A Markovian Waypoint Mobility Model with
Application to Hotspot Modeling

Esa Hyytia Pasi Lassila Jorma Virtamo
Centre for Quantifiable Quality of Networking Laboratory Networking Laboratory
Service in Communication Systerhs, Helsinki University of TechnologyHelsinki University of Technology
Norwegian University of Science and Technology, Finland Finland

Trondheim, Norway

Abstract—In this paper we introduce a Markovian random random mobility models have been analysed in [6] and [7]

waypoint model which allows us to create diverse mobility pat- put, while providing insight, the results therein are not very
terns in the given movement domain. The model allows adjusting explicit in terms of for example the node distribution.

random pause times and the momentary velocity. Furthermore, The th tical It b tilised i
the distribution used to pick the next waypoint may depend on the € theoretical resulls can be ulilised I many ways.
current location, which allows, e.g., creation of typical routes. As Knowledge of the node distribution is needed in performance

an application for the Markovian random waypoint we consider evaluation of MANETS, e.g., when analysing the connectivity
modelling hotspots. There are several mechanisms which may properties with mobile nodes (see, e.qg., [8]). Another important
be causing a hotspot and we present how the parameters of 5,sjication is the use of the results to achieve so called perfect
the proposed model can be adjusted accordingly to match the . . ) . .
scenario in question. We further illustrate how two seemingly simulation (as de.'f'lned n [6], ar.1d. glgo studied in [3]), \.Nhere.the
similar mobility patterns lead to highly different estimates of State of the mobility model is initialised so that the simulation
achievable performance levels. Finally, we show how the state of can be started from the stationary state, without the need
the MWP model can be initialised in simulations such that the for any special transient handling. This is important from a
node starts from the stationary state without any initial transient. practical point of view when performing simulation based
INDEX TERMS: mobility modelling, random waypoint model, Performance studies with mobile nodes.
hotspots, Markov process inR? In this paper we present a Markovian Waypoint model
(MWP), which is a generalised mobility model based on the
basic RWP model. In the MWP model, mobile nodes move
Mobility models can be largely categorised in two groupsilong a straight line segment from one waypoint to another at
(i) models that try to be realistic with respect to the movemeatcertain speed. The waypoints are obtained from a discrete
and the topology of the area, and (ii) models that we calme Markov process having a subset Bf as the state
elementaryn the sense that the models are simple and the mgpace. Additionally, we allow the velocity distribution of a
bility pattern does not reflect any realistic human movememiode along a given leg (transition between two waypoints) to
Whereas realistic mobility models may often be complex, thiepend on the end points of the leg. Moreover, our model
idea with elementary models is that their simplicity facilitateallows random pause times during the transitions in addition
efficient simulations, while still capturing the essential impatb the standard extension of allowing random pause times at
of mobility on the performance issue under study. the waypoints. However, the movement pattern of MWP still
One of the most widely used elementary mobility model®tains the characteristic that the direction of the movement
in performance studies of MANETSs is the random waypoirg independent of the direction during the previous transition
model (RWP), originally proposed in [1]. The properties ofor leg). This implies that, depending on the choice of the
the RWP model have been analysed recently in a numbereshbedded Markov chain for the waypoints, the movement
papers. Notably, the independence of the node speed distrittejectory may contain sharp angles which can be considered
tion and the node location distribution has been discussed tomatural. Hence, recent mobility models, such as [9] and [10]
example in [2] and [3] and rigorously shown in [4]. Accuratehat are able to produce more smoothly turning trajectories
approximations for the stationary node distribution (i.e., th@ay be more suitable models than MWP in this respect.
distribution for the location of a node) have been given in Our model can be seen as a generalisation of the model
[2]. As part of our earlier work, we have derived an exacinalysed in [7] by discretisizing the continuous state space. In
explicit result for the node distribution in [5]. Generalisegbarticular, in our model the velocity distribution is more gen-
. eral and the model also allows random pause times during the
“Centre for Quantifiable Quality of Service in Communication Systemgransitions. For this model, we provide general exact integral

Centre of Excellence” appointed by The Research Council of Norway, funded . L. . .
by the Research Council, NTNU and UNINETT. http:/Amww.ntnu.no/Q2S/ &pressions for the mean transition time, mean velocity and

*This work has been partially funded by the Finnish Defence Forcége stationary node distribution. . . )
Technical Research Center and by the Academy of Finland (grant n:0 202204)We apply the MWP model for illustrating the various ways

I. INTRODUCTION



continues on the next leg. The pdf of the node location in this

case consists of two components corresponding to two modes
(moving and paused) which alternate in the original process,

see [2], [3].

