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Abstract— In this paper we introduce a Markovian random
waypoint model which allows us to create diverse mobility pat-
terns in the given movement domain. The model allows adjusting
random pause times and the momentary velocity. Furthermore,
the distribution used to pick the next waypoint may depend on the
current location, which allows, e.g., creation of typical routes. As
an application for the Markovian random waypoint we consider
modelling hotspots. There are several mechanisms which may
be causing a hotspot and we present how the parameters of
the proposed model can be adjusted accordingly to match the
scenario in question. We further illustrate how two seemingly
similar mobility patterns lead to highly different estimates of
achievable performance levels. Finally, we show how the state of
the MWP model can be initialised in simulations such that the
node starts from the stationary state without any initial transient.

INDEX TERMS: mobility modelling, random waypoint model,
hotspots, Markov process inR
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I. I NTRODUCTION

Mobility models can be largely categorised in two groups:
(i) models that try to be realistic with respect to the movement
and the topology of the area, and (ii) models that we call
elementaryin the sense that the models are simple and the mo-
bility pattern does not reflect any realistic human movement.
Whereas realistic mobility models may often be complex, the
idea with elementary models is that their simplicity facilitates
efficient simulations, while still capturing the essential impact
of mobility on the performance issue under study.

One of the most widely used elementary mobility models
in performance studies of MANETs is the random waypoint
model (RWP), originally proposed in [1]. The properties of
the RWP model have been analysed recently in a number of
papers. Notably, the independence of the node speed distribu-
tion and the node location distribution has been discussed for
example in [2] and [3] and rigorously shown in [4]. Accurate
approximations for the stationary node distribution (i.e., the
distribution for the location of a node) have been given in
[2]. As part of our earlier work, we have derived an exact
explicit result for the node distribution in [5]. Generalised
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random mobility models have been analysed in [6] and [7]
but, while providing insight, the results therein are not very
explicit in terms of for example the node distribution.

The theoretical results can be utilised in many ways.
Knowledge of the node distribution is needed in performance
evaluation of MANETs, e.g., when analysing the connectivity
properties with mobile nodes (see, e.g., [8]). Another important
application is the use of the results to achieve so called perfect
simulation (as defined in [6] and also studied in [3]), where the
state of the mobility model is initialised so that the simulation
can be started from the stationary state, without the need
for any special transient handling. This is important from a
practical point of view when performing simulation based
performance studies with mobile nodes.

In this paper we present a Markovian Waypoint model
(MWP), which is a generalised mobility model based on the
basic RWP model. In the MWP model, mobile nodes move
along a straight line segment from one waypoint to another at
a certain speed. The waypoints are obtained from a discrete
time Markov process having a subset ofR

2 as the state
space. Additionally, we allow the velocity distribution of a
node along a given leg (transition between two waypoints) to
depend on the end points of the leg. Moreover, our model
allows random pause times during the transitions in addition
to the standard extension of allowing random pause times at
the waypoints. However, the movement pattern of MWP still
retains the characteristic that the direction of the movement
is independent of the direction during the previous transition
(or leg). This implies that, depending on the choice of the
embedded Markov chain for the waypoints, the movement
trajectory may contain sharp angles which can be considered
unnatural. Hence, recent mobility models, such as [9] and [10]
that are able to produce more smoothly turning trajectories
may be more suitable models than MWP in this respect.

Our model can be seen as a generalisation of the model
analysed in [7] by discretisizing the continuous state space. In
particular, in our model the velocity distribution is more gen-
eral and the model also allows random pause times during the
transitions. For this model, we provide general exact integral
expressions for the mean transition time, mean velocity and
the stationary node distribution.

We apply the MWP model for illustrating the various ways



A

P6

P7

P3

P5

P2

one leg

P4

P1

θ
a1

a2
A

r

Fig. 1. Basic RWP process illustrated (left) and the notation in formula (1)
(right).

of modeling hotspots from the point of view of network
simulations. According to our definition, a hotspot is a part in
the movement area, where the nodes spend a proportionally
larger fraction of time, and this phenomenon can be achieved
in several ways. This has been studied by using simulations in
[11], but we rely on our exact results. We further compare the
various ways of modeling the hotspots and illustrate through
a simple example how the hotspot model (or the mechanism
behind the hotspot phenomenon) may influence the obtained
performance results. This serves as an argument for the neces-
sity of having a rational reason for adopting a certain modeling
approach. Additionally, we describe how the simulation of the
MWP process can be started from the stationary distribution,
which is referred to as perfect simulation.

