Task Assignment in a Server Farm with Switching Delays and General Energy-Aware Cost Structure

Esa Hyytiä, Rhonda Righter and Samuli Aalto

Aalto University, Finland University of California Berkeley, USA

INFORMS APS, July 2013

INFORMS APS, July 2013

Task Assignment under Switching Delay

Outline

- Task assignment model with switching delay
- 2 Basic dispatching policies
- 3 FPI approach
- 4 Value function for M/G/1-FCFS
 - Switching costs
 - Running costs
 - Holding costs
- 5 Solving the task assignment problem
- 6 Summary of results

Task Assignment with Switching Delay

Model
 Reference Policies
 First Policy Iteration Approach

3/26

INFORMS APS, July 2013

Task Assignment under Switching Delay

Basic Task Assignment Problem

Basic problem E[T]

- k parallel queues
- Tasks arrive at rate λ (Poisson process)
- Objective: minimize latency, waiting time, ...

Model for Server Farm

- k parallel servers
- Size-aware setting

Model for Server Farm

- k parallel servers
- Size-aware setting

Distinctive features here

Idle servers are switched OFF to save energy

5/26

Model for Server Farm

- k parallel servers
- Size-aware setting

Distinctive features here

- Idle servers are switched OFF to save energy
- Switching ON delay postpones the start of the service

5/26

Model for Server Farm

- k parallel servers
- Size-aware setting

Distinctive features here

- Idle servers are switched OFF to save energy
- Switching ON delay postpones the start of the service
- Energy- and Delay-aware cost structure
 - Switching costs
 - Running costs
 - Holding costs (per job)

Model for Server Farm

- k parallel servers
- Size-aware setting

Customers

Distinctive features here

- Idle servers are switched OFF to save energy
- Switching ON delay postpones the start of the service
- Energy- and Delay-aware cost structure
 - Switching costs
 - Running costs
 - Holding costs (per job)
- Objective to balance between
 - Energy consumption
 - Performance (e.g., latency)

Model for Server Farm

- k parallel servers
- Size-aware setting

Customers

Distinctive features here

- Idle servers are switched OFF to save energy
- Switching ON delay postpones the start of the service
- Energy- and Delay-aware cost structure
 - Switching costs
 - Running costs
 - Holding costs (per job)
- Objective to balance between
 - Energy consumption
 - Performance (e.g., latency)

Heterogeneous servers, job-specific costs, ...

Server Farms with and without Switching Delay

No Switching Delay

Switching Delay

INFORMS APS, July 2013

Task Assignment under Switching Delay

Related models (M/G/1):

- Removable servers, N-policy
 - (Yadin & Naor 1963; Heyman 1968)
 - Service starts when nth customer arrives
- Vacation models, *T*-policy
 - (Levy & Yechiali 1975; Heyman 1977)
 - Server returns periodically to check the queue

D-policy, service starts when backlog exceeds d

Related models (M/G/1):

- Removable servers, N-policy
 - (Yadin & Naor 1963; Heyman 1968)
 - Service starts when *n*th customer arrives
- Vacation models, *T*-policy
 - (Levy & Yechiali 1975; Heyman 1977)
 - Server returns periodically to check the queue
- D-policy, service starts when backlog exceeds d

Results for switching delay:

- M/G/1 with setup times (Welch, Oper. Res., 1964)
- M/M/k approximations (Gandhi et al., Sigmetrics'10)
- M/M/k exact results (Gandhi et al., Sigmetrics'13)

Related models (M/G/1):

- Removable servers, N-policy
 - (Yadin & Naor 1963; Heyman 1968)
 - Service starts when *n*th customer arrives
- Vacation models, *T*-policy
 - (Levy & Yechiali 1975; Heyman 1977)
 - Server returns periodically to check the queue
- D-policy, service starts when backlog exceeds d

Results for switching delay:

- M/G/1 with setup times (Welch, Oper. Res., 1964)
- M/M/k approximations (Gandhi et al., Sigmetrics'10)
- M/M/k exact results (Gandhi et al., Sigmetrics'13)

No delay- and energy-savvy task assignment policies!

