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Dispatching Problem to Parallel Queues
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λ
α

I Upon arrival a job is routed to one of the m servers
I Each server processes jobs according to a certain

scheduling discipline (e.g., FCFS)
I Objective: minimize the mean delay (mean sojourn time)
I Examples: manufacturing sites, job assignment in

supercomputing, traffic routing, web-server farms, and
other distributed computing systems

2011-07-06 INFORMS APS, Stockholm, Sweden 2/30



Size- and State-aware Dispatching Problem
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λ
α

I Poisson arrival process, rate λ
I m parallel heterogeneous servers
I General job size distribution
I Service requirements become known upon arrival

(possibly server specific)
I Queue states (job sizes and their service order) are known
I Scheduling discipline known: FCFS, LCFS, SPT, SRPT
I Dispatching policy α chooses the queue upon arrival
I Objective: minimize the mean delay
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State-independent Policies

1. Bernoulli splitting (RND):
Choose queue in random using probabilities pi

2. Size-Interval-Task-Assignment (SITA):
“short jobs to one queue and rest to another”

I Proposed in Crovella et. al (Sigmetrics’98) and
Harchol-Balter et. al (J. of PDC, vol. 59, 1999).

I SITA-E uses such intervals that balance the load.
I Optimal size-aware state-free for FCFS (Feng et. al, 2005).
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State-dependent Policies

1. Join-the-Shortest-Queue (JSQ):
Optimal when Poisson arrivals, Exp-distributed job sizes,
identical servers, and only the queue occupancy is known
(Winston, 1977).

2. Round-robin (RR):
Optimal with identical servers that were initially in a same
state (Ephremides et. al, 1980).

3. Least-Work-Left (LWL):
Pick the queue with the shortest backlog (Sharifnia, 1997).
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Approach: MDP and FPI

I Size- and state-aware setting; future arrivals not known
I Idea: start with a reasonable basic dispatching policy, and

carry out the first policy iteration (FPI) step
I Policy iteration finds the optimal policy, and the FPI step

typically yields the highest improvement.
I Requires the relative values of states vz

I However, our state-space is quite complex (job sizes etc.)
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Delay Costs and Relative Value
I Delay costs are accrued at rate

Nz(t) , ”the number of jobs in the system”,

where z denotes the initial state at time t = 0.
I The delay costs accrued during (0, t) are

Vz(t) ,
∫ t

0
Nz(s) ds.

I The relative value is the expected difference in the
cumulative costs between a system initially in state z and a
system initially in equilibrium,

vz , lim
t→∞

E[Vz − r t ]

= lim
t→∞

(
E
[∫ t

0
Nz(s) ds

]
− E[N] t

)
.
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First Policy Iteration (FPI)

I Assume: Relative values vz available (for basic policy)
I Improved decision according to FPI at state z:

α(z, x) , argmin
i

(
vz′(i) − vz

)
,

where z′(i) is the new state if job x is added to queue i .

“choose the action with the smallest expected future cost”

I Recall: in addition to z, relative value vz depends also on
1. basic dispatching policy
2. scheduling discipline
3. arrival rate λ, and
4. job size distribution.
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Decomposition to Independent M/G/1 Queues

I Deriving relative values is generally difficult task.
I However, any state-independent policy feeds each server

jobs according to a Poisson process (cf. Bernoulli split)
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RND

I Analyze single M/G/1 queues instead?
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Relative Values for Single M/G/1 Queue

Plan:
I Assume a state-independent basic policy.
I Derive relative values for the “isolated queues” first.
I Relative value of the whole system for any

state-independent policy is the sum of the queue specific
relative values:

vz =
∑

i

vzi .

I Carry out the FPI step⇒ new efficient policy.
(In practice, it is sufficient to know, e.g., vz − v0.)

Next step:
Derive vz− v0 for an M/G/1 queue with
LCFS, FCFS, SPT and SRPT.
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M/G/1-LCFS (preemptive)
Notation:

I λ is the Poisson arrival rate.
I ρ = λE[X ] and E[X ] denotes the mean job size.
I z = (∆1; ..; ∆n) denotes the state, where ∆i is the known

(remaining) service time of job i , i = 1, ..,n.
I The nth job is the latest arrival currently being processed.

Proposition: The size-aware relative value of state z with
respect to delay in an M/G/1-LCFS queue is

v(∆1;..;∆n) − v0 =
1

1− ρ

n∑
i=1

i ·∆i .

Insensitivity: v(∆1;..;∆n) − v0 depends only on ρ.
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Proof

I Consider two systems under same arrivals:
1. S1 initially in state z = (∆1, ..,∆n),
2. S2 initially empty.

I Let Di denote the (remaining) delay of job i in S1.
I With LCFS, the current state has no effect on the future

arrivals’ sojourn times.
I The difference between the relative value of S1 and S2 is

equal to the mean remaining delay of the n present jobs,

v(∆1;..;∆n) − v0 =
n∑

i=1

E[Di ].
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I Remaining delay Dn of job n is given by a random sum,

Dn = ∆n +
(
B1 + . . .+ BA(∆n)

)
where A(∆n) denotes the number of (mini) busy periods
during time ∆n, and Bi the corresponding durations,

E[Bi ] = E[X ]/(1− ρ).

I Taking the expectation on both sides gives

E[Dn] = ∆n + E[A(∆n)] · E[B] =
∆n

1− ρ
.

I Similarly, E[Di ] = (1− ρ)−1
n∑

j=i

∆j .

⇒ vz − v0 =
n∑

i=1

E[Di ] =
1

1− ρ

n∑
i=1

i ·∆i .
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M/G/1-FCFS
Notation:

I λ is the Poisson arrival rate.
I ρ = λE[X ] and E[X ] denotes the mean job size.
I Let z = (∆1; ..; ∆n) denote the state, where ∆i is the

known (remaining) service time of job i , i = 1, ..,n.
I The nth job is served first.

