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Abstract—We consider the critical percolation threshold for
aligned cylinders, which provides a lower bound for the required
node degree for the permanence of information in opportunistic
networking. The height of a cylinder corresponds to the timea
node is active in its current location. By means of Monte Carlo
simulations, we obtain an accurate numerical estimate for the
critical reduced number density, η

c
≈ 0.3312(1) for constant

height cylinders. This threshold is the same for all ratios of the
height to the diameter of the base, and corresponds to the mean
node degree of1.3248 in opportunistic networking, which is
clearly below the percolation threshold of4.51 above which a
gigantic connected component emerges in the network.

I. I NTRODUCTION

In the continuum percolation problem, objects of given
shape are placed according to ak-dimensional Poisson pro-
cess. Two objects are neighbors if they overlap. The percola-
tion is said to occur if with a positive probability a random
object belongs to an infinite cluster, which exists only when
the density of objects is above the so-called critical percolation
threshold. Among many other fields, continuum percolation
theory has been applied to study wireless networks. A wealth
of results exist for two-dimensional percolation since theearly
work of Broadbent and Hammersley [1]. In the basic contin-
uum model, the objects are permeable discs, for which the
first estimate of the critical percolation threshold was given by
Gilbert in [2] (in the context of wireless multi-hop networks).
Since then, the computing power has increased enormously,
as have the techniques to determine the quantity of interest.
Consequently, a very accurate estimate for the threshold has
been provided by Quintanilla et al. [3],φc = 0.6763475(6).

In three dimensions, the basic case is the one with perme-
able (interpenetrating) spheres with a fixed radius, for which
an accurate estimate was obtained by Lorenz and Ziff [4],
φc = 0.289573± 0.000002. Similarly, Baker et al. considered
both aligned and isotropically oriented squares and cubes [5].
The aligned cubes are of interest to us, for which the criticality
threshold isφc = 0.2773 ± 0.0002. Balberg and Binenbaum
[6] considered a system which resembles closely our model. In
particular, they consider three-dimensional permeable “sticks”
comprising a cylinder body which is capped by two hemi-
spheres of equal radius. The difference is the additional caps
and the alignment of the sticks; in our case the cylinders will
be strictly aligned.

The critical density for percolation has been expressed
by different quantities in the literature. Above we used the
volume fraction φ, defined as the fraction of the space the

objects occupy. Thereduced number density is a dimensionless
quantity defined as the product,

η = n · V,

where n and V are the number density and volume of the
objects. The elementary relationship between these is

φ = 1 − e−η.

The critical values ofη andφ are denotedηc andφc.
In this paper, we study the continuum percolation of per-

meable aligned cylinders, which is related to the permanence
of information in opportunistic networking schemes. In Sec-
tion II, we first derive bounds for the critical reduced number
densityηc based on the known results for spheres and cubes,
and then, by means of Monte Carlo simulations, also give
an accurate estimate forηc and the corresponding mean node
degreeν in opportunistic networks. The percolation threshold
gives a lower bound for the permanence of information, which
is then, in Section III, studied directly by simulating an actual
content dissemination scheme. Section IV concludes the paper.

A. Background

In the floating content application and related concepts,
information is stored in mobile wireless nodes which duplicate
it whenever they meet other nodes within the area of interest
[7]. As nodes eventually depart the area, the information is
bound to be lost when the last information carrying node
departs before passing the information further.

An abstract model for the availability of the information
is as follows. Consider anad hoc network comprising nodes
which appear in the plane according to a Poisson process and
remain stationary for a random time before they disappear
(depart). In other words, we assume that communication takes
place only when two nodes are stationary and within each
other’s transmission range. For the latter, we assume Gilbert’s
disc model (boolean model), where communication is possible
whenever the distance between two nodes is at most the
transmission ranged.

The described system constitutes a stochastic process where
discs corresponding to nodes appear in the(x, y)-plane. The
radius of the discs is related to the transmission ranged. For
a succesful communication, the distance between two nodes
must be at mostd. The equivalentradius for percolation is
r = d/2, i.e., the transmission ranged corresponds to the
diameter2r with regards to percolation.
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Fig. 1. Left: Aligned cylinders and dissemination of the information (red
cylinders) in time. The three cylinders at the bottom right are connected to
the red component, but the information flows only in the direction of positive
time-axis. Right: Derivation of the lower and upper bound for the percolation
threshold for aligned cylinders.

Interpreting the time asz-axis yields sample realizations as
depicted in Fig. 1. The dark red color in a cylinder indicates
that the corresponding node has the information at the given
time instant. The key observation is thatthe phenomenon
for the availability of information at time t (or forever)
corresponds to a directed percolation along the z-axis for
aligned cylinders. Hence, there are two important differences
to the classical percolation problem: (i) objects are aligned
instead of being isotropically oriented, and (ii) percolation is
directed due to the causality along the time-axis. In the next
section, we relax the latter and study the classical percolation
problem with aligned objects. The obtained results serve as
strict lower bounds for the critical node density with respect
to the permanence of the information.