The rest the of paper is organised as follows. In Section II
we discuss the basic RWP model. The MWP model is formally
defined in Section III, and then, in Section IV we present
the relevant analytical results for the model. In Section V
we discuss briefly the different realistic mechanisms behind
hotspots and map them to the different model parameters,
illustrated by examples. In Section VI we illustrate briefly
how perfect simulation can be achieved for our model. Finally,
Section VII contains the conclusions.

II. PRELIMINARIES AND THE BASIC RWP MODEL

The basic RWP process is defined by an infinite sequence,

(P0, P1), (P1, P2), (P2, P3), . . .

where eachPi is a so-called waypoint and(Pi, Pi+1) corre-
sponds to one leg. The node simply moves with a constant ve-
locity of v from one waypoint to another. A sample realisation
is illustrated in Fig. 1 (left). The stationary node distribution
of the basic RWP process is given by [5]

f(r) =
1

` · A2

∫ π

0

a1a2(a1 + a2) dθ, (1)

where` is the mean length of a leg,A the area of the domain
(assumed to be convex),a1 = a(r, θ+π) anda2 = a(r, θ) are
the distances to the border from pointr in directionθ+π and
θ, respectively (see Fig. 1 (right)). A similar integral formula
can be also derived for the mean arrival rate into a given subset
(see [12]).

As a simple extension to the basic RWP model one can
introduce i.i.d. pause times at the waypoints before the node

continues on the next leg. The pdf of the node location in this
case consists of two components corresponding to two modes
(moving and paused) which alternate in the original process,
see [2], [3].

III. M ARKOVIAN WAYPOINT MODEL

In this section we give a definition for a more general model
than RWP which we refer to as the Markovian waypoint model
(MWP). The model is as follows.

Definition of the Markovian waypoint (MWP) model:
1) Waypoints: The node moves along a straight line seg-

ment from the current waypointPi to the nextPi+1. The
waypointsP0, P1, P2, . . . constitute a Markov chain in a
convex areaA ⊂ R

2 with transition probability densities
given byg(r1, r2) : A×A → R. Thus, given the current
waypoint r1, the next waypointr1 is drawn using the
conditional pdfg(r1, r2).

2) Velocity of the node: Consider a leg(r1, r2) and a
point r on it located at the distance ofr from r1, r =
r1 + r · r2−r1

|r2−r1| . We define the velocity for node on leg
(Pi−1, Pi) = (r1, r2) at pointr as a conditional random
function, vi(r) ∼ ν(r; r1, r2). Thus, for each legi a
random velocityvi(r) is drawn fromν(r; r1, r2), which
defines the velocity along the legi.

3) Pause times at waypoints: The node keeps a random
pause timeτi ∼ τ(Pi), at each waypointPi, whereτ(r)
is assumed to have a finite meanτ (r) < ∞ ∀ r ∈ A.

4) Poissonian pause times during transitions: The
node may also keep random pauses on each leg. Let
γ(r; r1, r2) denote the conditional intensity (per unit
time, e.g., in 1/s) at which a moving node fromr1 to r2

stops and goes to a pause state, and let the conditional
random variableS(r; r1, r2) denote the duration of the
pause (a function of the locationr on leg (r1, r2)).

The MWP model is a general model that allows a very
versatile modeling of node movement. However, the MWP
model can still be considered as an elementary mobility model
in the sense that the path the node follows between two
consecutive waypoints is a straight line.

The way the waypoints are chosen allows us to create,
e.g., popular routes a user walks or drives through, i.e.,
the consecutive legs may be correlated. The velocity of the
node, defined by the conditional random variablesν(r; r1, r2),
allows us to model different kinds of transitions and terrain
types. One can, e.g., define the velocity distribution based on
the distance to be travelled, i.e., the longer transitions with
speeds typical to a vehicular user, and shorter with speeds
typical to a pedestrian user [7]. Or,ν(r; r1, r2)) along a given
leg may be defined such that it models the increase of speed
from 0 to a random maximum speed (constant acceleration)
and the subsequent deceleration. If the length of the leg is not
enough, the target maximum speed will not be reached.

IV. A NALYTICAL RESULTS

In this section we will present several analytical results
for the MWP process. First we will derive expressions for



the mean transition and pause times, the two modes which
alternate in the complete process. Then, based on these we
give an exact expression for the stationary node distribution.

Before proceeding, observe that in the MWP model the node
may be in three different states at a given point of time: 1)
the node is moving towards the next waypoint, 2) the node is
keeping a pause on a leg towards the next waypoint, or 3) the
node is keeping a pause at the current waypoint (see Fig. 2).