I1l. M ARKOVIAN WAYPOINT MODEL

In this section we give a definition for a more general model
than RWP which we refer to as the Markovian waypoint model
Fig. 1. Basic RWP process illustrated (left) and the notation in formula ({(MWP). The model is as follows.

(right). Definition of the Markovian waypoint (MWP) model:

1) Waypoints: The node moves along a straight line seg-
ment from the current waypoirf; to the nextP;;,. The
waypointsPy, Pi, P, . .. constitute a Markov chain in a
convex aread C R2 with transition probability densities
given byg(r;,rs2) : Ax A — R. Thus, given the current
waypointr;, the next waypoint; is drawn using the
conditional pdfg(rq,rs2).

) Velocity of the node Consider a leg(ri,r2) and a
pointr on it located at the distance offrom ry, r =
r+r- ‘”2;“ We define the velocity for node on leg

ro—rq|”

of modeling hotspots from the point of view of network
simulations. According to our definition, a hotspot is a part in
the movement area, where the nodes spend a proportionally
larger fraction of time, and this phenomenon can be achieved
in several ways. This has been studied by using simulations in
[11], but we rely on our exact results. We further compare the
various ways of modeling the hotspots and illustrate through
a simple example how the hotspot model (or the mechanism
behind the hotspot phenomenon) may influence the obtained _ -,
performance results. This serves as an argument for the neces- (£i—1: £2) = (r1,r2) at pointr as a conditional random
sity of having a rational reason for adopting a certain modeling ~ function, vi(r) ~ v(r;iry,rs). Thus, for each leg a
approach. Additionally, we describe how the simulation of the ~ andom velocityv; (r) is drawn fromw(r;ry, r2), which
MWP process can be started from the stationary distribution, ~ d€fines the velocity along the leg
which is referred to as perfect simulation. 3) Pause Flmes at waypointsThe node_ keeps a random
The rest the of paper is organised as follows. In Section I Pause timey; ~ 7(F;), at each waypoink;, wherer (r)
we discuss the basic RWP model. The MWP model is formally _ IS @ssumed to have a finite mea(r) < oo Vr € A.
defined in Section IlI, and then, in Section IV we present 4) Poissonian pause times during transitions The
the relevant analytical results for the model. In Section v  Node may also keep random pauses on each leg. Let
we discuss briefly the different realistic mechanisms behind 7(r;r1,r2) denote the conditional intensity (per unit
hotspots and map them to the different model parameters, {Me, .., in 1/s) at which a moving node framtor;
illustrated by examples. In Section VI we illustrate briefly ~ StOPS and goes to a pause state, and let the conditional

how perfect simulation can be achieved for our model. Finally, ~ random variable5(r; r1, r2) denote the duration of the
Section VII contains the conclusions. pause (a function of the locatianon leg (ry, rz)).

The MWP model is a general model that allows a very
Il. PRELIMINARIES AND THE BASIC RWP MODEL versatile modeling of node movement. However, the MWP
The basic RWP process is defined by an infinite sequengé?del can still be considered as an elementary mobility model
in the sense that the path the node follows between two

(Po, P1), (P1, P2), (P2, P3), ... consecutive waypoints is a straight line.
The way the waypoints are chosen allows us to create,

. . e.g., popular routes a user walks or drives through, i.e.,
sponds to one leg. The node simply moves with a constant ﬁg Pop 9

X ) > Iie consecutive legs may be correlated. The velocity of the
locity of v from one waypoint to another. A sample reahsaqonode, defined by the conditional random variablés 1, rs),