II. A NALYSIS OF PERCOLATION BOUND

In this section, we assume that the stopping timeT of a
node is constant and neglect the causality. Leth be the cor-
responding length in thez-direction in the three-dimensional
spatial model. We note that one can choose the scale forz-axis
arbitrarily and the resulting process is a Poisson point process
in three dimensions.

Let λ denote the arrival rate per unit area, so thatn2 = λ·T
corresponds to the number density of discs in the(x, y)-plane
at any given point of time. The mean node degree (number of
neighbours) is

ν = n2 π d2.

The number density of objects in three dimensions depends
on the choice of scale and reads

n = λ · T/h = n2/h.

Combining the above gives

ν = n2πd2 = (n2/h)(πhd2) = 4nV = 4η,

whereV is the volume of the cylinder. Thus, the elementary
relationship betweenν and the reduced number density of
cylindersη in three dimensions is

ν = 4 η,

and the problem of the critical mean node degree reduces to
that of finding the critical percolation density for cylinders.
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Fig. 2. Regimes for different networking concepts. Below the percolation
bound one has to resort to delay tolerant networking (DTN), while below the
permanence bound no meaningful communication is possible.

A. Lower and Upper Bounds

Let ηa denote the unknown critical parameter of some shape
a, andηb the known critical parameter for some other shape
b. In general, it holds that

(V̌a/Vb) ηb ≤ ηa ≤ (V̂a/Vb) ηb,

whereV̂a is the volume of such an object of typea that wholly
contains an object of typeb with volumeVb, and similarly,V̌a

denotes the volume of such an object of typea which wholly
fits inside an object of typeb. The tightest bound is obtained
when the two volumes are as close to each other as possible.

In the present case, we derive lower and upper bounds for
the critical reduced number density for aligned cylinders based
on the known results for spheres,ηsphere = 0.341889(3) [4],
and aligned cubes,ηcube = 0.3248(3) [5]. The critical reduced
number density for aligned cylinders is insensitive to the ratio
between the height of the cylinder and the diameter of the
base, which allows an optimization over the mentioned ratio.
The tighest upper bound for the aligned cylinders is obtained
by taking the objectb to be a sphere, while the lower bound
is obtained with a cube, as illustrated in Fig. 1. In terms of
the mean node degree,

1.02 < νc < 2.052. (1)

Unfortunately, these bounds are rather loose, which is ex-
plained by the fact that the volume of the smallest cylinder
containing a sphere is 1.5 times the volume of the latter and
that the volume of the largest cylinder contained in a cube is
about 0.79 times the volume of the latter.

However, as cylinder can be thought as a shape between
a sphere and a cube (most obvious if the cylinder’s height
equals the diameter of the base, a choice that, as said, does not
affectηcyl), one can expect thatηcyl is somewhere between the
corresponding values of sphere and cube1, 0.3248 ≤ ηcyl ≤
0.3419, or in terms of the mean node degree,

1.2992 ≤ νc ≤ 1.3676. (2)

The average node degreeν for connectivity in the plane is
about 4.51 neighbours. This means that thepermanence of
information is achieved with a clearly lower node density than
what an instantaneous end-to-end communication requires.

Fig. 2 illustrates the regimes of different wireless net-
working concepts as a function of (mean) node degree. The
three regions can be identified in general, while the shown
numerical values correspond to the stationary model where
communication takes place only when a node is not moving.

1Incidentally, ηsphere + ηcube ≈ 2/3.
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TABLE I
PARAMETERS FORMONTE CARLO SIMULATION .

shape dimensions volume reduced number densityη
c

volume fraction φ
c

cube ℓ = 1 1 0.3248 ± 0.0003 0.2773 ± 0.0002 [5]
sphere r = 1/2 π/6 0.341889 ± 0.000003 0.6763475 ± 0.0000006 [4]
cylinder r = 1/2, h = 1 π/4 0.3312 ± 0.0001 0.2819 ± 0.0002 (Sect. II-B)
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Fig. 3. Monte Carlo simulation results for percolation withspheres, aligned cubes and aligned cylinders.

B. Monte Carlo Simulations

Next we carry out Monte Carlo simulations based upon the
method by Baker et al. [5], which again was based on the
work by Leath [8] and Lorenz and Ziff [4]. First we briefly
describe the methodology, while for more details we refer to
the aforementioned work.

1) Methodology: Let random variableS denote the size of
the cluster a randomly chosen object belongs to. The idea is
to determine the cluster size distribution by simulations and
then utilize its known asymptotic behavior,

P{S ≥ s | η} ∼ As2−τ f((η − ηc)s
σ),

where τ and σ denote universal exponents andA is some
(non-universal) constant. In three dimensions [9],

τ = 2.18906± 0.00006,

σ = 0.4522± 0.0008.

Near the percolation threshold, whereη ≈ ηc, Taylor series
for f(x) is f(x) = 1 + Bx + . . ., which gives

P{S ≥ s | η} · sτ−2 ∼ A + AB(η − ηc)s
σ + . . . ,

i.e., the quantity on the left-hand side becomes a constant when
η = ηc, which can be used to determineηc.