Definition

Static policy chooses the server independently of the queue states

Definition

Static policy chooses the server independently of the queue states

1 Bernoulli splitting (RND)

Choose a queue at random using probabilities p_i

8/26

Definition

Static policy chooses the server independently of the queue states

1 Bernoulli splitting (RND)

Choose a queue at random using probabilities p_i

2 Size-Interval-Task-Assignment (SITA) Assignment by the queue-specific ranges of job sizes.

"Short jobs to Queue 1 and the rest to Queue 2"

- Proposed in Crovella et. al (Sigmetrics'98) and Harchol-Balter et. al (J. of PDC, 1999)
- Optimal size-aware state-free for FCFS (Feng et. al, -05)

Definition

Actions of a **dynamic policy** depend on the queue states

Definition

Actions of a **dynamic policy** depend on the queue states

1 Join-the-Shortest-Queue (JSQ)

Optimal when Poisson arrivals, Exp-distributed job sizes, identical servers, and the queue occupancy is known (Haight 1958; Winston 1977)

Definition

Actions of a **dynamic policy** depend on the queue states

1 Join-the-Shortest-Queue (JSQ)

Optimal when Poisson arrivals, Exp-distributed job sizes, identical servers, and the queue occupancy is known (Haight 1958; Winston 1977)

2 Round-robin (RR)

Optimal with identical servers initially in the same state, known routing history and unknown queue occupancy (Ephremides et. al, 1980; Liu&Towsley-94; Liu&Righter -98)

Definition

Actions of a **dynamic policy** depend on the queue states

1 Join-the-Shortest-Queue (JSQ)

Optimal when Poisson arrivals, Exp-distributed job sizes, identical servers, and the queue occupancy is known (Haight 1958; Winston 1977)

2 Round-robin (RR)

Optimal with identical servers initially in the same state, known routing history and unknown queue occupancy (Ephremides et. al, 1980; Liu&Towsley-94; Liu&Righter -98)

3 Least-Work-Left (LWL)

Pick the queue with the shortest backlog (Sharifnia 1997)

Decomposition with a static basic policy α

 Queues receive jobs according to Poisson processes

Decomposition with a static basic policy α

- Queues receive jobs according to Poisson processes
- Value function is a sum of the queue-specific value functions

$$V_{z}(\alpha) = \sum_{i} V_{z_{i}}^{(i)}(\alpha)$$

Decomposition with a static basic policy α

- Queues receive jobs according to Poisson processes
- Value function is a sum of the queue-specific value functions

$$V_{z}(\alpha) = \sum_{i} V_{z_{i}}^{(i)}(\alpha)$$

FPI gives a new policy α'

$$\alpha'(x) = \operatorname*{argmin}_{i} h_i(x) + \left(v_{\mathbf{z}_i \oplus x}^{(i)} - v_{\mathbf{z}_i}^{(i)}\right)$$

where

• $h_i(x)$ is the *immediate cost* of choosing Queue *i* for Job *x*

v $_{\mathbf{z}_{i} \oplus \mathbf{x}}^{(i)} - \mathbf{v}_{\mathbf{z}_{i}}^{(i)}$ is the mean increase in future costs in Queue *i*

Decomposition with a static basic policy α

- Queues receive jobs according to Poisson processes
- Value function is a sum of the queue-specific value functions

$$V_{z}(\alpha) = \sum_{i} V_{z_{i}}^{(i)}(\alpha)$$

FPI gives a new policy α'

$$\alpha'(\mathbf{x}) = \operatorname*{argmin}_{i} h_i(\mathbf{x}) + \left(\mathbf{v}_{\mathbf{z}_i \oplus \mathbf{x}}^{(i)} - \mathbf{v}_{\mathbf{z}_i}^{(i)}\right)$$

where

- $h_i(x)$ is the *immediate cost* of choosing Queue *i* for Job *x*
- **v** $_{\mathbf{z}_{i} \oplus \mathbf{x}}^{(i)} \mathbf{v}_{\mathbf{z}_{i}}^{(i)}$ is the mean increase in future costs in Queue *i*

