
Optimal Degree Distribution for LT Codes with
Small Message Length

Esa Hyytiä†
Centre for Quantifiable Quality of
Service in Communication Systems,

Norwegian University of Science and Technology,
Trondheim, Norway

Tuomas Tirronen‡
Networking Laboratory

Helsinki University of Technology
Finland

Jorma Virtamo‡
Networking Laboratory

Helsinki University of Technology
Finland

Abstract— Fountain codes provide an efficient way to transfer
information over erasure channels. We give an exact performance
analysis of a specific type of fountain codes, called LT codes, when
the message length N is small. Two different approaches are
developed. In a Markov chain approach the state space explosion,
even with reduction based on permutation isomorphism, limits
the analysis to very short messages, N ≤ 4. An alternative com-
binatorial method allows recursive calculation of the probability
of decoding after N received packets. The recursion can be
solved symbolically for values of N ≤ 10 and numerically up
to N ≈ 30. Examples of optimization results give insight into
the nature of the problem. In particular, we argue that a few
conditions are sufficient to define an almost optimal LT encoding.

I. INTRODUCTION

Digital fountain coding is a relatively new concept for
digital content distribution introduced by Byers et al. in
1998 [1]. The concept is based on an analogy to a fountain
spraying water drops, which then are collected into a bucket.
This translates into servers spraying stochastically generated
pieces of data, which receivers then collect. When a sufficient
number of packets is collected the file can be decoded. With
good fountain codes the total size of the packets needed for
decoding (on average) is close to the original size of the file,
although some overhead is necessary due to the nature of
these codes. An important characteristic of a digital fountain
is that it is irrelevant which particular packets are received.
As soon as a certain amount of the packets are received the
message can be decoded (with high probability). It should
be noted that codes enabling such fountain coding scenario
have already existed for some time, namely the Reed-Solomon
codes [2] and LDPC [3] codes to some extent. The key benefit
of recently discovered fountain codes is the low computational
complexity for even long message lengths N .

In this paper we derive the optimal degree distributions for
the so-called LT codes by using two different approaches. The
first approach is based on the observation that the decoding
process constitutes a Markov chain, and we are able to
write down closed form expressions for the mean number of

†
“Centre for Quantifiable Quality of Service in Communication Systems,

Centre of Excellence” appointed by The Research Council of Norway, funded
by the Research Council, NTNU and UNINETT. Currently E. Hyytiä is with
the Telecommunications Research Center Vienna (ftw.), Austria.

‡ The work was done in the project ABI supported by the Finnish Funding
Agency for Technology and Innovation (Tekes), Nokia and Ericsson.

packets required for decoding the message, as well as for the
probability of decoding the message after receiving exactly
N packets (the earliest time the decoding is possible). This
approach, however, is limited to N ≤ 4 due to the state space
explosion, even after the state space reduction based on the
permutation isomorphism. The alternative combinatorial ap-
proach, applicable for maximizing the probability of decoding
the message in precisely N steps, is based on the observation
that for this objective the order of arriving packets is irrelevant.
This method allows us to derive the optimal degree distribution
by a recursive algorithm for values up to N ≈ 20.

These two approaches for finding the optimal degree distri-
bution are the main contribution of this paper. The exact results
give insight into the nature of the optimization problem. In par-
ticular, we find that there are just a few important conditions
a good distribution has to satisfy. The described approaches,
however, are limited to small values of N . Another new
approach, more applicable for larger values of N , based on
the simulations and importance sampling is described in [4].
The results from simulations, however, are only approximative.

II. PRELIMINARIES

A. LT codes

LT codes proposed by Luby in [5] are the first codes fully
realizing the digital fountain concept presented in [1]. They are
rateless, i.e., the rate does not need to be fixed beforehand, and
encoded symbols are generated on the fly [6], [7].

1) Encoding of LT code: The encoding process is extremely
simple. A key element is so-called degree distribution defining
the number of blocks in each packet. Algorithm 1 shows
the encoding procedure [5]. First the degree distribution is
sampled to obtain the degree d. The output packet is then
generated by choosing d blocks from the original file uni-
formly at random and combining these blocks by bitwise
XOR operation. Stopping condition for the encoder can be
specified, e.g., by agreeing on the number of encoded packets
beforehand, or the recipient(s) can send an acknowledgement.

