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Abstract—We consider the critical percolation threshold for objects occupy. Theeduced number density is a dimensionless
aligned cylinders, which provides a lower bound for the reqired  quantity defined as the product,
node degree for the permanence of information in opportunitic
networking. The height of a cylinder corresponds to the timea n=n-V,
node is active in its current location. By means of Monte Caid
simulations, we obtain an accurate numerical estimate forhe wheren and V' are the number density and volume of the

critical reduced number density, n, ~ 0.3312(1) for constant gbjects. The elementary relationship between these is
height cylinders. This threshold is the same for all ratios 6 the

height to the diameter of the base, and corresponds to the maa p=1—e".
node degree 0f1.3248 in opportunistic networking, which is
clearly below the percolation threshold of 4.51 above which a The critical values of; and ¢ are denoted). and ¢..

gigantic connected component emerges in the network. In this paper, we study the continuum percolation of per-
meable aligned cylinders, which is related to the permamenc
of information in opportunistic networking schemes. In Sec
) ) . _ tion Il, we first derive bounds for the critical reduced numbe
In the continuum percolation problem, objects of 9V€Rensityn, based on the known results for spheres and cubes,
shape are placed according tokalimensional Poisson pro- 5nq then by means of Monte Carlo simulations, also give
cess. Two objects are neighbors if they overlap. The percolg, 5ccurate estimate for and the corresponding mean node
tion is said to occur if with a positive probability a randomyeqree, in opportunistic networks. The percolation threshold
object belongs to an infinite cluster, which exists only whegyes 4 jower bound for the permanence of information, which
the density of objects is above the so-called critical PRt ig yhen in Section I, studied directly by simulating artud

threshold. Among many other fields, continuum percolatiqtytent dissemination scheme. Section IV concludes therpap
theory has been applied to study wireless networks. A wealth

of results exist for two-dimensional percolation since ¢y

work of Broadbent and Hammersley [1]. In the basic contirf®: Background

uum model, the objects are permeable discs, for which theln the floating content application and related concepts,

first estimate of the critical percolation threshold wasegiby information is stored in mobile wireless nodes which dugtkc

Gilbert in [2] (in the context of wireless multi-hop netwaik it whenever they meet other nodes within the area of interest

Since then, the computing power has increased enormoufly, As nodes eventually depart the area, the information is

as have the techniques to determine the quantity of interdsbund to be lost when the last information carrying node

Consequently, a very accurate estimate for the threshad ligparts before passing the information further.

been provided by Quintanilla et al. [3}. = 0.6763475(6). An abstract model for the availability of the information
In three dimensions, the basic case is the one with pernig-as follows. Consider aad hoc network comprising nodes

able (interpenetrating) spheres with a fixed radius, forclhi which appear in the plane according to a Poisson process and

an accurate estimate was obtained by Lorenz and Ziff [4gmain stationary for a random time before they disappear

¢ = 0.289573 4+ 0.000002. Similarly, Baker et al. considered(depart). In other words, we assume that communicatiorstake

both aligned and isotropically oriented squares and cubles [place only when two nodes are stationary and within each

The aligned cubes are of interest to us, for which the ctitica other’s transmission range. For the latter, we assume Gbe

threshold is¢. = 0.2773 + 0.0002. Balberg and Binenbaum disc model (boolean model), where communication is possibl

[6] considered a system which resembles closely our modelwhenever the distance between two nodes is at most the

particular, they consider three-dimensional permealileKs’ transmission range.

comprising a cylinder body which is capped by two hemi- The described system constitutes a stochastic procesg wher

spheres of equal radius. The difference is the additionas cadiscs corresponding to nodes appear in they)-plane. The

and the alignment of the sticks; in our case the cylinderk wiladius of the discs is related to the transmission rahgeor

be strictly aligned. a succesful communication, the distance between two nodes
The critical density for percolation has been expressewust be at mostl. The equivalentadius for percolation is

by different quantities in the literature. Above we used the = d/2, i.e., the transmission rangé corresponds to the

volume fraction ¢, defined as the fraction of the space thdiameter2r with regards to percolation.

|. INTRODUCTION
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Fig. 2. Regimes for different networking concepts. Below ffercolation
bound one has to resort to delay tolerant networking (DTNjijerbelow the
permanence bound no meaningful communication is possible.

A. Lower and Upper Bounds

Fig. 1. Left: Aligned cylinders and dissemination of theamhation (red "
cylinders) in time. The three cylinders at the bottom rigte aonnected to L€t 7, denote the unknown critical parameter of some shape

the red component, but the information flows only in the dicecof positve a, and;, the known critical parameter for some other shape
time-axis. Right: Derivation of the lower and upper boundtfte percolation b. In general it holds that
threshold for aligned cylinders. ' !