Idea: The new dynamic policy α' is better than α

FPI Approach

Queueing systems

M/M/s M/M/1 M/G/1-FCFS M/M/1 & M/M/1/N M/Cox(r)/1 Krishnan, CDC (1987) Aalto&Virtamo, NTS-13 (1996) Sassen et al., Neerlandica (1997) Koole, CDC (1998) Bhulai, JAP (2006)

Queueing systems

M/M/s M/M/1 M/G/1-FCFS M/M/1 & M/M/1/N M/Cox(r)/1 Krishnan, CDC (1987) Aalto&Virtamo, NTS-13 (1996) Sassen et al., Neerlandica (1997) Koole, CDC (1998) Bhulai, JAP (2006)

Size-aware queueing systems

M/G/1 FCFS/LCFS/SRPT M/G/1 (wrt. energy) M/D/1-PS M/M/1-PS Hyytiä et al., EJOR (2012), Sigmetrics (2012) Penttinen et al., IPCCC (2011) Hyytiä et al., ITC (2011) Hyytiä et al., Performance (2011)

Queueing systems

M/M/s M/M/1 M/G/1-FCFS M/M/1 & M/M/1/N M/Cox(r)/1 Krishnan, CDC (1987) Aalto&Virtamo, NTS-13 (1996) Sassen et al., Neerlandica (1997) Koole, CDC (1998) Bhulai, JAP (2006)

Size-aware queueing systems

M/G/1 FCFS/LCFS/SRPT M/G/1 (wrt. energy) M/D/1-PS M/M/1-PS Hyytiä et al., EJOR (2012), Sigmetrics (2012) Penttinen et al., IPCCC (2011) Hyytiä et al., ITC (2011) Hyytiä et al., Performance (2011)

Blocking systems

M/M/s/s M/M/s/k Krishnan, CDC (1986) Leeuwaarden et al. (2001)

Analysis of Single M/G/1

INFORMS APS, July 2013

Task Assignment under Switching Delay

→ III ● → Cost Structure

¹See (Heyman 1968) and (Feinberg & Kella, 2002) for M/G/1.

INFORMS APS, July 2013 Task Assignment under Switching Delay

→ III ● → Cost Structure

The queue-specific cost structure¹

(i) switching costs (k_{on}, k_{off}) (per cycle)

Aalto University School of Electrical Engineering

¹See (Heyman 1968) and (Feinberg & Kella, 2002) for M/G/1.

→ IIII ● → Cost Structure

The queue-specific cost structure¹

- (i) switching costs (k_{on}, k_{off}) (per cycle)
- (ii) running costs (e_{on}, e_{off}) (per unit time)

¹See (Heyman 1968) and (Feinberg & Kella, 2002) for M/G/1.

→ III ● → Cost Structure

The queue-specific cost structure¹

- (i) switching costs (k_{on}, k_{off}) (per cycle)
- (ii) running costs (e_{on}, e_{off}) (per unit time)

(iii) **holding cost** c(u) (per unit time), u = virtual backlog

13/26

¹See (Heyman 1968) and (Feinberg & Kella, 2002) for M/G/1.