2) Decoding of LT codes: Decoding is done iteratively by
using information of which source blocks received packets
consist of. This information needs to be included somehow in
the procedure; different alternatives are available but are not
discussed here. First the possible known blocks are subtracted
by taking a XOR between the packet and the known block(s).

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2576

Algorithm 1 A general LT encoding algorithm

1: repeat
2: choose a degree d from degree distribution ρ(d).
3: choose uniformly at random d blocks m(i1), . . . , m(id).
4: send m(i1)⊕m(i2)⊕ · · · ⊕m(id).
5: until enough output symbols are sent.

Algorithm 2 A general LT decoding algorithm

1: repeat
2: while no degree-1 packets in buffer B do
3: B ← received packet − known blocks.
4: end while
5: m(j)← degree-1 packet from B. {j discovered}
6: for all c ∈ B : c includes m(j) do
7: c← c⊕m(j)
8: end for
9: until original message is recovered.

If the degree of the packet is still higher than 1 it consists of
several original blocks and it is stored in a buffer. If a degree-
1 packet is recovered, it is identical to an original block, i.e.,
a new block has been discovered. Next the newly discovered
block is removed from the other buffered packets including
it. If this step reveals new degree-1 packets, the decoding
continues iteratively until the original message is fully de-
coded. Otherwise the decoder has to wait for a new packet.
The decoding process is sketched in listing Algorithm 2.

Note that one input block can be just one bit or a larger
chunk, the encoding and decoding processes are the same
regardless. Moreover, the decoding is suboptimal. An ideal
decoding equates to solving a linear system of equations,
which is a computationally demanding task for large file sizes.

B. Notation

We denote the number of blocks (or input symbols) in the
message by N and the degree distribution by ρ(d). When
convenient, we also refer to the point probabilities by pj , i.e.,
pj = ρ(j). Later we will compare the performance of the op-
timized distributions to the following reference distributions:

Def.1 (Uniform): pi = 1/N, i = 1, . . . , N.

Def.2 (Degree-1): pi = 1(i = 1).
Def.3 (Binomial): pi= 1

2N−1

(
N
i

)
, i=1, . . . , N.

Def.4 (Soliton): p1= 1
N , and pi= 1

i(i−1) , i=2, . . . , N.

Binomial distribution is the standard Bin(N, 1
2) with event

0 excluded. It results from including every source block
independently with probability 1

2 , discarding an empty packet.
Let the random variable Zk denote the number of decoded

input symbols after receiving the kth packet. Initially, Z0 = 0
and at the end Zk = N . The random variable T denotes the
number of packets needed for decoding the original message,

T = min
k

{k : Zk = N}.
The earliest time when the decoding process can finish is when
the N th packet arrives and thus T ≥ N . Moreover, we let PN

denote the probability that a message consisting of N blocks
is successfully decoded with exactly N received packets,

PN = P {ZN = N} = P {T = N} .

III. MARKOV CHAIN APPROACH

The decoding process can be studied as a Markov chain
[8]. From the receiver’s point of view, the set of received
and either partially or fully decoded packets denotes a state.
State transition probabilities depend on the arrival probabilities
of specific packets, which in turn depend on the degree
distribution used in the encoding. The process ends when it has
reached the absorbing state consisting of the original blocks.
For example consider a file consisting of three blocks a, b, and
c. When a receiver has already received a packet consisting
of block a and another one of blocks b and c, the process is
in state {a, bc}. The state {a, b, c} is the absorbing state.

The number of possible distinct packets is 2N − 1 (i.e. the
number of the subsets of a set with N elements, excluding the
empty set). The number of different sets of received distinct
packets is then 22N−1 (including the initial state). We call this
the number of raw states. For N = 3 this number is 128, for
N = 4 it is 32768, and the number grows very fast with N .

A. Reduction of the state space

The state space of the Markov chain describing the decod-
ing process, however, needs only include the states that are
irreducible in the sense that they cannot be reduced by the
decoder. For instance the raw state {a, abc} is not included
as decoding reduces it to the state {a, bc}. This decreases the
number of states remarkably. Further reduction is possible by
observing that if a sample path of the process is modified by
permuting the original blocks then the resulting sample path is
isomorphic to the original one. The transition probabilities in
these two sample paths are identical. This is due to the fact that
in the encoding process, after the degree d is drawn, d distinct
blocks to be combined by the XOR operation are drawn
randomly from the set of N blocks. Correspondingly, any two
states that can be obtained from each other by a permutation
of the original blocks are isomorphic. For instance, the states
{ad, abd, acd} and {bd, abd, bcd} are isomorphic. In contrast,
{ad, abd, acd} and {ad, abd, bcd} are two non-isomorphic
states. It is enough to include in the state space a single unique
canonical representative from each class of isomorphic states.

