Task Assignment in a Server Farm with Switching Delays and General Energy-Aware Cost Structure

Esa Hyytiä, Rhonda Righter and Samuli Aalto

Aalto University, Finland
University of California Berkeley, USA

INFORMS APS, July 2013

Aalto University School of Electrical Engineering

Outline

1 Task assignment model with switching delay
2 Basic dispatching policies
3 FPI approach
4 Value function for M/G/1-FCFS
■ Switching costs

- Running costs

■ Holding costs
5 Solving the task assignment problem
6 Summary of results

Task Assignment with Switching Delay

■ Model
■ Reference Policies

- First Policy Iteration Approach

Basic problem $\mathrm{E}[\mathbf{T}]$

- k parallel queues
- Tasks arrive at rate λ (Poisson process)

■ Objective: minimize latency, waiting time, ...

Switching Delays and Energy

Model for Server Farm

■ k parallel servers

- Size-aware setting

School of Electrical Engineering

Switching Delays and Energy

Model for Server Farm

■ k parallel servers
■ Size-aware setting

Distinctive features here

■ Idle servers are switched OFF to save energy

School of Electrical Engineering

Switching Delays and Energy

Model for Server Farm

■ k parallel servers

- Size-aware setting

Distinctive features here

■ Idle servers are switched OFF to save energy
■ Switching ON delay postpones the start of the service

School of Electrical Engineering

Switching Delays and Energy

Model for Server Farm

- k parallel servers
- Size-aware setting

Distinctive features here

■ Idle servers are switched OFF to save energy
■ Switching ON delay postpones the start of the service
■ Energy- and Delay-aware cost structure
■ Switching costs

- Running costs
- Holding costs (per job)

Switching Delays and Energy

Model for Server Farm

- k parallel servers
- Size-aware setting

Distinctive features here

■ Idle servers are switched OFF to save energy
■ Switching ON delay postpones the start of the service
■ Energy- and Delay-aware cost structure
■ Switching costs

- Running costs
- Holding costs (per job)

■ Objective to balance between

- Energy consumption
- Performance (e.g., latency)

Switching Delays and Energy

Model for Server Farm

- k parallel servers
- Size-aware setting

Distinctive features here

■ Idle servers are switched OFF to save energy
■ Switching ON delay postpones the start of the service

- Energy- and Delay-aware cost structure

■ Switching costs

- Running costs

■ Holding costs (per job)
■ Objective to balance between

- Energy consumption
- Performance (e.g., latency)

Heterogeneous servers, job-specific costs, ...

Related models (M/G/1):

■ Removable servers, N-policy

- (Yadin \& Naor 1963; Heyman 1968)
- Service starts when nth customer arrives

■ Vacation models, T-policy
■ (Levy \& Yechiali 1975; Heyman 1977)

- Server returns periodically to check the queue

■ D-policy, service starts when backlog exceeds d Engineering

Related models (M/G/1):

■ Removable servers, N-policy
■ (Yadin \& Naor 1963; Heyman 1968)

- Service starts when nth customer arrives

■ Vacation models, T-policy

- (Levy \& Yechiali 1975; Heyman 1977)
- Server returns periodically to check the queue

■ D-policy, service starts when backlog exceeds d
Results for switching delay:
■ M/G/1 with setup times (Welch, Oper. Res., 1964)
$■ M / M / k$ approximations (Gandhi et al., Sigmetrics'10)
$\square M / M / k$ exact results (Gandhi et al., Sigmetrics'13)

Related models (M/G/1):

■ Removable servers, N-policy

- (Yadin \& Naor 1963; Heyman 1968)
- Service starts when nth customer arrives

■ Vacation models, T-policy

- (Levy \& Yechiali 1975; Heyman 1977)
- Server returns periodically to check the queue

■ D-policy, service starts when backlog exceeds d
Results for switching delay:
■ M/G/1 with setup times (Welch, Oper. Res., 1964)
$■ M / M / k$ approximations (Gandhi et al., Sigmetrics'10)
$■ M / M / k$ exact results (Gandhi et al., Sigmetrics'13)
No delay- and energy-savvy task assignment policies!