→Ⅲ●→ Value Function for M/G/1

$$\mathbf{v_z} \triangleq \lim_{t \to \infty} \mathrm{E}[\mathbf{V_z}(t) - \mathbf{r} \cdot t]$$

where

- $V_z(t)$ = costs incurred during (0, t) when initially in state z
- r = long-run mean cost rate

→ **III**●→ Value Function for M/G/1

Formally

$$\mathbf{v}_{\mathbf{z}} \triangleq \lim_{t \to \infty} \mathbb{E}[\mathbf{V}_{\mathbf{z}}(t) - r \cdot t]$$

where

- $V_z(t)$ = costs incurred during (0, *t*) when initially in state **z**
- r = long-run mean cost rate
- With FCFS, a sufficient state description is (u, e)
 - u = virtual backlog (measured in time)
 - $\bullet e = \begin{cases} 1, & \text{if the server is available} \\ 0, & \text{otherwise (on vacation)} \end{cases}$

Results for M/G/1 without Switching Delay

Cost	Mean rate r_*	Value function $\mathbf{v}_*(\mathbf{u}) - \mathbf{v}_*(0)$
Switching	$\lambda(1- ho)\cdot k$	$-\lambda u \cdot k$
Running	$ ho \cdot {m e}$	u · e
Holding H ₁	$\frac{\lambda \operatorname{E}[X^2]}{2(1-\rho)}$	$\frac{u^2}{2(1-\rho)}$

INFORMS APS, July 2013

Task Assignment under Switching Delay

→ ■ Results for M/G/1 with Switching Delay

Cost	Mean rate r_*	Value function $v_*(u) - v_*(0)$
Switching	$\frac{\lambda(1-\rho)}{1+\lambda d}\cdot k$	$-rac{\lambda u}{1+\lambda d}\cdot k$
Running	$rac{ ho+\lambda oldsymbol{d}}{1+\lambda oldsymbol{d}}\cdotoldsymbol{e}$	$rac{oldsymbol{u}}{1+\lambdaoldsymbol{d}}\cdotoldsymbol{e}$
Holding H ₁	$\frac{\lambda \operatorname{E}[X^2]}{2(1-\rho)} + \frac{d(2\rho + \lambda d)}{2(1+\lambda d)}$	$\frac{u^2}{2(1-\rho)} - \frac{d(2\rho + \lambda d) \cdot u}{2(1-\rho)(1+\lambda d)}$

16/26

INFORMS APS, July 2013

Results for M/G/1 with Switching Delay

Cost	Mean rate r_*	Value function $v_*(u) - v_*(0)$
Switching	$\frac{\lambda(1-\rho)}{1+\lambda d}\cdot k$	$-rac{\lambda u}{1+\lambda d}\cdot k$
Running	$rac{ ho+\lambda oldsymbol{d}}{1+\lambda oldsymbol{d}}\cdotoldsymbol{e}$	$rac{m{u}}{m{1}+\lambdam{d}}\cdotm{e}$
Holding H ₁	$\frac{\lambda \operatorname{E}[X^2]}{2(1-\rho)} + \frac{d(2\rho + \lambda d)}{2(1+\lambda d)}$	$\frac{u^2}{2(1-\rho)} - \frac{d(2\rho + \lambda d) \cdot u}{2(1-\rho)(1+\lambda d)}$

Note

- Holding cost with d = 0 is the Pollazcek-Khinchine formula
- Switching delay shows up as an extra term in r_{H1} and $v_{H1}(u)$
 - Extra cost in $v_{H1}(u)$ due to switching delay $\propto u$
- Decomposition property (Fuhrmann & Cooper, 1985)

→ ■ Quadratic Holding Costs

Linear holding cost corresponds to metrics such as

- Latency (i.e., delay, sojourn time, waiting time)
- Slowdown (ratio of the latency to job size, T/X)
- ... anything that is directly proportional to T

INFORMS APS, July 2013

Linear holding cost corresponds to metrics such as

- Latency (i.e., delay, sojourn time, waiting time)
- Slowdown (ratio of the latency to job size, T/X)
- ... anything that is directly proportional to T
- Not everything is linear
 - E.g., longer waiting may cause more customer dissatisfaction ⇒ cost rate increases!

INFORMS APS, July 2013

→Ⅲ●→ Quadratic Holding Costs

Linear holding cost corresponds to metrics such as

- Latency (i.e., delay, sojourn time, waiting time)
- Slowdown (ratio of the latency to job size, T/X)
- ... anything that is directly proportional to T
- Not everything is linear
 - E.g., longer waiting may cause more customer dissatisfaction ⇒ cost rate increases!