Using the above reduction schemes the number of states can
be brought down to 12 for N=3 and to 192 for N=4. Systems
of this size are amenable to numerical analysis. For N=5,
however, even the reduced state space has 612224 states, which
is too much to be conveniently handled, and for N>5 the task
is overwhelming. The 12 different states of the case N=3
are shown in Fig. 1 as the darker blocks. The lighter blocks
represent intermediate states that are immediately reduced.

Still further reduction is possible by special tricks. For
instance, all states that have the property that an arrival of any
degree-1 packet will lead to full decoding can be aggregated
to a single macro state. Transitions between states within this
macro state signify just a self-transition of the macro state.
In Fig. 1, the four states in the box, {ab, bc}, {ab, ac, bc},
{ab, ac, abc}, and {ab, ac, bc, abc}, constitute such a macro
state.The corresponding reduced state space sizes for the cases
N = 3, . . . , 5 are 9, 87 and 161065, respectively.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2577

(1/3)p2

(2/3)p2

(2/3)p1

p2

p3

(2/3)p1

p3

p1

(2/3)p2

(2/3)p1

p1

(2/3)p2

p2

p3p1

(1/3)p1

(1/3)p1

p3(1/3)p2

p3 (1/3)p2

(2/3)p2

(2/3)p2

(2/3)p1

p3

(1/3)p1

{a,ab,abc}

{}

{a,b,c}

{abc}{ab}{a}

{ab,abc}{ab,bc}{a,b}

{a,b,c}

{a,bc} {a,ab} {a,abc}

{a,b,abc} {ab,bc,c}{a,b,ac}

{a,bc}{a,b} {ab,bc}

{ab,ac,bc,abc}

{ab,bc,abc}{ab,ac,bc}

Fig. 1. State transitions in the decoding Markov chain for n = 3 blocks.

The state transition probability matrix P for the Markov
process with the reduced state space can be constructed easily,
e.g., by using Mathematica [9]. First, one finds the canonical
representative of each class of states. Then, for each state s
in the reduced state space and each possible packet p, one
determines the resulting state s′ in the reduced state space,
and updates the transition matrix appropriately.

B. Optimizing the degree distribution

We consider two different optimization criteria for the de-
gree distribution. A natural objective is to minimize the mean
number of packets needed to successfully decode the message.
Alternatively one may wish to maximize the probability of
successful decoding after reception of N packets.

Using the state transition matrix P we can calculate the
average number of sent packets needed to recover the whole
original file. This Markov chain has now the state where all
blocks are decoded as an absorbing state. In the example with
three blocks, using the notation presented, this state is {a, b, c}.
As this Markov chain is clearly finite, it can be written in the
following canonical form:

P =
(
Q R
0 I

)
,

where Q is the transition matrix between transient states, R
represents transitions from transient states to absorbing ones
and I is identity matrix corresponding to the absorbing states.
In our case, there is just one absorbing state and the identity
matrix I reduces to a 1×1 matrix. Now the fundamental matrix
M = (I − Q)−1 is well-defined with all elements positive
and represents all possible transition sequences in the transient
states without going to the absorbing one. A specific element
mij in M tells the mean number of visits in state j before
absorption when starting in state i. Using the fundamental
matrix, average number of steps can be calculated as follows

E [T] = π0MeT = π0(I − Q)−1eT = π0A−1eT, (1)

where π0 = (1 0 . . . 0) is the initial distribution vector
corresponding to an empty system, eT = (1 . . . 1)T, and
A = I − Q. Similarly we can calculate the probability of
success PN after receiving N packets. This is given by the
probability of the absorbing state after N steps,

PN = π0PNπT
abs, (2)

where πabs = (0 . . . 0 1) represents the absorbing state.
For N=3 the reduced state space of the Markov chain

consists of 9 states (with the additional state aggregation).
Using Mathematica, or directly by inspection from Fig. 1, we
can find the transition probability matrix

P =

0 p1 p2 p3 0 0 0 0 0

0
p1
3 0 0

2p1+2p2
3

p2
3 + p3 0 0 0

0 0
p2
3 0 2

3 p1
p1
3 p3

2
3 p2 0

0 0 0 p3 0 p1 p2 0 0

0 0 0 0
2p1+p2

3 0 0 0
p1+2p2+3p3

3

0 0 0 0 0
p1+p2+3p3

3 0 0
2p1+2p2

3
0 0 0 0 0

p1
3

p2
3 +p3

2
3 p2

2
3 p1

0 0 0 0 0 0 0 p2+p3 p1

0 0 0 0 0 0 0 0 1

.