(Va/%) b < Ta < (Va/%) b,

Interpreting the time as-axis yields sample realizations asvhereV, is the volume of such an object of typethat wholly
depicted in Fig. 1. The dark red color in a cylinder indicatesontains an object of typiewith volumeV,, and similarly,V,
that the corresponding node has the information at the givdenotes the volume of such an object of typahich wholly
time instant. The key observation is thtite phenomenon fits inside an object of typé. The tightest bound is obtained
for the availability of information at time ¢ (or forever) when the two volumes are as close to each other as possible.
corresponds to a directed percolation along the z-axis for In the present case, we derive lower and upper bounds for
aligned cylinders. Hence, there are two important diffeean the critical reduced number density for aligned cylindexsdul
to the classical percolation problem: (i) objects are @&wn on the known results for spheregpnee = 0.341889(3) [4],
instead of being isotropically oriented, and (ii) percwatis and aligned cubesj..1,. = 0.3248(3) [5]. The critical reduced
directed due to the causality along the time-axis. In thet nexumber density for aligned cylinders is insensitive to thgor
section, we relax the latter and study the classical petioola between the height of the cylinder and the diameter of the
problem with aligned objects. The obtained results serve laase, which allows an optimization over the mentioned ratio
strict lower bounds for the critical node density with resipe The tighest upper bound for the aligned cylinders is obthine

to the permanence of the information. by taking the object to be a sphere, while the lower bound
is obtained with a cube, as illustrated in Fig. 1. In terms of
Il. ANALYSIS OF PERCOLATION BOUND the mean node degree,
In this section, we assume that the stopping timef a 1.02 < v, < 2.052. (1)

node is constant and neglect the causality. hdie the cor-

responding length in the-direction in the three-dimensionalUnfortunately, these bounds are rather loose, which is ex-

spatial model. We note that one can choose the scaledais plained by the fact that the volume of the smallest cylinder

arbitrarily and the resulting process is a Poisson pointgse containing a sphere is 1.5 times the volume of the latter and

in three dimensions. that the volume of the largest cylinder contained in a cube is
Let )\ denote the arrival rate per unit area, so that= \-7  about 0.79 times the volume of the latter.

corresponds to the number density of discs in(thegy)-plane However, as cylinder can be thought as a shape between

at any given point of time. The mean node degree (numberafsphere and a cube (most obvious if the cylinder’s height

neighbours) is equals the diameter of the base, a choice that, as said, dbes n

v =nymd’. affectr.,;), one can expect that, is somewhere between the
corresponding values of sphere and cyle3248 < Neyl <

The number density of objects in three dimensions depengis, 19 or in terms of the mean node degree

on the choice of scale and reads

1.2992 < v, < 1.3676. 2
n=\T/h=ny/h. SVes )

The average node degreefor connectivity in the plane is
about4.51 neighbours. This means that tipermanence of
v = namd® = (ng/h)(mhd?) = 4nV = 4, information is achieved with a clearly lower node density than

] ) what an instantaneous end-to-end communication requires.
whereV is the volume of the cylinder. Thus, the elementary Fig. 2 illustrates the regimes of different wireless net-

relationship between and the reduced number density Ofyrking concepts as a function of (mean) node degree. The
cylindersy in three dimensions is three regions can be identified in general, while the shown
v=4n, numerical values correspond to the stationary model where

communication takes place only when a node is not moving.
and the problem of the critical mean node degree reduces to

that of finding the critical percolation density for cylinde incidentally, sphere + Teube ~ 2/3.

Combining the above gives



TABLE |
PARAMETERS FORMONTE CARLO SIMULATION.

shape dimensions volume  reduced number density,  volume fraction ¢
cube (=1 1 0.3248 4 0.0003 0.2773 4 0.0002 [5]
sphere r=1/2 /6 0.341889 + 0.000003 0.6763475 £ 0.0000006 [4]
cylinder r=1/2,h=1 /4 0.3312 4 0.0001 0.2819 + 0.0002 (Sect. 1I-B)
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Fig. 3. Monte Carlo simulation results for percolation withheres, aligned cubes and aligned cylinders.
B. Monte Carlo Smulations In this work, we consider the aligned shapes given in

Next we carry out Monte Carlo simulations based upon tH&PI€ I. As we limit ourselves to study objects that fit insde
method by Baker et al. [5], which again was based on tﬁ’é"t _box, a given object can ov_erlap only with obje_cts lodate
work by Leath [8] and Lorenz and Ziff [4]. First we briefIyW'th'n the 3 x 3 x 3 box around it. For each new object added

describe the methodology, while for more details we refer {8 the cluster, we first ensure that tigsurrounding boxes are
the aforementioned work. populated, and then add the connected objects to the cluster