; o Wlows us to model different kinds of transitions and terrain
of the basic RWP process is given by [5] types. One can, e.g., define the velocity distribution based on
1 T the distance to be travelled, i.e., the longer transitions with
flr) = Z.Az/o ayaz(a1 + az) db, (D) speeds typical to a vehicular user, and shorter with speeds
_. _ typical to a pedestrian user [7]. Or(r;r1,r2)) along a given
where( is the mean length of a leg} the area of the domain |eq may be defined such that it models the increase of speed
(assumed to be convex); = a(r,0+m) anday = a(r,0) are  from  to a random maximum speed (constant acceleration)
the distances to the border from poinin directionf +m and  anq the subsequent deceleration. If the length of the leg is not
6, respectively (see Fig. 1 (right)). A similar integral formulabnough, the target maximum speed will not be reached.
can be also derived for the mean arrival rate into a given subset
(see [12]). IV. ANALYTICAL RESULTS
As a simple extension to the basic RWP model one canin this section we will present several analytical results
introduce i.i.d. pause times at the waypoints before the nofite the MWP process. First we will derive expressions for

where eachP; is a so-called waypoint an@P;, P, ;1) corre-




the mean transition and pause times, the two modes which

3 on transition 3

alternate in the complete process. Then, based on these we : ® 1
give an exact exp.ression for the st.ationary node distribution. [ <o ot waypoint |—ta| moving || pause on leg
Before proceeding, observe that in the MWP model the node ©) R B (1) N ) |

may be in three different states at a given point of time: 1) -
the node is moving towards the next waypoint, 2) the node is
keeping a pause on a leg towards the next waypoint, or 3) the Fig. 2. Different modes of the MWP model.

node is keeping a pause at the current waypoint (see Fig. 2).

A. Mean transition and pause times and a short time interval of length¢. Conditioned on a
velocity distributionv; (r) along the legi, without a possible

Let 7(r) denote thestationary waypoint distribution, i.e., " :
1stop the node travels a distanceof = v;(r) - At during this

the pdf of the location of an arbitrary waypoint, for which

holds that time. However, with probability ofy(r; r1,r2)- At a transition
to pause mode occurs and it tak&es+ S(r; r1,r2) time units
/W(r1) -g(ry,re) d*r; = 7(ry), and from the node to travel the same distancefof. Hence, the
% @ mean time spent to travel the distanse is
/71’(1‘) d’r = 1. AT = At + At - y(r;ry, 1) - S(r511,12)
A = u(riry,ro) - v; H(rsry, 1) Ar

We assume that(r) exists and is well-defined. Lét denote ang consequently,
the length of legi, ¢; = |P, — P,_1|, and/ the mean length

of a leg Ir2—r]
BTl = [ urier) B0 ©
(= /d2r1 7T(I'1)/d21'2 g(r1,r2)|re —11). o
A A n

We also assume théis finite, which is the case if the diameter . _ _
of A is finite. Let7; denote theransition time of leg i, i.e., Corollary 2 (leg independent velocity) If the velocity on

, each leg remains constant, the value of which is drawn when

' dr a new leg starts from a distribution which is independent on
T; = . the end point locations of the leg(r;ry,r2) ~ v, and there
v (1) ;
0 are no pause times, then
Note that the velocity distribution;(r) is a random variable, E[T]=7-E[1/v].

vi(r) ~ v(r; Pi_1, P;), and may depend oR,_; and P;.