Using (1) we now have explicitly

E [T] = π0A−1eT

= 1
p1

+ 6p1
p1−3 + 18p1

(3−p2)(3−2p1−p2)
+ 9p1

2(p1+p2)(3p1+2p2)
.

From this result it is easy to calculate the optimal weights
minimizing the mean number of steps to decode the message.
Similarly, using (2) one obtains an expression for P3, the
probability of full decoding after 3 received packets, identical
with (5) obtained by the approach of Section IV. Optimized
results for these two different objectives are listed in Table I.
Objective MinAvg means minimization of average number of
steps E [T] needed for decoding and MaxPr maximizing the
probability P3 of decoding in exactly three steps. The results
of the table indicate that these two criteria are very similar;
a degree distribution that is optimal for one of these criteria
works very well also with respect to the other criterion.

For comparison, the table shows also results obtained with
four other degree distributions introduced in Section II-B. Both
uniform and degree-1 distributions perform rather poorly, the
degree-1 distribution being worst. In contrast, the binomial
distribution performs reasonably well, next followed by the
soliton distribution (in fact, these distributions are similar).

For N=4 the reduced state space has 87 states. With
the symbolic state transition matrix generated with the aid
of Mathematica, the optimal weights can still be calculated
and are presented in Table II together with the reference
distributions. Not surprisingly, the conclusions we can draw
are very similar as in the case N = 3. The distribution that
is optimal in the MaxPr sense works very well also for the
MinAvg criterion, and vice versa. Also the ranking of the other
four distributions is the same as before. Binomial and soliton
distributions work reasonably well with respect to both criteria
(though, in relative terms, not quite as well as in the case
N = 3), being almost equal (again the distributions are in this
case very similar), while the other two are much poorer.

IV. COMBINATORIAL APPROACH

When the objective of optimization is maximization of the
probability PN of successful decoding after reception of N
encoded packets, i.e. at the first instant complete decoding is
possible, the problem can be analyzed using another approach.
The central observation is that in this case the order in which

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2578

TABLE I

OPTIMAL WEIGHTS AND PERFORMANCE IN THE CASE N = 3

MinAvg MaxPr binomial soliton uniform deg-1
p1 0.524 0.517 3/7 2/6 1/3 1
p2 0.366 0.397 3/7 3/6 1/3 0
p3 0.109 0.086 1/7 1/6 1/3 0

E [T] 4.046 4.049 4.133 4.459 4.725 5.5
P3 0.451 0.452 0.437 0.397 0.354 0.222

TABLE II

OPTIMAL WEIGHTS AND PERFORMANCE IN THE CASE N = 4

MinAvg MaxPr binomial soliton uniform deg-1
p1 0.442 0.429 4/15 3/12 1/4 1
p2 0.385 0.430 6/15 6/12 1/4 0
p3 0.112 0.100 4/15 2/12 1/4 0
p4 0.061 0.041 1/15 1/12 1/4 0

E[T] 5.580 5.590 6.255 6.276 7.182 8.333
P4 0.314 0.315 0.257 0.262 0.184 0.094

the packets are received is irrelevant; whatever the order of
the N packets the decoding either is or is not successful
at the moment when all the N packets have been received.
The probability of success can then be found by a recursive
combinatorial approach as detailed below.

A. Recursive algorithm

For completeness, let us now write Pn = Pn(p1, . . . , pn).
In this function we allow degree distributions with a positive
probability for an empty packet and define implicitly p0 =
1 − ∑n

i=1 pi. Obviously we have P0 = 1 and P1(p1) = p1,
which provide the seeds for the recursion.

In order to calculate Pn(p1, . . . , pn) we condition this
probability on n−m of the n received packets having degree
1, which happens with a probability equal to the (n − m)th
point probability of the binomial distribution Bin(n, p1). For
successful decoding one must necessarily have n − m ≥ 1,
otherwise the decoding does not get started. Further, because
the successful decoding after n received packets requires that
no packets are wasted there must be no duplicates and all the
n − m degree-1 packets must be distinct. This happens with
the probability (n − 1)!/m!nn−m−1.