What about quadratic costs?

Virtual backlog,cost rate $\propto U(t)^2$ Latency of Job *i*,cost incurred $\propto (T_i)^2$

→Ⅲ●→ Quadratic Holding Costs

Linear holding cost corresponds to metrics such as

- Latency (i.e., delay, sojourn time, waiting time)
- Slowdown (ratio of the latency to job size, T/X)
- ... anything that is directly proportional to T
- Not everything is linear
 - E.g., longer waiting may cause more customer dissatisfaction ⇒ cost rate increases!
- What about quadratic costs?

Virtual backlog,cost rate $\propto U(t)^2$ Latency of Job *i*,cost incurred $\propto (T_i)^2$

Good news: These can be computed too!

→ **III ●**→ Quadratic Holding Costs

The mean holding cost rate is

$$r_{H2} = \mathbf{E}[U^2]$$

$$= \frac{3\lambda^2 \mathbf{E}[X^2]^2 + 2\lambda(1-\rho)\mathbf{E}[X^3]}{6(1-\rho)^2} + \underbrace{\frac{3\rho + \lambda d}{3(1+\lambda d)}d^2 + \frac{\lambda(2+\lambda d)\mathbf{E}[X^2]}{2(1-\rho)(1+\lambda d)}d}_{\text{switching delay}}$$

18/26

INFORMS APS, July 2013

→Ⅲ●→ Quadratic Holding Costs

The mean holding cost rate is

$$r_{H2} = \mathrm{E}[U^2]$$

$$= \frac{3\lambda^2 \mathrm{E}[X^2]^2 + 2\lambda(1-\rho) \mathrm{E}[X^3]}{6(1-\rho)^2} + \underbrace{\frac{3\rho + \lambda d}{3(1+\lambda d)}d^2 + \frac{\lambda(2+\lambda d) \mathrm{E}[X^2]}{2(1-\rho)(1+\lambda d)}d}_{\text{switching delay}}$$

The corresponding value function is

$$v_{H2}(u) - v_{H2}(0) = \frac{1}{3(1-\rho)} u^3 + \frac{\lambda \operatorname{E}[X^2]}{2(1-\rho)^2} u^2 - \underbrace{\left(\frac{3\rho + \lambda d}{3(1-\rho)(1+\lambda d)} d^2 + \frac{\lambda(2+\lambda d)\operatorname{E}[X^2]}{2(1-\rho)^2(1+\lambda d)} d\right) u}_{AB}$$

switching delay

18/26

INFORMS APS, July 2013

→Ⅲ●→ Quadratic Holding Costs

The mean holding cost rate is

$$r_{H2} = \mathrm{E}[U^2]$$

$$= \frac{3\lambda^2 \mathrm{E}[X^2]^2 + 2\lambda(1-\rho) \mathrm{E}[X^3]}{6(1-\rho)^2} + \underbrace{\frac{3\rho + \lambda d}{3(1+\lambda d)}d^2 + \frac{\lambda(2+\lambda d) \mathrm{E}[X^2]}{2(1-\rho)(1+\lambda d)}d}_{\text{switching delay}}$$

The corresponding value function is

INFORMS APS, July 2013

$$\begin{aligned} v_{H2}(u) - v_{H2}(0) &= \\ \frac{1}{3(1-\rho)}u^3 + \frac{\lambda \operatorname{E}[X^2]}{2(1-\rho)^2}u^2 - \underbrace{\left(\frac{3\rho + \lambda d}{3(1-\rho)(1+\lambda d)}d^2 + \frac{\lambda(2+\lambda d)\operatorname{E}[X^2]}{2(1-\rho)^2(1+\lambda d)}d\right)u}_{\text{switching delay}} \end{aligned}$$

- Mean cost rate (cf. PK) and value function resemble each other
- Switching delay appears as extra terms in both
- In value function, cost of switching delay proportional to -u