Definition

Static policy chooses the server independently of the queue states

Definition

Static policy chooses the server independently of the queue states

1 Bernoulli splitting (RND)
Choose a queue at random using probabilities p_{i} School of Electrical Engineering

Static Policies

Definition

Static policy chooses the server independently of the queue states

1 Bernoulli splitting (RND)
Choose a queue at random using probabilities p_{i}
2 Size-Interval-Task-Assignment (SITA) Assignment by the queue-specific ranges of job sizes.
"Short jobs to Queue 1 and the rest to Queue 2"
■ Proposed in Crovella et. al (Sigmetrics'98) and Harchol-Balter et. al (J. of PDC, 1999)

- Optimal size-aware state-free for FCFS (Feng et. al, -05)

Definition

Actions of a dynamic policy depend on the queue states

Dynamic Policies

Definition

Actions of a dynamic policy depend on the queue states

1 Join-the-Shortest-Queue (JSQ)
Optimal when Poisson arrivals, Exp-distributed job sizes, identical servers, and the queue occupancy is known (Haight 1958; Winston 1977)

Dynamic Policies

Definition

Actions of a dynamic policy depend on the queue states

1 Join-the-Shortest-Queue (JSQ)
Optimal when Poisson arrivals, Exp-distributed job sizes, identical servers, and the queue occupancy is known (Haight 1958; Winston 1977)

2 Round-robin (RR)
Optimal with identical servers initially in the same state, known routing history and unknown queue occupancy (Ephremides et. al, 1980; Liu\&Towsley-94; Liu\&Righter -98)

Dynamic Policies

Definition

Actions of a dynamic policy depend on the queue states

1 Join-the-Shortest-Queue (JSQ)
Optimal when Poisson arrivals, Exp-distributed job sizes, identical servers, and the queue occupancy is known (Haight 1958; Winston 1977)

2 Round-robin (RR)
Optimal with identical servers initially in the same state, known routing history and unknown queue occupancy (Ephremides et. al, 1980; Liu\&Towsley-94; Liu\&Righter -98)

3 Least-Work-Left (LWL)
Pick the queue with the shortest backlog (Sharifnia 1997)

■ Decomposition with a static basic policy α
■ Queues receive jobs according to Poisson processes

First Policy Iteration (FPI)

■ Decomposition with a static basic policy α
■ Queues receive jobs according to Poisson processes

- Value function is a sum of the queue-specific value functions

$$
v_{\mathbf{z}}(\alpha)=\sum_{i} v_{\mathbf{z}_{i}}^{(i)}(\alpha)
$$

First Policy Iteration (FPI)

■ Decomposition with a static basic policy α
■ Queues receive jobs according to Poisson processes

- Value function is a sum of the queue-specific value functions

$$
v_{\mathbf{z}}(\alpha)=\sum_{i} v_{\mathbf{z}_{i}}^{(i)}(\alpha)
$$

FPI gives a new policy α^{\prime}
where

$$
\alpha^{\prime}(x)=\underset{i}{\operatorname{argmin}} h_{i}(x)+\left(v_{\mathbf{z}_{i} \oplus x}^{(i)}-v_{\mathbf{z}_{i}}^{(i)}\right)
$$

- $h_{i}(x)$ is the immediate cost of choosing Queue i for Job x
- $v_{\mathbf{z}_{i} \oplus x}^{(i)}-v_{\mathbf{z}_{i}}^{(i)}$ is the mean increase in future costs in Queue i

First Policy Iteration (FPI)

■ Decomposition with a static basic policy α
■ Queues receive jobs according to Poisson processes