A. Mean transition and pause times

Let π(r) denote thestationary waypoint distribution , i.e.,
the pdf of the location of an arbitrary waypoint, for which it
holds that ∫

A
π(r1) · g(r1, r2) d2r1 = π(r2), and

∫
A

π(r) d2r = 1.
(2)

We assume thatπ(r) exists and is well-defined. Let`i denote
the length of legi, `i = |Pi − Pi−1|, and` the mean length
of a leg,

` =
∫
A

d2r1 π(r1)
∫
A

d2r2 g(r1, r2) |r2 − r1|.

We also assume that` is finite, which is the case if the diameter
of A is finite. LetTi denote thetransition time of leg i, i.e.,

Ti =

`i∫
0

dr

vi(r)
.

Note that the velocity distributionvi(r) is a random variable,
vi(r) ∼ ν(r; Pi−1, Pi), and may depend onPi−1 andPi.

Proposition 1 (mean transition time) The mean transition
time between two waypointsPi−1 and Pi, not including the
pause time at the end of the leg, is given by

E [T ] =
∫
A

d2r1 π(r1)
∫
A

d2r2 g(r1, r2)

|r2−r1|∫
0

dr µ(r; r1, r2) · E
[
ν−1(r; r1, r2)

]
,

(3)

where

µ(r; r1, r2) = 1 + γ(r; r1, r2) · S(r; r1, r2).

Proof: Conditioning on the leg(r1, r2) gives

E [T ] =
∫
A

d2r1 π(r1)
∫
A

d2r2 g(r1, r2) · E [T |r1, r2] .

Consider next an arbitrary leg(r1, r2) going throughr,

r = r1 + r · r2 − r1

|r2 − r1| , (4)

(m)
moving
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Fig. 2. Different modes of the MWP model.

and a short time interval of length∆t. Conditioned on a
velocity distributionvi(r) along the legi, without a possible
stop the node travels a distance of∆r = vi(r) ·∆t during this
time. However, with probability ofγ(r; r1, r2)·∆t a transition
to pause mode occurs and it takes∆t+S(r; r1, r2) time units
from the node to travel the same distance of∆r. Hence, the
mean time spent to travel the distance∆r is

∆T = ∆t + ∆t · γ(r; r1, r2) · S(r; r1, r2)

= µ(r; r1, r2) · v−1
i (r; r1, r2)∆r

and consequently,

E [T |r1, r2] =

|r2−r1|∫
0

µ(r; r1, r2) · E
[
ν−1(r; r1, r2)

]
. (5)

Corollary 2 (leg independent velocity) If the velocity on
each leg remains constant, the value of which is drawn when
a new leg starts from a distribution which is independent on
the end point locations of the leg,ν(r; r1, r2) ∼ v, and there
are no pause times, then

E [T ] = ` · E [1/v] .

Proposition 3 (mean pause time)The mean pause time be-
fore the next transition, denoted byE [τ ], is given by

E [τ ] =
∫
A

d2r π(r) τ (r). (6)

The proof is trivial.

B. Stationary node distribution

The MWP process consists of two alternating states, tran-
sition and pause. Moreover, each transition consists of one or
more moving periods separated by Poissonian pause times. Let
p(t), p(m), p(s) andp(p) denote the fraction of time the node
spends on transitions, the node is moving, the node is keeping
a pause during a transition, and the node is keeping a pause
at waypoints, respectively. For these we have,

p(t) = p(m) + p(p) =
E [T ]

E [T ] + E [τ ]
, and

p(s) = 1 − p(t) =
E [τ ]

E [T ] + E [τ ]
.

(7)

First consider a process without pause times at waypoints.



Proposition 4 (MWP without pause times at waypoints)
The stationary node distribution of the MWP process
(g, ν, γ, S) is given by

f (t)(r) =
1

E [T ]

2π∫
0

dφ

a(r,φ+π)∫
0

dr1 π(r1)

a(r,φ)∫
0

dr2

(r1+r2) · g(r1, r2) · µ(r; r1, r2) · E
[
ν−1(r1; r1, r2)

]
,

(8)

where

µ(r; r1, r2) = 1 + γ(r; r1, r2) · S(r; r1, r2),

anda(r, φ) denotes the distance from pointr to the boundary
∂A in direction φ, r1 = r − r1 · (cosφ, sin φ) and r2 =
r + r2 · (cos φ, sin φ).

Proof: We consider the mobile component, i.e., a process
from which pause times at the waypoints have been removed
(τ(r) = 0 ∀ r). The probability of finding a node inside a small
area elementdA around pointr ∈ A at an arbitrary point of
time is clearly equal to the time the node spends insidedA
during an arbitrary leg multiplied by the leg generation rate
(cf. Little’s result). The legs are generated at the rate of

1
E [T ]

.