Proposition: The size-aware relative value of state z with
respect to the delay in an M/G/1-FCFS queue is given by

v(∆1;..;∆n) − v0 =
λu2

z
2(1− ρ)

+
n∑

i=1

i ∆i ,

where uz =
∑

i ∆i denotes the backlog in the queue.

Insensitivity: v(∆1;..;∆n) − v0 depends only on λ and E[X ].
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Proof
Consider two systems under the same arrivals:

I S1 initially in state z = (∆1; ..; ∆n) and
I S2 initially empty.

Both systems behave identically once S1 becomes empty. The
difference in the relative values is equal to the additional time
jobs spent in S1,

vz − v0 = V1 + V2,

where V1 denotes the (remaining) delay of present jobs, and
V2 the additional mean delay the later arrivals experience in S1.

The total delay of the n present jobs in S1 is already fixed,

V1 =
n∑

i=1

i ∆i .
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I A later arriving task starts a busy period in S2, which
corresponds to a mini busy period in S1.

u
z

virtual busy period

Y

Initially empty system:

Initial state :z

I During busy periods, arriving jobs increase the cumulative
delay by an amount equal to the post arrival workload.

I These jobs experience an additional delay Y in S1.
I Otherwise the delay contributions are equal!
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Summing up:
I Mean number of busy periods before S1 empty: λuz.
I Mean number of jobs served during a busy period: 1/(1− ρ).
I The mean offset E[Y ] = uz/2.

Therefore,

V2 = λuz ·
1

1− ρ
· uz

2

=
λu2

z
2(1− ρ)

,

u
z

virtual busy period

Y

Initially empty system:

Initial state :z

and V1 + V2 = vz − v0, which completes the proof.
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M/G/1-SPT (Non-preemptive)
Notation

I z = (∆1; ..; ∆n) denotes the state of a queue; job n is
currently receiving service, jobs 1, . . . , (n − 1) wait in the
queue, so that ∆1 > ∆2 > . . . > ∆n−1. (SPT order)

I Let f (x) denote the job size pdf.
I ρ(x) = λ

∫ x
0 x f (x) dx , i.e., load due to jobs shorter than x .

I Define ∆̃0 =∞, ∆̃n = 0 and ∆̃i = ∆i for i = 1, . . . , (n − 1).

v(∆1;..;∆n) − v0 =
n∑

i=1

(
∆i +

∑n
j=i+1 ∆j

1− ρ(∆i)

)
+

λ

2

n∑
i=1


 i−1∑

j=1

∆2
j +

( n∑
j=i

∆j
)2

 ∆̃i−1∫
∆̃i

f (x)

(1− ρ(x))2 dx

 .
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M/G/1-SRPT
The size-aware relative value of state z with respect to delay in
an M/G/1-SRPT queue is

vz − v0 =
n∑

i=1

(
∆i +

uz(∆i)

1−ρ(∆i)
+

∫ ∆i

0

ρ(t)
1−ρ(t)

dt
)

+

∫ ∞
0

λ f (x)
(
uz(x)2 + nz(x) x2)

2(1− ρ(x))2 dx ,

where
I f (x) = job size pdf,
I ρ(x) = offered load due to jobs shorter than x ,
I uz(x) = backlog due to jobs shorter than x in state z,
I nz(x) = number of jobs longer than x in state z.
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SITA with Switch

First application of the relative values:

I Consider a SITA policy with identical servers
I The role of any two servers can be exchanged,

e.g., after a state change (arrival)
I Relative values tell us when this is beneficial

Example:
Two identical FCFS queues and SITA-E (equal load per queue)

Switch: short jobs to queue with smaller backlog.

⇒ New policy: SITA-E with Switch (SITA-Es)

(Generalizes to n > 2 queues)
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Numerical Examples
Example 1

I Two identical queues with FCFS
I Job size distribution:

1. Uniform U(0,2)
2. Exponential Exp(1)
3. Pareto(β) with β = 3: P{X > t} = (1 + t)−β

I Performance metrics:
1. Absolute mean delay (sojourn time)
2. Relative delay when compared to SITA-E policy

Example 2
I Two identical queues with SRPT
I Exponential job size distribution, Exp(1)

I Relative delay when compared to a single shared
SRPT queue processed by two identical servers
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FCFS and Uniformly distributed jobs
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Figure: Mean delay under FCFS with uniformly distributed job sizes.
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FCFS and Uniformly distributed jobs
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FCFS and Exponentially distributed jobs
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Figure: Mean delay under FCFS with Exp-distributed job sizes.
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FCFS and Exponentially distributed jobs
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FCFS and Pareto distributed jobs
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Figure: Mean delay under FCFS with Pareto distributed job sizes.
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FCFS and Pareto distributed jobs
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SRPT and Exponentially distributed jobs
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I Dispatching system vs. a shared queue with SRPT.
I Appears that the disadvantage due to the dispatching

can be insignificant (here order of 5% with FPI-RND).
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Conclusions
I Size- and state-aware dispatching problem can be

approached in MDP framework
I Corresponding relative values required for the FPI step.
I For state-independent basic policies, sufficient to analyze

M/G/1 queue in isolation
I Size-aware relative values for FCFS, LCFS, SPT and

SRPT with respect to delay are available for M/G/1
I For FCFS and LCFS, the relative values are insensitive to

job size distribution
I For SPT and SRPT, the relatives values in integral form.
I Robust, efficient and state-dependent dispatching policies

taking into account the current and later arriving tasks

Thanks!
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