- Value function is a sum of the queue-specific value functions

$$
v_{\mathbf{z}}(\alpha)=\sum_{i} v_{\mathbf{z}_{i}}^{(i)}(\alpha)
$$

FPI gives a new policy α^{\prime}
where

$$
\alpha^{\prime}(x)=\underset{i}{\operatorname{argmin}} h_{i}(x)+\left(v_{\mathbf{z}_{i} \oplus x}^{(i)}-v_{\mathbf{z}_{i}}^{(i)}\right)
$$

- $h_{i}(x)$ is the immediate cost of choosing Queue i for Job x
- $v_{\mathbf{z}_{i} \oplus x}^{(i)}-v_{\mathbf{z}_{i}}^{(i)}$ is the mean increase in future costs in Queue i

Idea: The new dynamic policy α^{\prime} is better than α

Queueing systems

M/M/s
M/M/1
M/G/1-FCFS
M/M/1 \& M/M/1/N
M/Cox(r)/1

Krishnan, CDC (1987)
Aalto\&Virtamo, NTS-13 (1996)
Sassen et al., Neerlandica (1997)
Koole, CDC (1998)
Bhulai, JAP (2006)

Queueing systems

M/M/s
M/M/1
M/G/1-FCFS
M/M/1 \& M/M/1/N
M/Cox(r)/1

Krishnan, CDC (1987)
Aalto\&Virtamo, NTS-13 (1996)
Sassen et al., Neerlandica (1997)
Koole, CDC (1998)
Bhulai, JAP (2006)

Size-aware queueing systems

M/G/1 FCFS/LCFS/SRPT
M/G/1 (wrt. energy)
M/D/1-PS
M/M/1-PS

Hyytiä et al., EJOR (2012), Sigmetrics (2012)
Penttinen et al., IPCCC (2011)
Hyytiä et al., ITC (2011)
Hyytiä et al., Performance (2011)

Queueing systems

M/M/s
M/M/1
M/G/1-FCFS
M/M/1 \& M/M/1/N
M/Cox(r)/1

Krishnan, CDC (1987)
Aalto\&Virtamo, NTS-13 (1996)
Sassen et al., Neerlandica (1997)
Koole, CDC (1998)
Bhulai, JAP (2006)

Size-aware queueing systems

M/G/1 FCFS/LCFS/SRPT
M/G/1 (wrt. energy)
M/D/1-PS
M/M/1-PS

Hyytiä et al., EJOR (2012), Sigmetrics (2012)
Penttinen et al., IPCCC (2011)
Hyytiä et al., ITC (2011)
Hyytiä et al., Performance (2011)

Blocking systems

M/M/s/s
M/M/s/k

Krishnan, CDC (1986)
Leeuwaarden et al. (2001)

Analysis of Single M/G/1

${ }^{1}$ See (Heyman 1968) and (Feinberg \& Kella, 2002) for M/G/1.

The queue-specific cost structure ${ }^{1}$
(i) switching costs $\left(k_{\text {on }}, k_{\text {off }}\right)$ (per cycle)
${ }^{1}$ See (Heyman 1968) and (Feinberg \& Kella, 2002) for M/G/1.

The queue-specific cost structure ${ }^{1}$
(i) switching costs ($k_{\text {on }}, k_{\text {off }}$) (per cycle)
(ii) running costs ($e_{\text {on }}, e_{\text {off }}$) (per unit time)
${ }^{1}$ See (Heyman 1968) and (Feinberg \& Kella, 2002) for M/G/1.

The queue-specific cost structure ${ }^{1}$
(i) switching costs ($k_{\text {on }}, k_{\text {off }}$) (per cycle)
(ii) running costs ($e_{\text {on }}, e_{\text {off }}$) (per unit time)
(iii) holding cost $c(u)$ (per unit time), $u=$ virtual backlog
${ }^{1}$ See (Heyman 1968) and (Feinberg \& Kella, 2002) for M/G/1.