Proposition 3 (mean pause time)The mean pause time be-
Proposition 1 (mean transition time) The mean transition fore the next transition, denoted (7], is given by
time between two waypoin8;,_; and P;, not including the

pause time at the end of the leg, is given by E[r] = /er m(r) 7 (r). (6)
E[T] = [ d®ri n(r /er ry,r
7] / 17rs) 29(r1,72) The proof is trivial.
A A
[r2—r1] 3

B. Stationary node distribution

. BT _ .
dr p(riri, ) - E v (rirn )] The MWP process consists of two alternating states, tran-

0 sition and pause. Moreover, each transition consists of one or

where more moving periods separated by Poissonian pause times. Let
_ p®, p(m) 1) andp®) denote the fraction of time the node

p(riry, re) = 1+ 7(r;r1,r2) - S(r; 11, 72). spends on transitions, the node is moving, the node is keeping

a pause during a transition, and the node is keeping a pause

Proof: Conditioning on the ledr;,r2) gives at waypoints, respectively. For these we have,

T] = /d2r1 7T(1”1)/d21f2 g(ry,ra) - E[T|ry,ro] . (t) — p(m) 4 (P) E[T]
) Y L) — m — , and
A T ETIG -
Consider next an arbitrary le@+,r2) going throughr, P =1 p®) = E [7]
ry— 11 E[T]+E[r]
r=ry+r- ———— 4)

lry — 1|’ First consider a process without pause times at waypoints.



Proposition 4 (MWP without pause times at waypoints)
The stationary node distribution of the MWP process
(9:v,7, ) is given by

1 2 a(r,¢p+m) a(r,p)
£00) = g [0 [ dritn) [ drs
E[T] (8)
0 0 0
(ri+7r2) - g(r1,re) - p(r;re,re) - E [Vfl(ﬁ;l'l,rz)} ,
where Fig. 3. lllustration of derivation.

p(r;ry,r) = 1+ 7y(r;ry,r2) - S(ryry, ra),

must also explicitly take into account a possible Poissonian
pause withindA. Let A denote the length of the line segment
(r1,r2) residing insidedA (see Fig. 3). If the node does not
pause during a transition throughi the time spent iniA is

Proof: We consider the mobile component, i.e., a process A
from which pause times at the waypoints have been removed Ato = mv
(r(r) = 0 Vr). The probability of finding a node inside a small ) N
area elemend A around pointr € A at an arbitrary point of Which happens with the probability af— y(r1;r1,r2) - Ato.
time is clearly equal to the time the node spends ingide Similarly, with a probability ofy(r1;r1,r3)- Aty a Poissonian
during an arbitrary leg multiplied by the leg generation rate@use time occurs and the time spent ingideis given by

anda(r, ¢) denotes the distance from pointo the boundary
O0A in direction ¢, r1 = r — 11 - (cos¢, sing) and ry =
r + ro - (cos ¢, sin ).

(cf. Little’s result). The legs are generated at the rate of A
Aty = —— 4 S(r1;r1,12),
1 v(ry)
E[T] and the mean sojourn time ih4 on leg (ry, ry) with v(r) is
Let E [At] denote the mean time spent insidd during an EIALP | = P — ) —
arbitrary leg. Thus the pdf of the stationary node location is [ |Alil T rz,vi(r) = o(r)]
FO(r) = E [Af] | =) (L+~(ri;r1,12) - S(r1511,12))
E[T]-dA A p(risr, )
Our approach is based on conditioning on the leg and the N v(ry)
velocity distribution,(P;_1, P;, v;(r)), for which we have which yields
E[At] = E[E[At|Po1 =11, P =12,v:(r) = v(r)]]. E[At|P,_1 =1y, P, = 1o]
11
From (2) we can obtaim(r), which corresponds to the pdf = A-p(rr,re) - E[v e, )] (11)

that an arbitrary leg starts from Conditioning on the starting

point of the legP, , — r, gives Next we refer again to Fig. 3 and note thad = A - r; do.
=

Substituting this into (11) gives

FO) = [ wla)-ElAtir) @ BIAPy = 11, P, = 1]
A dA
27 a(r,d+) = o p(ri;ry,r2) - E [v7 (r;1,12)]