Let E [∆t] denote the mean time spent insidedA during an
arbitrary leg. Thus the pdf of the stationary node location is

f (t)(r) =
E [∆t]

E [T ] · dA
.

Our approach is based on conditioning on the leg and the
velocity distribution,(Pi−1, Pi, vi(r)), for which we have

E [∆t] = E [E [∆t|Pi−1 = r1, Pi = r2, vi(r) = v(r)]] .

From (2) we can obtainπ(r), which corresponds to the pdf
that an arbitrary leg starts fromr. Conditioning on the starting
point of the legPi−1 = r1 gives

f (t)(r) =
∫
A

π(r1) · E [∆t|r1] d2r1

=

2π∫
0

a(r,φ+π)∫
0

r1 · π(r1) · E [∆t|r1] dr1 dφ, (9)

where in the latter formr1 = r−r1 ·(cosφ, sin φ)) anda(r, φ)
is the distance from pointr to the boundary in directionφ.

Next we condition on the end pointPi = r2. According to
Fig. 3 the possible destination area of legs going throughdA
at the distance ofr1 + r2 is equal to(r1 + r2) dθ dr2. Thus,

E [∆t|r1] =

a(r,φ)Z

0

E [∆t|r1, r2] · (r1+r2) · g(r1, r2) dφ dr2. (10)

Finally, we condition on the velocity distribution on leg
(r1, r2) denoted byvi(r). In particular, we condition on that
the velocity of the node at pointr is vi(r1) = v(r1). We

r

r1 r2

r1

r2

∆
dr2

A

φ

dφ

Fig. 3. Illustration of derivation.

must also explicitly take into account a possible Poissonian
pause withindA. Let ∆ denote the length of the line segment
(r1, r2) residing insidedA (see Fig. 3). If the node does not
pause during a transition throughdA the time spent indA is

∆t0 =
∆

v(r1)
,

which happens with the probability of1− γ(r1; r1, r2) ·∆t0.
Similarly, with a probability ofγ(r1; r1, r2) ·∆t0 a Poissonian
pause time occurs and the time spent insidedA is given by

∆t1 =
∆

v(r1)
+ S(r1; r1, r2),

and the mean sojourn time indA on leg(r1, r2) with v(r) is

E [∆t|Pi−1 = r1, Pi = r2, vi(r) = v(r)]

=
∆

v(r1)
· (1 + γ(r1; r1, r2) · S(r1; r1, r2)

)
=

∆ · µ(r1; r1, r2)
v(r1)

,

which yields,

E [∆t|Pi−1 = r1, Pi = r2]

= ∆ · µ(r1; r1, r2) · E
[
ν−1(r1; r1, r2)

]
.

(11)

Next we refer again to Fig. 3 and note thatdA = ∆ · r1 dφ.
Substituting this into (11) gives

E [∆t|Pi−1 = r1, Pi = r2]

=
dA

dφ r1
· µ(r1; r1, r2) · E

[
ν−1(r1; r1, r2)

]
.

Combining this with (9) and (10) completes the proof.
It turns out, as can be seen from the previous proof,

that from the point of view of the stationary distribution,
the Poissonian pause times corresponding to state 2) can be
replaced by adjusting the velocityν in an appropriate way:

Corollary 5 (Poissonian pause times and (mean) velocity)
The MWP process(g, ν, τ, γ, S) with the Poissonian pause
times, defined byγ(r; r1, r2) and S(r; r1, r2), has the same
stationary node distribution as a MWP process(g, ν∗, τ)
without Poissonian pause times when

ν∗(r; r1, r2) =
ν(r; r1, r2)
µ(r; r1, r2)

=
ν(r; r1, r2)

1 + γ(r; r1, r2) · S(r; r1, r2)
.



Proposition 6 (pause times at waypoints)The pdf of the
node location on condition that the node is in pause state
at a waypoint is given by

f (s)(r) =
π(r) · τ(r)

E [τ ]
. (12)

Proof: Consider a differential area elementdA aboutr.
The probability that an arbitrary waypoint is indA is equal
to π(r) dA, and the mean pause time indA, according to (6),
is equal toτ . Thus, the time spent indA in pause mode is
proportional toπ(r) · τ . E [τ ] is a normalisation constant.

Corollary 7 (complete process)The pdf of the node location
of the complete process can be written as a sum

f(r) = p(t) · f (t)(r) + p(s) · f (s)(r). (13)

Corollary 8 (mean velocity) The mean velocity of the node,
denoted byE [v], is given by

E [v] = p(t) · E [T ]
`

.