Given the n − m distinct degree-1 packets, we have a
remaining decoding problem for the m other packets that
originally are surely at least of degree 2, but whose degrees
may be modified when the n−m degree-1 packets are removed
from the other packets in the decoding process, giving

Pn(p1, . . . , pn) =
n−1∑
m=0

(
n

m

)
pn−m
1 (1 − p1)m

× (n − 1)!
m!nn−m−1

Pm(p(n,m)
1 , . . . , p(n,m)

m),

(3)

where

p
(n,m)
j =

n∑
i=2

pi

1 − p1

(
m
j

)(
n−m
i−j

)
(
n
i

) , j = 1, . . . ,m. (4)

The first fraction in (4) gives the probability that a packet has
degree i conditioned on that it is not a degree-1 packet. The

TABLE III

OPTIMAL WEIGHTS FOR MAXPR CRITERION IN CASES N = 5, . . . , 8

N 5 6 7 8
p1 0.370 0.327 0.294 0.268
p2 0.451 0.467 0.480 0.491
p3 0.102 0.099 0.093 0.085
p4 0.055 0.068 0.082 0.099
p5 0.021 0.024 0.021 0.013
p6 0.014 0.020 0.027
p7 0.009 0.010
p8 0.007

E [T] 7.111 8.613 10.097 11.565
PN 0.226 0.166 0.124 0.094

second fraction is the probability of the event that when from
an urn containing n balls (blocks), m of which are white (still
unresolved), i balls are drawn without replacement (a degree-i
packet is constructed) then exactly j of these balls are white
(the reduced degree of the packet after removal of the resolved
degree-1 packets is j).

Starting from the seeds P0 = 1 and P1(p1) = p1 the
recursion equation (3) can be solved successively to yield

P2 = 1
2 p2

1 + 2p1p2, (5)

P3 = 2
9 p3

1 + 4
3 p2

1p2 + 2 p1p
2
2 + 2 p2

1p3 + 4 p1p2p3, . . .

In principle, it is easy to let for instance Mathematica
generate expressions (5) automatically to any desired order.
However, the size of the expression grows fast. For n =
4, . . . , 10 the number of the terms in the expression is 14, 42,
132, 429, 1430, 4862, 16796, becoming soon unmanageable.
Alternatively, one can solve the recursion equation (3) numer-
ically for a given degree distribution. This takes more time
than using a pre-constructed expression of type (5) but with
our C implementation run on a standard PC we can calculate
the value of, e.g., P30 in a time of the order of one minute,
P24 roughly in one second, and calculation of P20 takes only
about 0.05 s, allowing optimization studies for systems of that
size, even though a symbolic expression is beyond reach.

B. Numerical results

For the cases N = 5, . . . , 8 the symbolic expressions of type
(5) can be relatively easily handled and optimized numerically.
The results are shown in Table III, where the estimates for
E [T] were obtained by simulations. An example of the optimal
degree distribution obtained using the numerical recursion for
somewhat greater value N = 16 is shown in Fig. 2, with
the optimum P16 = 0.01551. The distribution has a strikingly
irregular character. Same kind of irregularities do also show up
already for smaller values of N in Table III. It should, however,
be noted that the results exhibit a great degree of insensitivity
with respect to some features of the degree distribution. This is
demonstrated by the fact that the same maximal value P16 =
0.01551 is obtained for instance with a distribution where only
the probabilities p1 = 0.1565, p2 = 0.5493, p4 = 0.2095,
p8 = 0.0732 and p16 = 0.0115 are non-zero.

In order to better understand the nature of this kind of
insensitivity we calculated the second derivative matrix Aij =

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2579

2 4 6 8 10 12 14 16
d

0.1

0.2

0.3

0.4

0.5

p d

Fig. 2. Optimal degree distribution for N = 16.

0
0.25

0.5
0.75

1

p2

0
0.25

0.5
0.75

1

p3

0

0.2

0.4

0 25
0.5

0.75
1

0.25
0.5

0.75

1

p3

Fig. 3. P3 as a function of p2 and p3 with p1 = 1−p2−p3. The principal
directions at the maximum point are also shown.

∂2PN/∂pi∂pj , i, j = 2, . . . , N at the optimum point with
the variable p1 eliminated by the norm condition

∑
i pi = 1.