:/ / ri-w(ry) - E[Atfri] dry dg, (9) Combining this with (9) and (10) completes the proof. m
0 0 It turns out, as can be seen from the previous proof,
where in the latter forne; = r—7;-(cos ¢, sin ¢)) anda(r,¢) that from the point of view of the stationary distribution,
is the distance from point to the boundary in directior. the Poissonian pause times corresponding to state 2) can be
Next we condition on the end poift, = ro. According to replaced by adjusting the velocityin an appropriate way:
Fig. 3 the possible destination area of legs going thradigh

at the distance of, +r» is equal to(ry +r2) dd drs. Thus, Corollary 5 (Poissonian pause times and (mean) velocity)

a(r,$) The MWP procesgg, v, 7,7, S) with the Poissonian pause
E [At|r1] :/E[At|r1,r2] - (r1472) - g(r1,r2) d¢ dro.  (10)  times, defined byy(r;ri,r2) and S(r;r1,r2), has the same
0 stationary node distribution as a MWP procegsg, v*, 7)

without Poissonian pause times when
Finally, we condition on the velocity distribution on leg

(r1,r2) denoted byy;(r). In particular, we condition on that ,*(r:r;, ry) = p(rirs,r2) _ v(rir1, T2) ,
the velocity of the node at point is v;(r1) = v(ry). We plriry,ra)  14y(riry,ra) - S(ryry, 1)




Proposition 6 (pause times at waypoints)The pdf of the Finally, a decomposition of the pdf of the node location is
O Ao O Sondon that the node I5 I pause SIS (x) () (1) + p £ (x) + p©fO ). (16
_ C. Examples of Special Cases
(8) () m(r) - 7(r) N .
f(r) = R (12) 1) Velocity independent from the waypointassume the
velocity distribution~ depends only on the current location

Proof: Consider a differential area elemefd aboutr. y not the starting or end points of the leg, i.e.= v(r),
The probability that an arbitrary waypoint is A is equal and that there are no Poissonian pause times (or they depend
to 7(r) dA, and the mean pause timed, according to (6), also only on the current location and have been incorporated
is equal toT. Thus, the time spent idA in pause mode is according to Corollary 5). Then, (8) can be written as
proportional torr(r) - 7. E [7] is a normalisation constantl

2m a(r,p+m
_ Oy E [V‘l(r ( :
Corollary 7 (complete process)The pdf of the node location () = W/ / m(ry)
of the complete process can be written as a sum 0 0
_ 0 0 () . £(s) )
flx) =p™ - F7r) + - [12(x). (13) / (41 + 1) - g(0,12) drs dr1 db.
Corollary 8 (mean velocity) The mean velocity of the node, 0
denoted byE [v], is given by 2) Independent and Identically Distributed Waypoints:
E [T] Assume that the waypoint®;, are i.i.d. random variables
Ev] = p® . —. having a common pd§(r), and that the velocity distribution
¢ is independent of the waypoints, = v(r). In this case,
If one is interested in further distinguishing between thg(r, r,) = g(rs) and 7(r) = g(r). Consequently, the

actual movement and the pause times during the transitioffansition component of the pdf of the node location, given
the respective time proportions and conditional pdf's aigy (8), can be written as (symmetry)
easy to determine. In particular, consider any long realisation 2 [ (r)] [
consisting of moving periods (m), Poissonian pause times f<t>(r) = 7/ d¢[
0

during transitions (p), and pause times at waypoints (s). Let E[T]
the respective time periods in different modesThg 7}, and alré+m) a(r:9)
T, for which we have / dryry-g(ry) - / drs g(rg)}
B U N () 0 0
T + T, + T P 3) Uniform Waypoint Distribution:Denote by A the area

: f hich th . iaf the domain,A = [A], and assume uniformly distributed
Consider next a process from which the pause times dunw%ypoints on4, g(r) = 1/A, and that the velocity distribution

the transitions have been removed, i.e., the time periods. d dent of th ints. — n thi th
contributing to7},. The two realisations, the original and the> |rl;_|epen ento i ;at\r/]vay%?mf th_ V(rg' In LS casz, € i
reduced, are always equally likely to occur in the respecti\%l0 lie component ot the pdt of the node location reduces 1o

isati in simi E[v=r i
process. For the reduced realisation we obtain similarly that J0) (r) = [ ( 2)] / aras(ar + az) do,
T () E [T] A 0
T, + T, - wherea; = a(r,¢ + 7) andas = a(r, ¢), see Fig. 1 (right).

