer than the transmission range d. In this case, the situation
is similar to the one analyzed in [2], [18]: contacts with other
nodes are point contacts, which occur at a constant rate of

λ̃ ,
8

π
ñd,

per unit distance on the (x, y)-plane. Near the criticality
threshold, only a small fraction of nodes carry the message.
Assuming a node meets at most one node with the message,
the contact time is uniformly distributed on interval (0, `)
along the path. In order for the system to avoid extinction,
each node acquiring the message should pass it further to at
least one other node on average. That is,

1

`

∫ `

0

s
8

π
ñ d ds > 1,

giving the fluid bound (fb),

ν > ν(fb)c (γ) ,
π2

4 γ
, (5)
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Figure 4: Numerical results with stationary nodes, γ = 0.

which is valid when γ tends to infinity. At this bound, λ̃·` = 2,
i.e., a node meets on average only two nodes before departing.
Conversely, with aid of (2), we find a scaling law for the tail,

ηc(γ) ∝ 1/γ, for γ � 1. (6)

IV. NUMERICAL RESULTS

We carried out a large number of Monte Carlo experiments
with a specifically developed simulation tool [17] in order to
determine numerical values for ηc(γ). The sample size for
each (η, γ)-pair is 60000 clusters. The parameter smax, defin-
ing the maximum cluster size, was chosen to be 220+1 ≈ 1M.

A. Stationary nodes

First we assume no mobility, γ = 0, and vary the reduced
number density, η = 0.378, . . . , 0.380, which corresponds to
the mean node degree of ν = 1.512, . . . , 1.52. If ν ≈ 4.51
or higher, Gilbert’s disc model percolates and a gigantic
component emerges (at any given time instant) enabling multi-
hop communication [1]. However, in our case the node density
is clearly below that and one has to resort to DTN-style
communication. This is illustrated in Fig. 5, where ν = 1.52
in the left figure, and ν = 4.51 in the right figure.

Recall that the percolation threshold ηc corresponds to the
smallest node density at which a gigantic component emerges,

ηc = inf{η | P{S =∞} > 0}.

Therefore, if CDF of the cluster size S remains asymptotically
below 1, lims→∞ P{S < s} = p and p < 1, then the given
system is above the percolation threshold. The quantity 1− p,
referred to as the strength, is the probability that a cluster
starting from a random node is infinite [9].

The simulation results are illustrated in Fig. 4. The left
figure depicts CDF with a logarithmic scale on the x-axis,
and the middle figure “zooms” into the interesting region. The
CDF for η = 0.378 converges to 1 right after s = 106, i.e., in
practice every realization becomes eventually extinct and no
message will be delivered indefinitely far. However, the CDF
for η = 0.379 seems to converge to a finite value less than 1,
suggesting that a small fraction of messages survives forever.
Increasing η further to 0.380 improves the chances of hitting a
gigantic cluster to about 10%, i.e., the percolation strength is
about 0.1. Consequently, our estimate for the critical density
without mobility is ηc(0) ≈ 0.379.

ν = 1.52 ν = 4.51

Figure 5: Snapshot of two networks.

Comparing the directed percolation to the undirected one,
shows that the direction constraint causes ηc to increase
from 0.3312(1) to about 0.379, i.e., about 15% increase, in
agreement with the observations made in [12].

1) Universal exponents: As mentioned, it is not clear
whether the universal exponents (4) are the same in the
directed case. Right figure uses the (undirected) universal
exponents (4), i.e., the y-axis corresponds to P{S > s} ·sτ−2.
The curve with η = 0.379 has a constant tail, which suggests
that the universal exponents indeed are the same for the
undirected and directed models. More evidence to this end
is given in [17].

B. Mobile nodes

Next we set γ = 1, i.e., each node moves a distance equal to
the transmission range before departing. The numerical results
are given in Fig. 6, which suggest that ηc(1) ≈ 0.2825, as
the curve with η = 0.282 appears to converge to 1 and the
curve with η = 0.283 stabilizes just above 0.9. In the right
graph, we again use the universal exponents and the curve
with η = 0.2825 indeed has an almost constant tail.

Recall that νc = 4 ηc according to (3). Based on our
experiments, ηc(1) ≈ 0.75 · ηc(0), which means that the node
density n and the mean node degree ν can be 25% smaller
already when the nodes move as little as one transmission
range, i.e., the mobility improves the message forwarding
capacity considerably (in space-time).

The critical reduced number density ηc(γ) for several other
values of γ is determined in [17] and summarized in Fig. 7.
The graph depicts the behavior of the critical mean node
degree νc(γ) as a function of γ. The fluid bound is according to
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Figure 6: Numerical results with mobile nodes, γ = 1.
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Figure 7: Critical mean node degree νc(γ) = 4 ηc(γ) as a function
of the tilt ratio γ characterizing the relative mobility in the model.
The fluid bound is according to (5) and valid at the limit γ →∞.

(5) and valid at the limit γ →∞. The other curve corresponds
to the critical percolation threshold, νc(γ) = 4 ηc(γ), the
values of which we have obtained numerically. The two curves
differ initially, where (5) is not valid. However, for γ ≥ 4 the
two curves are almost matching, i.e., only for small movements
one needs to analyze the situation according to the percolation,
while otherwise also the fluid flow result is accurate.

V. CONCLUSIONS

DTN is designed to operate in settings where connectivity is
intermittent at best. In this paper, we have analyzed necessary
conditions for DTN-style communication. We assumed an
elementary mobility model where nodes join the network for a
constant time t and then depart. During this time, they move a
distance ` to a random direction. We assume a large network,
where the ability to sustain a message indefinitely means that
the message will eventually also reach its final destination(s).
This stochastic model of DTN is amenable to analysis by
means of the percolation theory. In particular, we studied the
so-called directed continuum percolation in space-time, where
the objects are cylinders with height t and the diameter equal
to the transmission range d sheared (tilted) around the time
axis according to the movement `. We showed that the critical
percolation threshold depends only on the tilt ratio γ = `/d,
ηc = ηc(γ). Numerical values for ηc(γ) were obtained by
extensive Monte Carlo simulations. Some evidence to support
the hypothesis that the universal exponents are the same for
the directed and undirected models was also given. Moreover,

the asymptotic behavior of ηc(γ) when γ tends to infinity was
derived. In terms of the mean node degree ν, our main result
states that a large DTN network is operational only when
ν > 4 ηc(γ). A general observation is that increased mobility
allows a lower node density, which ηc(γ) then quantifies.
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