1) Methodology: Let random variables denote the size of This is repeated recursively until no new objects are inetud

the cluster a randomly chosen object belongs to. The ideady" implementation, written in C, uses breadth-first seaoch -
to determine the cluster size distribution by simulations a thiS end. The pseudo random numbers are generated using

then utilize its known asymptotic behavior, Mersenne Twister [10]. .
A fixed L x L x L box would enable a fast access to unit

P{S>s|n} ~ A>T f((n —1n.)s7), boxes, e.g., through an appropriately chosen array. Haweve

we do not use such, but instead restrict the search only by

defining a maximum cluster size,,, corresponding to the

highest bin we are interested in; for which a rational choice

T = 2.18906 + 0.00006, is]c S|Wx = r3_1’<hfor"someK.lUnit boxes aredstoreq ir:I a haslrll
B of lists, which allows a cluster to grow dynamically to a

o = 0.4522 % 0.0008. directions. These modifications improve the mean running

Near the percolation threshold, whefex 7., Taylor series time significantly allowing larger sample sizes and higher

where  and o denote universal exponents andis some
(non-universal) constant. In three dimensions [9],

for f(z)is f(z) =1+ Bx + ..., which gives numbers of bins. At the same time, it also relieves us from
Ly . adjusting the box size parametgra priori. For example, the
P{S>s|n} s "~ A+ AB(n—n)s” +..., side length ofL = 161, used in [5], corresponds to aboui

million unit boxes, while a comparable,,., achieved was
only 1024, ...,4096 nodes.

2) Numerical results; We chooseK = 16 so that the last
bin corresponds to cluster sizes @536 nodes and higher.

i.e., the quantity on the left-hand side becomes a constaatw
n = 1., Which can be used to determing.

In [5] Monte Carlo simulations are carried out Inx L x
L box, which is subdivided td.® unit boxes. This enables i
an efficient procedure where (i) search of the neighborsF r eacﬁh shape and reduced ”“T“.ber dengitwe generate_
limited to the surrounding unit boxes and (i) the unit boxei = 10° clusters to obtain an empirical ccdf of the cluster size

are populated only on demand according to the Poisson po'rﬁtF'g.'.3 llustrates the results. From the literature we know
. ' { e critical reduced number densify for spheres and aligned
process. For odd,, a center box is well-defined and a tes

object can be placed initially in the middle of it. Samples (ﬁubes (s_ee _Table . an(_j thus_ the corresponding curves serve
the cluster size&S' are binned so that thieth bin corresponds to as a validation O.f the simulation _framework. In passing, we
the number of samples with cluster sige> 2%, k= 0,1, .. .. not_e the}t according t.q our expenmem;s]be - 9‘324.76(4)’

As samples reaching the boundary would cause a bias to tH ich gives one additional digit to the resu_lt. given in [5]'
results, only bins up to the smallest bin having such samples 0 th? bes_t of our knowledge, the critical density _for
are included in the results [5]. The shortcoming is that Orﬁeercolatlon Wlt.h aligned cylinders has _not b_een determined
ends up using relatively high values for sizewhile most of efore. According to our Monte Carlo simulations,

the unit boxes remain unused. Neyl = 0.3312(1),
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Fig. 4. Numerical results for a finite target median lifetimeunit disc with
Gilbert's disc model and different stopping time distribuas.

which corresponds to the mean node degree of

Ve = 1.3248(4). 3)

This value also fits nicely within the conjectured bounds (2%

IIl. SIMULATION OF THE SYSTEM
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Fig. 5. Information lifetime as a function of the mean nodgréev. The
y-axis is on logarithmic scale and the percolation boundrsefe (3).

case. Assuming Gilbert's disc model for transmission range
and constant node lifetimes (stopping times), the resultin
percolation model comprises identical aligned cylinders.
Consequently, we then first derived bounds for the critical
educed number density of aligned cylinders, and subsdiguen
also gave an accurate numerical estimate foy.it, = 0.3312,
corresponding to the mean node degreeof 1.3248. The

The continuum percolation model considered in the previoussult matches well with the simulation results of the alabpa
section provided a lower bound for the critical mean nodsortunistic networking scheme, where nodes collectivedyes
degree for the permanence of information. In this sectiom, vand disseminate information content in best effort fashion

simulate the actual stochastic process of informationyaagr
nodes in the plane. At time = 0, all nodes present in the
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