If one is interested in further distinguishing between the
actual movement and the pause times during the transitions,
the respective time proportions and conditional pdf’s are
easy to determine. In particular, consider any long realisation
consisting of moving periods (m), Poissonian pause times
during transitions (p), and pause times at waypoints (s). Let
the respective time periods in different modes beTm, Tp and
Ts, for which we have

Tm + Tp

Tm + Tp + Ts
→ p(t).

Consider next a process from which the pause times during
the transitions have been removed, i.e., the time periods
contributing toTp. The two realisations, the original and the
reduced, are always equally likely to occur in the respective
process. For the reduced realisation we obtain similarly that

Tm

Tm + Ts
→ p(t∗).

Combining the above relations we have

Tm

Tm + Tp
→ p(t∗)(1 − p(t))

p(t)(1 − p(t∗))
.

Using (7) we can determine bothp(t) andp(t∗), and

p(m) =
p(t∗)(1 − p(t))

1 − p(t∗) , and p(p) =
p(t) − p(t∗)

1 − p(t∗) .

The conditional pdf of the mobile component can be obtained
by considering a modified model whereγ(r) = 0 ∀ r, i.e.

f (m)(r) = f
(t)
|γ=0(r). (14)

Moreover, the conditional pdf of the Poissonian pause times
during the transitions is given by

f (p)(r) =
1

p(p)
·
(
p(t)f (t)(r) − p(m)f (m)(r)

)
. (15)

Finally, a decomposition of the pdf of the node location is

f(r) = p(m)f (m)(r) + p(p)f (p)(r) + p(s)f (s)(r). (16)

C. Examples of Special Cases

1) Velocity independent from the waypoints:Assume the
velocity distributionν depends only on the current location
r, not the starting or end points of the leg, i.e.,ν = ν(r),
and that there are no Poissonian pause times (or they depend
also only on the current location and have been incorporated
according to Corollary 5). Then, (8) can be written as

f (t)(r) =
E
[
ν−1(r)

]
E [T ]

2π∫
0

a(r,φ+π)∫
0

π(r1)

a(r,φ)∫
0

(r1 + r2) · g(r1, r2) dr2 dr1 dφ.

2) Independent and Identically Distributed Waypoints:
Assume that the waypointsPi are i.i.d. random variables
having a common pdfg(r), and that the velocity distribution
is independent of the waypoints,ν = ν(r). In this case,
g(r1, r2) = g(r2) and π(r) = g(r). Consequently, the
transition component of the pdf of the node location, given
by (8), can be written as (symmetry)

f (t)(r) =
2 E
[
ν−1(r)

]
E [T ]

∫ 2π

0

dφ

[
a(r,φ+π)∫

0

dr1 r1 · g(r1) ·
a(r,φ)∫
0

dr2 g(r2)
]
.

3) Uniform Waypoint Distribution:Denote byA the area
of the domain,A = |A|, and assume uniformly distributed
waypoints onA, g(r) = 1/A, and that the velocity distribution
is independent of the waypoints,ν = ν(r). In this case, the
mobile component of the pdf of the node location reduces to

f (t)(r) =
E
[
ν−1(r)

]
E [T ]A2

∫ π

0

a1a2(a1 + a2) dφ,

wherea1 = a(r, φ + π) anda2 = a(r, φ), see Fig. 1 (right).
Similarly, the mean pause time is given by

E [τ ] =
1
A

∫
A

d2r τ (r).

If we further assume a constant spatial velocityν(r) =
v ∀ r ∈ A and zero pause times at the waypoints,τ(r) =
0 ∀ r ∈ A, then the relation between the mean leg length` and
the mean transition timeE [T ] = `/v, and we obtain the basic
RWP process. In this case the pdf for the node distribution
reduces to (1).

V. M ODELLING HOTSPOTS WITHMWP

As an example application of the MWP model we consider
the problem of modelling hotspots. In this section we limit
ourselves to models where the spatial velocity component and
the Poissonian pause times are independent of the waypoints,
i.e., ν = ν(r), γ = γ(r) andS = S(r).



A. Mechanisms behind a Hotspot

By a hotspot we refer to a situation where a considerable
number of users reside within a certain area. Consider some
area which we are interested in. This area can be perceived as a
black box where users arrive. According to the Little’s formula
N = λ · D, whereN denotes the mean number of users in
the area,λ the user arrival rate, andD the mean sojourn time
of a user. The area is a hotspot ifN is considerably higher
than elsewhere. Hence, eitherλ or D (or both) must be higher
than elsewhere in order to form a hotspot.