Tasks Servers

■ Formally

$$
V_{\mathbf{z}} \triangleq \lim _{t \rightarrow \infty} \mathrm{E}\left[V_{\mathbf{z}}(t)-r \cdot t\right]
$$

where
■ $V_{\mathbf{z}}(t)=$ costs incurred during $(0, t)$ when initially in state \mathbf{z}

- r = long-run mean cost rate

Value Function for M/G/1

■ Formally

$$
V_{\mathbf{z}} \triangleq \lim _{t \rightarrow \infty} \mathrm{E}\left[V_{\mathbf{z}}(t)-r \cdot t\right]
$$

where
■ $V_{\mathbf{z}}(t)=$ costs incurred during $(0, t)$ when initially in state \mathbf{z}

- $r=$ long-run mean cost rate
- With FCFS, a sufficient state description is (u,e)

■ $u=$ virtual backlog (measured in time)
■ $e= \begin{cases}1, & \text { if the server is available } \\ 0, & \text { otherwise (on vacation) }\end{cases}$

Cost	Mean rate \mathbf{r}_{*}	Value function $\mathbf{v}_{*}(\mathbf{u})-\mathbf{v}_{*}(\mathbf{0})$
Switching	$\lambda(1-\rho) \cdot k$	$-\lambda u \cdot k$
Running	$\rho \cdot e$	$u \cdot e$
Holding H_{1}	$\frac{\lambda \mathrm{E}\left[X^{2}\right]}{2(1-\rho)}$	$\frac{u^{2}}{2(1-\rho)}$

Cost	Mean rate \mathbf{r}_{*}	Value function $\mathbf{v}_{*}(\mathbf{u})-\mathbf{v}_{*}(\mathbf{0})$
Switching	$\frac{\lambda(1-\rho)}{1+\lambda d} \cdot k$	$-\frac{\lambda u}{1+\lambda d} \cdot k$
Running	$\frac{\rho+\lambda d}{1+\lambda d} \cdot \boldsymbol{e}$	$\frac{u}{1+\lambda d} \cdot \boldsymbol{e}$
Holding H_{1}	$\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}+\frac{d(2 \rho+\lambda d)}{2(1+\lambda d)}$	$\frac{u^{2}}{2(1-\rho)}-\frac{d(2 \rho+\lambda d) \cdot u}{2(1-\rho)(1+\lambda d)}$

Cost	Mean rate \mathbf{r}_{*}	Value function $\mathbf{v}_{*}(\mathbf{u})-\mathbf{v}_{*}(\mathbf{0})$
Switching	$\frac{\lambda(1-\rho)}{1+\lambda d} \cdot k$	$-\frac{\lambda u}{1+\lambda \boldsymbol{d}} \cdot k$
Running	$\frac{\rho+\lambda d}{1+\lambda d} \cdot e$	$\frac{u}{1+\lambda d} \cdot \boldsymbol{e}$
Holding H_{1}	$\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}+\frac{d(2 \rho+\lambda d)}{2(1+\lambda d)}$	$\frac{u^{2}}{2(1-\rho)}-\frac{d(2 \rho+\lambda d) \cdot u}{2(1-\rho)(1+\lambda d)}$

Note
■ Holding cost with $d=0$ is the Pollazcek-Khinchine formula
■ Switching delay shows up as an extra term in $r_{H 1}$ and $v_{H 1}(u)$
$■$ Extra cost in $v_{H 1}(u)$ due to switching delay $\propto u$
■ Decomposition property (Fuhrmann \& Cooper, 1985)

■ Linear holding cost corresponds to metrics such as
■ Latency (i.e., delay, sojourn time, waiting time)

- Slowdown (ratio of the latency to job size, T / X)

■ ... anything that is directly proportional to T

■ Linear holding cost corresponds to metrics such as
■ Latency (i.e., delay, sojourn time, waiting time)
■ Slowdown (ratio of the latency to job size, T / X)
■ ... anything that is directly proportional to T
\square Not everything is linear
■ E.g., longer waiting may cause more customer dissatisfaction \Rightarrow cost rate increases!