In [5] Monte Carlo simulations are carried out inL × L ×
L box, which is subdivided toL3 unit boxes. This enables
an efficient procedure where (i) search of the neighbors is
limited to the surrounding unit boxes and (ii) the unit boxes
are populated only on demand according to the Poisson point
process. For oddL, a center box is well-defined and a test
object can be placed initially in the middle of it. Samples of
the cluster sizeS are binned so that thekth bin corresponds to
the number of samples with cluster sizes ≥ 2k, k = 0, 1, . . ..
As samples reaching the boundary would cause a bias to the
results, only bins up to the smallest bin having such samples
are included in the results [5]. The shortcoming is that one
ends up using relatively high values for sizeL while most of
the unit boxes remain unused.

In this work, we consider the aligned shapes given in
Table I. As we limit ourselves to study objects that fit insidea
unit box, a given object can overlap only with objects located
within the3×3×3 box around it. For each new object added
to the cluster, we first ensure that the26 surrounding boxes are
populated, and then add the connected objects to the cluster.
This is repeated recursively until no new objects are included.
Our implementation, written in C, uses breadth-first searchto
this end. The pseudo random numbers are generated using
Mersenne Twister [10].

A fixed L × L × L box would enable a fast access to unit
boxes, e.g., through an appropriately chosen array. However,
we do not use such, but instead restrict the search only by
defining a maximum cluster sizesmax corresponding to the
highest bin we are interested in; for which a rational choice
is smax = 2K for someK. Unit boxes are stored in a hash
of lists, which allows a cluster to grow dynamically to all
directions. These modifications improve the mean running
time significantly allowing larger sample sizes and higher
numbers of bins. At the same time, it also relieves us from
adjusting the box size parameterL a priori. For example, the
side length ofL = 161, used in [5], corresponds to about4.2
million unit boxes, while a comparablesmax achieved was
only 1024, . . . , 4096 nodes.

2) Numerical results: We chooseK = 16 so that the last
bin corresponds to cluster sizes of65536 nodes and higher.
For each shape and reduced number densityη, we generate
N = 106 clusters to obtain an empirical ccdf of the cluster size
S. Fig. 3 illustrates the results. From the literature we know
the critical reduced number densityηc for spheres and aligned
cubes (see Table I), and thus the corresponding curves serve
as a validation of the simulation framework. In passing, we
note that according to our experimentsηcube = 0.32476(4),
which gives one additional digit to the result given in [5].

To the best of our knowledge, the critical density for
percolation with aligned cylinders has not been determined
before. According to our Monte Carlo simulations,

ηcyl = 0.3312(1),
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Fig. 4. Numerical results for a finite target median lifetimein unit disc with
Gilbert’s disc model and different stopping time distributions.

which corresponds to the mean node degree of

νc = 1.3248(4). (3)

This value also fits nicely within the conjectured bounds (2).

III. S IMULATION OF THE SYSTEM

The continuum percolation model considered in the previous
section provided a lower bound for the critical mean node
degree for the permanence of information. In this section, we
simulate the actual stochastic process of information carrying
nodes in the plane. At timet = 0, all nodes present in the
area (unit disc) are given the information and we record how
long the information remains available in the given area. Other
simulation parameters are the arrival rateλ, the stopping time
distribution, and transmission ranged. Whend tends to zero,
the model approaches that of the percolation model.

The curves in Fig. 4 correspond to parameter values yielding
a median lifetime ofT = 100, 1k, 10k. The mean stopping
time (lifetime of a node) is normalized to1. The constant
stopping time corresponds to the results of the previous
section. We observe that the critical mean node degreeνc

appears to be about1.3 . . .1.5 depending on the stopping time
distribution, which matches well with the lower bound (3).
Moreover, varying stopping times also clearly improves the
lifetime of the information, as expected.

In Fig. 5, where the transmission range is fixed,d = 0.05,
and the stopping time is constant,x-axis represents the mean
node degree and ony-axis is the lifetime on logarithmic
scale. The three curves correspond to the25%, 50% and
75% quartiles. We observe that lifetime increases gradually
below the percolation bound (3) until, at about1.5, it suddenly
skyrockets. This phenomenon corresponds to crossing the
permanence bound.

IV. CONCLUSIONS

Percolation theory has been applied to numerous fields
and problems. In the context of wireless networking, a two-
dimensional percolation model has been traditionally usedto
analyze the connectivity and capacity in multi-hop networks
[2], [11], [12]. In this paper, we have demonstrated that the
three-dimensional percolation model can be utilized to study
the permanence of information in opportunistic networking
schemes. The third dimension corresponds to the time in this
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Fig. 5. Information lifetime as a function of the mean node degreeν. The
y-axis is on logarithmic scale and the percolation bound refers to (3).

case. Assuming Gilbert’s disc model for transmission range,
and constant node lifetimes (stopping times), the resulting
percolation model comprises identical aligned cylinders.

Consequently, we then first derived bounds for the critical
reduced number density of aligned cylinders, and subsequently
also gave an accurate numerical estimate for it,ηcyl = 0.3312,
corresponding to the mean node degree ofνc = 1.3248. The
result matches well with the simulation results of the actual op-
portunistic networking scheme, where nodes collectively store
and disseminate information content in best effort fashion.
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