The actual reasons leading to a hotspot can be numerous.
From the perspective of the model we want to know the
mechanisms giving rise to a higher node density. For example,
at 8 am (or 4 pm) people might be travelling to work (or
home) and the underground stops might become hotspots.
Generally, this kind of a scenario results from a location being
a popular connecting area in a public transport system. Thus,
a hotspot may be a result of users visiting often a certain area.
Alternatively, it may develop as a result of users spending a
considerable amount of time in the area. Examples of this kind
of a scenario are an open air concert and a restaurant area in
the evening.

B. Modelling Alternatives

Next we discuss how the properties of the MWP process
can be used to model the hotspot scenarios described above.
At least, the following approaches are possible:

1) Spatial pause timesat waypoints that allow the node
to keep a longer pause in the hotspot area. A standard
extension to the basic model is to introduce independent
pause times at the waypoints before the node proceeds
on the next leg. The pause times can also depend on
the current location.

2) Poisson pause timesduring transitions that allow the
node to stop in the hotspot area for a random time with
rateγ(r) per time unit. This results in a different spatial
distribution for the locations of the pauses than with
spatial pause times at waypoints. The equivalent spatial
(mean) velocityν∗(r) is given by (4) and the stationary
node distribution is straightforward to determine.

3) Spatial velocity that makes the node move slower within
the hotspot area. The spatial velocity allows a very gen-
eral formulation for the node velocity that can include
random elements, as well as location dependent features.
The pdf resulting from the model with spatial velocity
componentν(r) is proportional tof∗(r) E

[
ν−1(r)

]
,

wheref∗(r) is the pdf of the basic RWP model.
4) Non-uniform waypoint distribution that makes the

node visit the hotspot area more often. The stationary
node distribution with a non-uniform waypoint distribu-
tion can still be computed (numerically at least), even
though it increases the number of nested integrals in
the expression. This corresponds to, e.g., hotspots at the
connecting areas of transport systems.

C. Examples of Hotspot Scenarios

Before going into the examples let us introduce some
auxiliary notation. The hotspot area is denoted byH and its
area byH = |H|. Also, recall thatf∗(r) denotes the pdf
of the node location of the basic RWP process, as given by
(1), where a node moves at a constant velocity and keeps no
pause times. The proportion of time the node in the basic RWP
process spends in the hotspot area is denoted bypH ,

pH =
∫
H

f∗(r) d2r.

1) Pause Times at Waypoints:Consider first the case where
the waypoints are uniformly distributed,g(r) = 1/A, spatial
velocity is constant,ν(r) = 1, no pauses occur during the
transitions,γ(r) = 0, and the pause times at waypoints are

τ(r) = 1r∈H · S,

whereS is an i.i.d. random variable andH is some subset ofA
corresponding to a hotspot area. This corresponds to the basic
RWP process with pause times at waypoints. In this case, the
mean pause time is

E [τ ] =
H · S

A
and f (s)(r) =

1r∈H
H

.

Consequently,

f(r) = q · f∗(r) +
1 − q

H
· 1r∈H,

where

q = p(t) =
` · E [1/v]

` · E [1/v] + H · S/A
.

Note that the parameterq represents the proportion of time
the node is moving instead of keeping a pause at a waypoint.
Consequently, the fraction of the user population residing in
the hotspot area on average is given by

zH = 1 − q + q · pH .

Let us furthermore assume that the domainA is a unit disk
and the hotspot areaH is a concentric disk with radiush,
h < 1, as illustrated in Fig. 4. In this case, the cdf of the
node’s distance from the origin is

FR(r) = q · F (∗)
R (r) + (1 − q) ·

(
min{r, h}

h

)2

,

whereF
(∗)
R (r) is the cdf of the node distance from the origin

in a unit disk for the basic RWP model (see [5]),

F
(∗)
R (r) =

r∫
0

45 x(1−x2)
32

π∫
0

√
1−x2 cos2 φ dφdx. (17)

For r ≥ h the above reduces into

FR(r) = 1 − q · G(∗)
R (r),

whereG
(∗)
R (r) = 1 − F

(∗)
R (r). Fig. 5 (left) illustrates a case

with q = 0.8 and h = 0.3. We note that the node density
inside the hotspot is at least twice as large as elsewhere.
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Fig. 4. Hotspot with radius ofh in the center of unit disk.
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Fig. 5. Resulting pdfs of the node location in a unit disk with a hotspot
at the center having a radius of0.3. In left figure the hotspot is due to the
additional pause times with parameters chosen such that the fraction of time
the nodes are moving is80%. In right figure a similar hotspot is created by a
slower motion in the hotspot area, i.e., the velocity of the nodes in the hotspot
area is50% of the normal velocity.