■ Linear holding cost corresponds to metrics such as
■ Latency (i.e., delay, sojourn time, waiting time)

- Slowdown (ratio of the latency to job size, T / X)

■ ... anything that is directly proportional to T
\square Not everything is linear
■ E.g., longer waiting may cause more customer dissatisfaction \Rightarrow cost rate increases!
■ What about quadratic costs?

> | Virtual backlog, | cost rate $\propto U(t)^{2}$ |
| :--- | :--- |
| Latency of Job i, | cost incurred $\propto\left(T_{i}\right)^{2}$ |

■ Linear holding cost corresponds to metrics such as
■ Latency (i.e., delay, sojourn time, waiting time)
■ Slowdown (ratio of the latency to job size, T / X)
■ ... anything that is directly proportional to T
\square Not everything is linear
■ E.g., longer waiting may cause more customer dissatisfaction \Rightarrow cost rate increases!

■ What about quadratic costs?

> | Virtual backlog, | cost rate $\propto U(t)^{2}$ |
| :--- | :--- |
| Latency of Job i, | cost incurred $\propto\left(T_{i}\right)^{2}$ |

Good news: These can be computed too!

The mean holding cost rate is

$$
\begin{aligned}
r_{\mathrm{H} 2} & =\mathrm{E}\left[U^{2}\right] \\
& =\frac{3 \lambda^{2} \mathrm{E}\left[X^{2}\right]^{2}+2 \lambda(1-\rho) \mathrm{E}\left[X^{3}\right]}{6(1-\rho)^{2}}+\underbrace{\frac{3 \rho+\lambda d}{3(1+\lambda d)} d^{2}+\frac{\lambda(2+\lambda d) \mathrm{E}\left[X^{2}\right]}{2(1-\rho)(1+\lambda d)} d}_{\text {switching delay }}
\end{aligned}
$$

Quadratic Holding Costs

The mean holding cost rate is

$$
\begin{aligned}
r_{\mathrm{H} 2} & =\mathrm{E}\left[U^{2}\right] \\
& =\frac{3 \lambda^{2} \mathrm{E}\left[X^{2}\right]^{2}+2 \lambda(1-\rho) \mathrm{E}\left[X^{3}\right]}{6(1-\rho)^{2}}+\underbrace{\frac{3 \rho+\lambda d}{3(1+\lambda d)} d^{2}+\frac{\lambda(2+\lambda d) \mathrm{E}\left[X^{2}\right]}{2(1-\rho)(1+\lambda d)} d}_{\text {switching delay }}
\end{aligned}
$$

The corresponding value function is

$$
\begin{aligned}
& v_{H 2}(u)-v_{H 2}(0)= \\
& \frac{1}{3(1-\rho)} u^{3}+\frac{\lambda \mathrm{E}\left[X^{2}\right]}{2(1-\rho)^{2}} u^{2}-\underbrace{\left(\frac{3 \rho+\lambda d}{3(1-\rho)(1+\lambda d)} d^{2}+\frac{\lambda(2+\lambda d) \mathrm{E}\left[X^{2}\right]}{2(1-\rho)^{2}(1+\lambda d)} d\right)}_{\text {switching delay }} u
\end{aligned}
$$

The mean holding cost rate is

$$
\begin{aligned}
r_{H 2} & =\mathrm{E}\left[U^{2}\right] \\
& =\frac{3 \lambda^{2} \mathrm{E}\left[X^{2}\right]^{2}+2 \lambda(1-\rho) \mathrm{E}\left[X^{3}\right]}{6(1-\rho)^{2}}+\underbrace{\frac{3 \rho+\lambda d}{3(1+\lambda d)} d^{2}+\frac{\lambda(2+\lambda d) \mathrm{E}\left[X^{2}\right]}{2(1-\rho)(1+\lambda d)} d}_{\text {switching delay }}
\end{aligned}
$$