Combining the above relations we have Similarly, the mean pause time is given by

1

T, p(-p) Blr) = [ (o),
— .

Tm + Tp p(t)(l — p(f*)) A

If we further assume a constant spatial velocitiyr) =

v Vr € A and zero pause times at the waypointsy) =

pm) = P (1 —p) _ W —p" 0Vr € A, then the relation between the mean leg lerfgaind
1—plts 7 1—pt) - the mean transition time [T] = ¢/v, and we obtain the basic

The conditional pdf of the mobile component can be obtainé®VP process. In this case the pdf for the node distribution
by considering a modified model whefér) = 0 Vr, i.e. reduces to (1).
Fm)(p) = f|(7t):0(r)' (14) V. MODELLING HOTSPOTS WITHMWP _
As an example application of the MWP model we consider
Moreover, the conditional pdf of the Poissonian pause timgge problem of modelling hotspots. In this section we limit
during the transitions is given by ourselves to models where the spatial velocity component and
the Poissonian pause times are independent of the waypoints,

1 m m
f(p)(r) = W ' (p(t)f(t)(r) —p( )f( )(r)) : (15) ie,v=uv(r),y=~() andS = S(r).

Using (7) we can determine bogh*) andp**), and

and p(p)



A. Mechanisms behind a Hotspot C. Examples of Hotspot Scenarios

By a hotspot we refer to a situation where a considerableBefore going into the examples let us introduce some
number of users reside within a certain area. Consider softiliary notation. The hotspot area IS denoted7yand its
area which we are interested in. This area can be perceived 883 PYH = [H|. Also, recall that/*(r) denotes the pdf

black box where users arrive. According to the Little’s formul§f the node location of the basic RWP process, as given by
N = \-D, whereN denotes the mean number of users ikl), where a node moves at a constant velocity and keeps no

the area,) the user arrival rate, anB the mean sojourn time Pause times. The_ proportion of time tr_]e node in the basic RWP
of a user. The area is a hotspoth¥ is considerably higher Process spends in the hotspot area is denotegl:y

than elsewhere. Hence, eitheor D (or both) must be higher . o

than elsewhere in order to form a hotspot. P = /H fr(x)dr.

The actual reasons leading to a hotspot can be nUMerous;) py;se Times at Waypoint€onsider first the case where
From the perspective of the model we want to know thge \yaypoints are uniformly distributeg(r) = 1/A, spatial
mechanisms giving rise to a higher node density. For examR'/%iocity is constanty(r) = 1, no pauses occur during the

at 8 am (or 4 pm) people might be travelling to work (O ansitions (r) = 0, and the pause times at waypoints are
home) and the underground stops might become hotspots.

Generally, this kind of a scenario results from a location being 7(r) = leen - S,

a popular connecting area in a public transport system. Th%ereS is an i.i.d. random variable arfd is some subset ofl

a hotqut may be a result of users visiting often a certaln_ ar?i%rresponding to a hotspot area. This corresponds to the basic
Alternatively, it may develop as a result of users spending P process with pause times at waypoints. In this case, the
considerable amount of time in the area. Examples of this ki ban pause time is '

of a scenario are an open air concert and a restaurant area In

. . el 1r
the evening. Elr] = AS and f©)(r) = _EH,
B. Modelling Alternatives Consequently,

Next we discuss how the properties of the MWP process f(r)y=q-f*(r)+ 1-q Leen,
can be used to model the hotspot scenarios described above. H
At least, the following approaches are possible: where 7-E[1/4]
. v
1) Spatial pause timesat waypoints that allow the node qg=p" = TE[/o]+ H-S/A