2) Slower Movement at Hotspot:Let us next consider an-
other mechanism behind the hotspot, i.e., a decreased velocity
at which the users move inside the hotspot. In particular,
we assume that the velocity outside the hotspot isq times
greater than inside the hotspot. In this case it turns out that
the resulting pdf of the node location is given by

f(r) =
1

1 + (q − 1)pH
· (1 + (q − 1) · 1r∈H) · f∗(r).

In the case of a unit disk, where the hotspot is a smaller disk
located in the center, we obtain

f(r) =
1

1 + (q − 1)F (∗)
R (h)

· (1 + (q − 1) · 1r<h) · f∗(r),

whereF
(∗)
R (h) is given by (17). Furthermore, the fraction of

users located in the hotspot area on average is given by

zH =
q · pH

1 + (q − 1) · pH
.

Again, in Fig. 5 (right) one example case is illustrated where
q = 2 andh = 0.3. The two pdf’s (left and right figure) are
very similar with the chosen parameter values.

D. Flow Level Performance

As a final example let us consider a 3G cellular network
where adaptive link rates depending on the signal quality are
in use. Let random variableR denote the feasible link rate at
the current location of the node. Assuming the nodes are still
or move very slowly when transferring files, it can be shown
that the capacity of the cell is given by (example adopted from
[13], [14])

C = E [1/R]−1
,

based on the model of single server PS-queues.

TABLE I

BASE STATION AND FOUR CAPACITY ZONES AROUND IT.

1 km

4 km

3 km

2 km

zone distance link rate Ri

1 1 km 10 Mbit/s
2 2 km 5 Mbit/s
3 3 km 2 Mbit/s
4 4 km 1 Mbit/s

Let us assume that the cell corresponds to some hotspot
where numerous users move according to MWP process and
download documents only when they have stopped. As it was
mentioned previously, the pause times can be generated in
two ways: 1) keeping a pause at the waypoints, or 2) keeping
random pause times during the transitions. In particular, we
consider two cases:

a) i.i.d. pause times at waypoints
b) i.i.d. pause times during the transitions

Otherwise, we assume the basic model with uniform waypoint
distribution. It turns out that these two seemingly quite similar
mobility models lead to considerably different performances
in terms of cell capacity. In a) the locations where the
download requests arrive are clearly uniformly distributed as
the waypoints were uniformly distributed. On the other hand,
in the model where a node keeps the pause times during
the transitions the download requests originate according to
stationary node distribution (1) of the basic RWP process.

For simplicity, let us furthermore assume that the cell has a
maximum range of 4 km and that the feasible (unshared) link
rate depends solely on the distance according to Table I. The
proportion of download requests arriving from each zone in
both cases, denoted byP(a) andP(b), respectively, are

P(a) =
(
1/16, 3/16, 5/16, 7/16

)
P(b) =

(
0.13, 0.34, 0.37, 0.17

)
Consequently, the cell capacities, given by

C = E [1/R]−1 =

(∑
i

Pi · (1/Ri)

)−1

are

C(a) = 80/51 ≈ 1.57 Mbit/s,

C(b) ≈ 2.33 Mbit/s.

Thus, depending on how the stopping times are modelled, the
resulting performance measure, the cell capacity, can vary a
lot. At the capacity limit the zone specific loads are

ρ(a) =
(
0.01, 0.06, 0.25, 0.69

)
,

ρ(b) =
(
0.03, 0.16, 0.43, 0.39

)
.

i.e., a significant proportion (69%) of the load originates from
the outermost zone in case a), causing the degradation of the
performance.



VI. PERFECTSIMULATION OF MWP

Perfect simulation refers to the initialisation of the state of
the system in a discrete event simulation so that it corresponds
to the stationary state of the model. This has been addressed
in numerous papers (see, e.g., [6] and [3]), and here we only
briefly indicate how the perfect simulation can be achieved
for the MWP model. Our approach is based on the rejection
method, i.e., we generate samples and accept them with a
certain probability. The pdf for a legr1 → r2 is

π(r1) · g(r1, r2).