The corresponding value function is

$$
\begin{aligned}
& v_{H 2}(u)-v_{H 2}(0)= \\
& \frac{1}{3(1-\rho)} u^{3}+\frac{\lambda \mathrm{E}\left[X^{2}\right]}{2(1-\rho)^{2}} u^{2}-\underbrace{\left(\frac{3 \rho+\lambda d}{3(1-\rho)(1+\lambda d)} d^{2}+\frac{\lambda(2+\lambda d) \mathrm{E}\left[X^{2}\right]}{2(1-\rho)^{2}(1+\lambda d)} d\right) u}_{\text {switching delay }}
\end{aligned}
$$

■ Mean cost rate (cf. PK) and value function resemble each other

- Switching delay appears as extra terms in both
- In value function, cost of switching delay proportional to $-u$

■ For an arbitrary cost function $c(u)$

$$
\begin{aligned}
& c_{1} \triangleq \mathrm{E}\left[c\left(W_{1}\right)+\ldots+c\left(W_{N_{u}}\right)\right] \\
& c_{2} \triangleq \lambda \mathrm{E}\left[\int_{0}^{B_{u}} c\left(U_{t}\right) d t\right]
\end{aligned}
$$

$$
\text { PASTA } \Rightarrow c_{1}=c_{2}
$$

■ For an arbitrary cost function $c(u)$

$$
\begin{array}{lll}
c_{1} & \triangleq \mathrm{E}\left[c\left(W_{1}\right)+\ldots+c\left(W_{N_{u}}\right)\right] & \\
c_{2} \triangleq \lambda \mathrm{E}\left[\int_{0}^{B_{u}} c\left(U_{t}\right) d t\right] & \text { PASTA } \Rightarrow c_{1}=c_{2}
\end{array}
$$

■ For waiting time W and its square

$$
\begin{array}{|lr}
\hline \text { Linear } & v_{W}(u)-v_{W}(0)=\lambda\left(v_{H 1}(u)-v_{H 1}(0)-\frac{d u}{1+\lambda d}\right) \\
\text { Quadratic } & v_{W 2}(u)-v_{W 2}(0)=\lambda\left(v_{H 2}(u)-v_{H 2}(0)-\frac{d^{2} u}{1+\lambda d}\right) \\
\hline
\end{array}
$$

■ For an arbitrary cost function $c(u)$

$$
\begin{array}{lll}
c_{1} & \triangleq \mathrm{E}\left[c\left(W_{1}\right)+\ldots+c\left(W_{N_{u}}\right)\right] &
\end{array}
$$

■ For waiting time W and its square

$$
\begin{array}{|l}
\hline \text { Linear } \\
v_{W}(u)-v_{W}(0)=\lambda\left(v_{H 1}(u)-v_{H 1}(0)-\frac{d u}{1+\lambda d}\right) \\
\text { Quadratic } \\
v_{W 2}(u)-v_{W 2}(0)=\lambda\left(v_{H 2}(u)-v_{H 2}(0)-\frac{d^{2} u}{1+\lambda d}\right)
\end{array}
$$

■ For latency, $v_{T}(u)-v_{T}(0)=v_{W}(u)-v_{W}(0)$
Similarly, an expression for $v_{T 2}(u)$ can be obtained

So what do we have?

Cost type	mean rate	value function	immediate cost
Switching cost	\checkmark	\checkmark	\checkmark
Running cost	\checkmark	\checkmark	
Waiting time W	\checkmark	\checkmark	\checkmark
Waiting time W^{2}	\checkmark	\checkmark	\checkmark
Latency T	\checkmark	\checkmark	\checkmark
Latency T^{2}	\checkmark	\checkmark	\checkmark

\Rightarrow FPI-policy based on a general cost structure!