to keep a longer pause in the hotspot area. A standard
extension to the basic model is to introduce independeN@te that the parameter represents the proportion of time
pause times at the waypoints before the node proceddg node is moving instead of keeping a pause at a waypoint.
on the next leg. The pause times can also depend GANsequently, the fraction of the user population residing in
the current location. the hotspot area on average is given by
2) Poisson pause timegluring transitions that allow the
node to stop in the hotspot area for a random time with
rate(r) per time unit. This results in a different spatial Let us furthermore assume that the domdiris a unit disk
distribution for the locations of the pauses than witBnd the hotspot are# is a concentric disk with radius,
spatial pause times at waypoints. The equivalent Spatfa|< 1, as illustrated in Fig. 4. In this case, the cdf of the
(mean) velocity*(r) is given by (4) and the stationarynode’s distance from the origin is
node distribution is straightforward to determine. min{r, h} 2
3) Spatial velocity that makes the node move slower within Fr(r)=q- Flg*)(r) +(1-gq)- <7’) ,
the hotspot area. The spatial velocity allows a very gen- h
eral formulation for the node velocity that can includgvhere £ () is the cdf of the node distance from the origin
random elements, as well as location dependent featurigsa unit disk for the basic RWP model (see [5]),
The pdf resulting from the model with spatial velocity ,

componentv(r) is proportional to f*(r)E [v~*(r)], FO(r) = / 45x(312—x2) /7r Vs o ddode. (A7)
0

zp=1—q+q-pq.

where f*(r) is the pdf of the basic RWP model.

4) Non-uniform waypoint distribution that makes the 0
node visit the hotspot area more often. The stationaRpr » > h the above reduces into
node distribution with a non-uniform waypoint distribu- r 1 _g.aW
tion can still be computed (numerically at least), even r(r) = ¢ Gr (1),
though it increases the number of nested integrals \WhereGg)(r) —1_ FI(%*>(T), Fig. 5 (left) illustrates a case
the expression. This corresponds to, e.g., hotspots at {{igh ¢ = 0.8 and» = 0.3. We note that the node density
connecting areas of transport systems. inside the hotspot is at least twice as large as elsewhere.



TABLE |
BASE STATION AND FOUR CAPACITY ZONES AROUND IT

hot spot zone | distance | link rate R;
1 1 km 10 Mbit/s
2 2 km 5 Mb@t/s
Fig. 4. Hotspot with radius of in the center of unit disk. Z Z tm ? mg:gg
1.4 1. 4
12— 1.2
0.; o.i
o ~ o — Let us assume that the cell corresponds to some hotspot
o2 0.2 where numerous users move according to MWP process and
5.7 04 0.5 0.3 07 04 06 0.3 download documents only when they have stopped. As it was

mentioned previously, the pause times can be generated in

Fig. 5. Resulting pdfs of the node location in a unit disk with a hotspq{y,5 wavs: 1) keepina a pause at the wavpoints. or 2) keepin
at the center having a radius 6f3. In left figure the hotspot is due to the ys: 1) pingap yp ' ) ping

additional pause times with parameters chosen such that the fraction of tighdom pause times during the transitions. In particular, we
the nodes are moving B0%. In right figure a similar hotspot is created by aconsider two cases:
slower motion in the hotspot area, i.e., the velocity of the nodes in the hotspoé_) i.i.d. pause times at waypoints
area is50% of the normal velocity. S . . .
b) i.i.d. pause times during the transitions
Otherwise, we assume the basic model with uniform waypoint

2) Slower Movement at Hotspotet us next consider an- distribution. It turns out that these two Seemingly quite similar
other mechanism behind the hotspot, i.e., a decreased veloBigbility models lead to considerably different performances
at which the users move inside the hotspot. In particuld® terms of cell capacity. In a) the locations where the
we assume that the velocity outside the hotspoy ismes download requests arrive are clearly uniformly distributed as
greater than inside the hotspot. In this case it turns out tHB€ Waypoints were uniformly distributed. On the other hand,

the resulting pdf of the node location is given by in the model where a node keeps the pause times during
1 the transitions the download requests originate according to
flr)=—————-(1+(qg—1) Leen) - f(r). stationary node distribution (1) of the basic RWP process.