Conditioning on legr1 → r2, the mean time spent in a small
interval of lengthdr on the leg consists of two components
(moving and pause), as illustrated in Fig. 6. Define

G1 = max
r1,r2

π(r1) · g(r1, r2),

which is assumed to be finite. Furthermore, the conditional
mean transition time is given by (5). Define

G2 = max
r1,r2,v(r)

E [T |r1, r2]

= max
r1,r2,v(r)

∫ `

0

µ(r; r1, r2) · v−1(r) dr,

which we assume to be finite. The initialisation according to
the stationary distribution can be performed as follows:

1) With probability ofp(s): choose waypointr0 using pdf

π(r) · τ (r)/E [τ ] ,

and the pause timet0 using the residual pause time pdf.
return : pause timet0 at waypointr0.

2) Draw (r1, r2) using uniform distribution onA×A.
3) Accept(r1, r2) with probability ofπ(r1) ·g(r1, r2)/G1,

otherwise go back to step 2.
4) Draw random velocity for the leg,v(r) ∼ ν(r; r1, r2).
5) Compute the transition and pause time components,

T0 =

`∫
0

dr

v(r)
, T1 =

`∫
0

γ(r; r1, r2)
S(r; r1, r2)

v(r)
dr.

6) Accept velocityv(r) with probability of (T0 + T1)/G2,
otherwise go back to step 4.

7) With probability of T0
T0+T1

, drawr0 with pdf ∝ 1/v(r).
return : moving atr0 on leg (r1, r2) with v(r).

8) Draw r0 with pdf γ(r; r1, r2) · S(r; r1, r2)/v(r), and
pause time,t0, using the residual pdf ofS(r; r1, r2).
return : pause fort0 at r0, and then continue on leg
(r1, r2) with velocity v(r).

VII. C ONCLUSIONS

In this paper, we have introduced the MWP model, which
is a general mobility model that allows a Markovian structure
for the velocities, pause times and waypoints of the user.
Several analytical results for this model were derived, notably
an explicit integral formula for the stationary node distribution.

|r2 − r1|
1/v

γ(r) · S(r)/v
µ/v

Fig. 6. Averaged sample path realisation for a legr1 → r2. The (mean)
time spent in each small interval of lengthdr is a sum of two components.

The model was adapted for modeling hotspots in several
different ways. With a numerical example it was shown how
one can achieve very similar mobility patterns in terms of
the stationary node distribution using these different hotspot
creation alternatives. It was also illustrated how the appropriate
parameter values can be determined for creating a desired
hotspot at a given location. However, in another example,
it was demonstrated how seemingly very similar mobility
models lead to highly different performances, emphasising the
need for sound judgement when determining which modelling
alternative to use. Finally, an algorithm was given for starting a
simulation of the MWP model from the stationary distribution
avoiding the need for special transient handling.
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[6] J. Le Boudec and M. Vojnović, “Perfect simulation and stationarity of
a class of mobility models,” inProc. IEEE INFOCOM’05, 2005.

[7] Denizhan N. Alparslan and Khosrow Sohraby, “Two-dimensional mod-
eling and analysis of generalized random mobility models for wireless
ad hoc networks,” Tech. Rep., School of Computing and Engineering,
University of Missouri-Kansas City, Mar. 2005.

[8] Pasi Lassila, Esa Hyytiä, and Henri Koskinen, “Connectivity properties
of random waypoint mobility model for ad hoc networks,” inThe Fourth
annual Mediterranean workshop on Ad Hoc Networks (Med-Hoc-Net
2005), Île de Porquerolles, France, June 2005.

[9] Christian Bettstetter, “Mobility modeling in wireless networks: Catego-
rization, smooth movement and border effects,”ACM Mobile Computing
and Communications Review, vol. 5, no. 3, pp. 55–67, July 2001.

[10] Carlos Alberto V. Campos, Daniel C. Otero, and Luis Felipe M.
de Moraes, “Realistic individual mobility markovian models for mobile
ad hoc networks,” inProceedings of IEEE WCNC, Atlanta, GA,USA,
Mar. 2004, IEEE, pp. 1980–1985.

[11] C. Bettstetter and C. Wagner, “The spatial node distribution of the
random waypoint mobility model,” inProceedings of German Workshop
on Mobile Ad Hoc networks (WMAN), Ulm, Germany, Mar. 2002.

[12] Esa Hyytiä and Jorma Virtamo, “Random waypoint mobility model in
cellular networks,”Wireless Networks, 2005, to appear in.

[13] T. Bonald, S.C. Borst, and A. Proutiére, “How mobility impacts the
flow-level performance of wireless data systems,” inProceedings of
Infocom’04, Hong Kong, 2004, IEEE, pp. 1872–1881.

[14] Thomas Bonald and Alexandre Proutiére, “Downlink data channels:
User performance and cell dimensioning,” inMobiCom, 2003.