The eigenvectors and eigenvalues of A determine the principal
directions and curvatures in these directions. It turns out that
the eigenvalues constitute a rapidly decreasing sequence, with
the ratio of two consecutive eigenvalues being of the order of
10. For instance in the case N = 3 (A is a 2 × 2 matrix) the
eigenvalues are λ1 = −6.97 and λ2 = −0.71. The P3 surface
is illustrated in Fig. 3, where also the principal directions
are shown. The function forms a ridge which is steep in one
direction but flat in the direction along the top of the ridge.

The effect is much more pronounced when N is larger. For
instance, for N=10 the largest and smallest eigenvalues are
λ1=−27.3 and λ9=−2.53 × 10−6 showing that the function
is extremely insensitive to changes in the direction of the last
eigenvector. In fact, when the vector representing the distribu-
tion is constrained to lie on the intersection of hyperplanes
with normals given by a few first eigenvectors and going
through the optimal point, the PN has almost the optimal value
no matter what the location of the distribution vector is in the
other directions. Our experiments indicate that typically three
conditions of this type suffice to define a distribution which
performs very close to the optimum.

Fig. 4 shows the probability of successful decoding PN after
N received packets as a function of N for N = 1, . . . , 20.
The results have been obtained by using the optimized degree
distribution for each N . Also shown is the behaviour of the
relative overhead (E [T] − N)/N . This was obtained using
a degree distributions optimized not for the MinAvg criterion
but for the MaxPr criterion as above, and estimating E [T] by
simulations. As is well known, for such small values of N the
performance of LT codes is rather poor. The highest relative
overhead 44.6 % occurs at N = 9. After that point a slow
decline of the relative overhead starts but the codes become

5 10 15 20
N

�2

�1.5

�1

�0.5

0

lo
g 1

0
�

N

5 10 15 20
N

0.1

0.2

0.3

0.4

0.5

�
E
�T
��

N
�
�

N

Fig. 4. Maximized success probability PN (left) and the relative overhead
for N =1, . . . , 20 packets.

efficient only when N is of the order of 10000.

V. CONCLUSIONS

In this paper we have focussed on optimizing the degree
distribution of LT codes when the message length N is small.
We have specifically considered two optimization criteria,
called MinAvg and MaxPr: 1) minimize the mean number of
packets required for decoding the message, and 2) maximize
the decoding probability with exactly N packets.

The decoding process constitutes a Markov chain which
allows determining the optimal degree distribution. An effort
was made to reduce the size of the state space as much as
possible, notably by making use of the permutation isomor-
phism. Unavoidably though, due to the state space explosion,
this approach is only feasible for very small values of N . With
the second objective one can use an alternative combinatorial
approach which leads to recursive equations for the success
probability (recursion on N). By using this approach the
optimal degree distribution can be obtained for considerably
larger (still quite modest) values of N , symbolically for N ≤
10 and numerically up to order of N = 30.

One conclusion of this study is that the two optimization
criteria discussed are very similar. We also found that there are
just a few conditions that a good distribution has to satisfy;
otherwise there is a lot of freedom in its precise definition.
This suggests that in a well-chosen parametric form of the
distribution just a few parameters need to be tuned in order to
get nearly maximal performance.

REFERENCES

[1] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain
approach to reliable distribution of bulk data,” in SIGCOMM, 1998, pp.
56–67. [Online]. Available: citeseer.ist.psu.edu/byers98digital.html

[2] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
SIAM Journal of Applied Mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[3] R. G. Gallager, “Low-density parity-check codes,” IEEE Transactions on
Information Theory, vol. 8, no. 1, pp. 21–28, January 1962.

[4] E. Hyytiä, T. Tirronen, and J. Virtamo, “Optimizing the degree distribution
of LT codes with an importance sampling approach,” in RESIM 2006, 6th
International Workshop on Rare Event Simulation, Bamberg, Germany,
Oct. 2006.

[5] M. Luby, “LT Codes,” in Proceedings of The 43rd Annual IEEE Sympo-
sium on Foundations of Computer Science, 2002, pp. 271–282.

[6] D. J. MacKay, Information Theory, Inference and Learning Algorithms.
Cambridge University Press, 2004.

[7] P. Farrell and J. C. Moreira, Essentials of Error–Control Coding. John
Wiley and Sons, 2006.

[8] S. M. Ross, Introduction to Probability Models, 7th ed. Academic Press,
2000.

[9] W. R. Inc., “Mathematica,” http://www.wolfram.com/.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

2580