—IIIIO From Backlog to Waiting Time and Latency

For an arbitrary cost function c(u)

$$c_1 \triangleq \operatorname{E}[c(W_1) + \ldots + c(W_{N_u})]$$

$$c_2 \triangleq \lambda \operatorname{E}[\int_0^{B_u} c(U_t) dt]$$

 $PASTA \Rightarrow c_1 = c_2$

19/26

INFORMS APS, July 2013

From Backlog to Waiting Time and Latency

For an arbitrary cost function c(u)

$$c_{1} \triangleq \operatorname{E}[c(W_{1}) + \ldots + c(W_{N_{u}})]$$

$$c_{2} \triangleq \lambda \operatorname{E}[\int_{0}^{B_{u}} c(U_{t}) dt]$$
PASTA $\Rightarrow c_{1} = c_{2}$

For waiting time W and its square

Linear
$$v_W(u) - v_W(0) = \lambda \left(v_{H1}(u) - v_{H1}(0) - \frac{du}{1 + \lambda d} \right)$$

Quadratic $v_{W2}(u) - v_{W2}(0) = \lambda \left(v_{H2}(u) - v_{H2}(0) - \frac{d^2 u}{1 + \lambda d} \right)$

19/26

INFORMS APS, July 2013

—IIIIO— From Backlog to Waiting Time and Latency

For an arbitrary cost function c(u)

$$c_{1} \triangleq \operatorname{E}[c(W_{1}) + \ldots + c(W_{N_{u}})]$$

$$c_{2} \triangleq \lambda \operatorname{E}[\int_{0}^{B_{u}} c(U_{t}) dt]$$
PASTA $\Rightarrow c_{1} = c_{2}$

For waiting time W and its square

Linear
$$v_W(u) - v_W(0) = \lambda \left(v_{H1}(u) - v_{H1}(0) - \frac{du}{1+\lambda d} \right)$$

Quadratic $v_{W2}(u) - v_{W2}(0) = \lambda \left(v_{H2}(u) - v_{H2}(0) - \frac{d^2 u}{1+\lambda d} \right)$

For latency, $v_T(u) - v_T(0) = v_W(u) - v_W(0)$ Similarly, an expression for $v_{T2}(u)$ can be obtained

So what do we have?

Cost type	mean	value	immediate
	rate	function	cost
Switching cost	1	1	 ✓
Running cost	1	\checkmark	
Waiting time W	1	\checkmark	1
Waiting time W^2	1	\checkmark	1
Latency T	1	\checkmark	1
Latency T ²	1	\checkmark	1

 \Rightarrow FPI-policy based on a general cost structure!

20/26

INFORMS APS, July 2013

Solving the Task Assignment Problem

Numerical Examples

21/26

INFORMS APS, July 2013

Example homogeneous server system

Two homogeneous servers			
service rate switching dela	y		
Queue 1: $\nu_1 = 1$, $d_1 = 1$			
Queue 2: $\nu_2 = 1$, $d_2 = 1$			

INFORMS APS, July 2013

Example homogeneous server system

service rate switching delay
controc rate curtoning dolay
Queue 1: $\nu_1 = 1$, $d_1 = 1$
Queue 2: $\nu_2 = 1$, $d_2 = 1$

- $\lambda = 1.5 \text{ and } E[X] = 1$
- Minimize waiting time W

INFORMS APS, July 2013

Example homogeneous server system

Two homogeneous servers		
service rate switching delay		
Queue 1: $\nu_1 = 1$, $d_1 = 1$ Queue 2: $\nu_2 = 1$, $d_2 = 1$		
Queue 2: $\nu_2 = 1$, $d_2 = 1$		

- $\lambda = 1.5 \text{ and } \mathrm{E}[X] = 1$
- Minimize waiting time W
- Basic policy α = RND