L+ (g = Dpn For simplicity, let us furthermore assume that the cell has a

In the case of a unit disk, where the hotspot is a smaller digkeximum range of 4 km and that the feasible (unshared) link
located in the center, we obtain rate depends solely on the distance according to Table I. The
1 proportion of download requests arriving from each zone in

f(r) ~(1+(g—1)-L<p)- f*(r),  both cases, denoted (@) andP®), respectively, are

= e
L+ (g = DFg"(h) P@ = (1/16, 3/16, 5/16, 7/16)

whereF}(%*)(h) is given by (17). Furthermore, the fraction of po® — (0'13 0.34. 0.37 0.17)
users located in the hotspot area on average is given by ’ ’ ’
q-pu Consequently, the cell capacities, given by
T 0D pr o
—1)-py -
R : . C=E[/R " = (> P (1/R)
Again, in Fig. 5 (right) one example case is illustrated where ;

g =2 andh = 0.3. The two pdf’s (left and right figure) are e

very similar with the chosen parameter values. .
C@ = 80/51 ~ 1.57 Mbit/s,

D. Flow Level Performance C® ~ 2.33 Mbit/s.

As a final example let us consider a 3G cellular networ. . L
where adaptive link rates depending on the signal quality afgus, depending on how the stopping times are modelled, the

) ) . : resulting performance measure, the cell capacity, can vary a
in use. Let random variabl® denote the feasible link rate at L e

: . lgt. At the capacity limit the zone specific loads are
the current location of the node. Assuming the nodes are Stclﬂ pactty P

or move very slowly when transferring files, it can be shown pl? = (0.01, 0.06, 0.25, 0.69),
tf;gt thf4capacity of the cell is given by (example adopted from p® = (0.037 0.16, 0.43, 0'39) )
[13], {14D C—F [1/R]’1 i.e., a significant proportior60%) of the load originates from

the outermost zone in case a), causing the degradation of the
based on the model of single server PS-queues. performance.



VI. PERFECTSIMULATION OF MWP ujo b 2(r) - S/
Perfect simulation refers to the initialisation of the state of — ¥
the system in a discrete event simulation so that it corresponds 1
to the stationary state of the model. This has been addressed e _

in numerous papers (see, e.g., [6] and [3]), and here we only
briefly indicate how the perfect simulation can be achieved o
for the MWP model. Our approach is based on the rejectigfy: 8 Averaged sample path realisation for a fag— r». The (mean)

fime spent in each small interval of lengifr is a sum of two components.
method, i.e., we generate samples and accept them with &

certain probability. The pdf for a legy — rs is

[r2 —ry]

(r1) - g(r1,Ta). 'The model was adapted f_or modeling hotspots in several

’ different ways. With a numerical example it was shown how
Conditioning on legr; — ry, the mean time spent in a smallone can achieve very similar mobility patterns in terms of
interval of lengthdr on the leg consists of two componentshe stationary node distribution using these different hotspot
(moving and pause), as illustrated in Fig. 6. Define creation alternatives. It was also illustrated how the appropriate
parameter values can be determined for creating a desired
hotspot at a given location. However, in another example,

was demonstrated how seemingly very similar mobility

fﬁlodels lead to highly different performances, emphasising the
need for sound judgement when determining which modelling
alternative to use. Finally, an algorithm was given for starting a
simulation of the MWP model from the stationary distribution
avoiding the need for special transient handling.

G1 = max 7(ry) - g(r1,r2),
ry,ra

which is assumed to be finite. Furthermore, the condition
mean transition time is given by (5). Define

Ga

max E[T|rq,rs]
ri,r2,v(r)

max
ri,rz,v(r)

¢
/ p(riry,re) v (r) dr,
0

which we assume to be finite. The initialisation according tqy)
the stationary distribution can be performed as follows:

1) With probability of p(*): choose waypoint, using pdf
m(r) - 7(r)/E[7r],

and the pause timg using the residual pause time pdf. [3]
return: pause time, at waypointry.

Draw (r1,r2) using uniform distribution ond x A.
Accept(ry, ry) with probability of w(ry) - g(r1,r2)/G1,
otherwise go back to step 2.

Draw random velocity for the legi(r) ~ v(r;r1,ra).
Compute the transition and pause time components,
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