Solving the Task Assignment Problem

Numerical Examples

Example homogeneous server system

Example homogeneous server system

■ $\lambda=1.5$ and $\mathrm{E}[X]=1$

- Minimize waiting time W

Example homogeneous server system

■ $\lambda=1.5$ and $\mathrm{E}[X]=1$

- Minimize waiting time W
- Basic policy $\alpha=$ RND

Example homogeneous server system

■ $\lambda=1.5$ and $\mathrm{E}[X]=1$

- Minimize waiting time W
- Basic policy $\alpha=$ RND
- Server 1 busy, $u_{1}>0$ Server 2 idle, $u_{2}=0$

Example homogeneous server system

■ $\lambda=1.5$ and $\mathrm{E}[X]=1$

- Minimize waiting time W
- Basic policy $\alpha=$ RND
- Server 1 busy, $u_{1}>0$ Server 2 idle, $u_{2}=0$
■ FPI sends a job to idle Server 2 earlier than LWL

Example heterogeneous server system

Two traffic classes:
arrival rate job size
Class 1: $\lambda_{1}=0.8$ (fixed), $\mathrm{E}\left[X_{1}\right]=1$
Class 2: $\lambda_{2}=0 \ldots 0.5, \quad \mathrm{E}\left[X_{2}\right]=2$

Two heterogeneous servers:

> service rate switching delay

Queue 1: $\nu_{1}=1, \quad d_{1}=0$ (none)
Queue 2: $\nu_{2}=1, \quad d_{2}=2$

Figure: Mean cost rate with the joint-objective of waiting time and running costs: $e_{1}=1$ and $e_{2}=2$

Conclusions

■ M/G/1 queue with switching delay analyzed

■ M/G/1 queue with switching delay analyzed
■ Value functions derived with respect to
1 Switching costs [1/cycle]
2 Running costs [1/time]
3 Virtual backlog U_{t} yielding

- Waiting time W and its square W^{2}
- Latency T and its square T^{2}

■ M/G/1 queue with switching delay analyzed
■ Value functions derived with respect to
1 Switching costs [1/cycle]
2 Running costs [1/time]
3 Virtual backlog U_{t} yielding

- Waiting time W and its square W^{2}
- Latency T and its square T^{2}

■ Enables efficient task assignment taking into account

- Switching delays and service rates
- Current state of the system
- Job- and server-specific cost parameters
- Anticipated future arrivals

■ M/G/1 queue with switching delay analyzed
■ Value functions derived with respect to
1 Switching costs [1/cycle]
2 Running costs [1/time]
3 Virtual backlog U_{t} yielding

- Waiting time W and its square W^{2}
- Latency T and its square T^{2}

■ Enables efficient task assignment taking into account
■ Switching delays and service rates

- Current state of the system

■ Job- and server-specific cost parameters

- Anticipated future arrivals

■ Future work: active control of idle servers

■ M/G/1 queue with switching delay analyzed
■ Value functions derived with respect to
1 Switching costs [1/cycle]
2 Running costs [1/time]
3 Virtual backlog U_{t} yielding

- Waiting time W and its square W^{2}
- Latency T and its square T^{2}

■ Enables efficient task assignment taking into account
■ Switching delays and service rates

- Current state of the system
- Job- and server-specific cost parameters
- Anticipated future arrivals

■ Future work: active control of idle servers

Thank you!

1 Hyytiä, Righter, Aalto, "Task Assignment in a Server Farm with Switching Delays and General Energy-Aware Cost Structure", submitted, 2013.
2 Hyytiä, Aalto, Penttinen, "Minimizing Slowdown in Heterogeneous Size-Aware Dispatching Systems", ACM SIGMETRICS'12.
3 Hyytiä, Penttinen, Aalto, "Size- and State-Aware Dispatching Problem with Queue-Specific Job Sizes", EJOR 217(2), 357-370, 2012.

See also,

> http://www.netlab.hut.fi/~esa/dispatching.html