22/26

INFORMS APS, July 2013

Example homogeneous server system

service rate switching delay
control rate contenting delay
Queue 1: $\nu_1 = 1$, $d_1 = 1$
Queue 2: $\nu_2 = 1$, $d_2 = 1$

- $\lambda = 1.5$ and E[X] = 1
- Minimize waiting time W
- Basic policy α = RND
- Server 1 busy, *u*₁ > 0 Server 2 idle, *u*₂ = 0

Example homogeneous server system

Two homogeneous servers		
service rate switching delay		
Queue 1: $\nu_1 = 1$, $d_1 = 1$ Queue 2: $\nu_2 = 1$, $d_2 = 1$		
Queue 2: $\nu_2 = 1$, $d_2 = 1$		

- $\lambda = 1.5$ and E[X] = 1
- Minimize waiting time W
- Basic policy α = RND
- Server 1 busy, $u_1 > 0$ Server 2 idle, $u_2 = 0$
- FPI sends a job to idle Server 2 earlier than LWL

Example heterogeneous server system

Two traffic classes:

	arrival rate	job size
Class 1:	$\lambda_1 = 0.8$ (fixed),	E[<i>X</i> ₁]=1
Class 2:	$\lambda_2 = 0 \dots 0.5$,	$E[X_2]=2$

Two heterogeneous servers:

service rate switching delay

Queue 1:
$$\nu_1 = 1$$
, $d_1 = 0$ (none)
Queue 2: $\nu_2 = 1$, $d_2 = 2$

23/26

INFORMS APS, July 2013

Simulation Results

Figure: Mean cost rate with the joint-objective of waiting time and running costs: $e_1 = 1$ and $e_2 = 2$

M/G/1 queue with switching delay analyzed

INFORMS APS, July 2013

- M/G/1 queue with switching delay analyzed
- Value functions derived with respect to
 - Switching costs [1/cycle]
 - 2 Running costs [1/time]
 - 3 Virtual backlog Ut yielding
 - Waiting time *W* and its square *W*²
 - Latency T and its square T^2

- M/G/1 queue with switching delay analyzed
- Value functions derived with respect to
 - 1 Switching costs [1/cycle]
 - 2 Running costs [1/time]
 - 3 Virtual backlog Ut yielding
 - Waiting time *W* and its square *W*²
 - Latency T and its square T^2
- Enables efficient task assignment taking into account
 - Switching delays and service rates
 - Current state of the system
 - Job- and server-specific cost parameters
 - Anticipated future arrivals

- M/G/1 queue with switching delay analyzed
- Value functions derived with respect to
 - 1 Switching costs [1/cycle]
 - 2 Running costs [1/time]
 - 3 Virtual backlog Ut yielding
 - Waiting time *W* and its square *W*²
 - Latency T and its square T^2
- Enables efficient task assignment taking into account
 - Switching delays and service rates
 - Current state of the system
 - Job- and server-specific cost parameters
 - Anticipated future arrivals
- Future work: active control of idle servers

- M/G/1 queue with switching delay analyzed
- Value functions derived with respect to
 - 1 Switching costs [1/cycle]
 - 2 Running costs [1/time]
 - 3 Virtual backlog Ut yielding
 - Waiting time W and its square W^2
 - Latency T and its square T^2
- Enables efficient task assignment taking into account
 - Switching delays and service rates
 - Current state of the system
 - Job- and server-specific cost parameters
 - Anticipated future arrivals
- Future work: active control of idle servers

Thank you!

- Hyytiä, Righter, Aalto, "Task Assignment in a Server Farm with Switching Delays and General Energy-Aware Cost Structure", submitted, 2013.
- Pyytiä, Aalto, Penttinen, "Minimizing Slowdown in Heterogeneous Size-Aware Dispatching Systems", ACM SIGMETRICS'12.
- Hyytiä, Penttinen, Aalto, "Size- and State-Aware Dispatching Problem with Queue-Specific Job Sizes", EJOR 217(2), 357–370, 2012.

See also,

http://www.netlab.hut.fi/~esa/dispatching.html

