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Abstract—Hop count limitation helps controlling the spread
of messages as well as the protocol complexity and overhead
in a distributed network. For a mobile opportunistic network,
we examine how the paths between any two nodes change with
increasing number of hops a message can follow. Using the all
hops optimal path (AHOP) problem, we represent the total delay
of a route from a source node to a destination node as additive
weight and use the number of encounters as a representation
of bottleneck weight. First, we construct a static (contact) graph
from the meetings recorded in a human contact trace and then
analyze the change in these two weights with increasing hop
count. Alternatively, we aggregate all the contact events in a
time interval and construct several time-aggregated graphs over
which we calculate the capacity metrics. Although, we observe
differences in the properties of the static and the time-aggregated
graphs (e.g., higher connectivity and average degree in static
graph), our analysis shows that second hop brings most of the
benefits of multi-hop routing for the studied networks. However,
the optimal paths —path that provides the most desirable
bottleneck/additive weight— are achieved at further hops, e.g,
hop count ≈ 4. Our finding, which is also verified by simulations,
is paramount as it puts an upper bound on the hop count for
the hop-limited routing schemes by discovering the optimal hop
count for both additive and bottleneck weights.

I. INTRODUCTION

Mobile opportunistic networks rely on short-range radios
(e.g., Bluetooth, WiFi Direct) to transmit data between two
nodes and exploit the mobility of nodes to physically carry
messages from one location to another. This kind of operation
is favourable for several reasons: (i) interconnection without
dependency on the infrastructure, (ii) hop gain due to direct
link between the transmitter and the receiver [1], (iii) spectrum
reuse gain, and (iv) mobile data offloading. On the other hand,
it is more challenging to provide guaranteed performance
in such a dynamic network. Mobility of nodes results in
intermittent connections and raises uncertainty in the network
topology. The major challenge is hence the lack of global
knowledge at the nodes to decide on the optimal forwarding
paths or other networking tasks.

Epidemic protocol [2] is the simplest protocol that does
not rely on any information about the network (e.g., about
nodes and connections) but greedily replicates a message to
every node that does not have it. Albeit being desirable due
to its simplicity, epidemic protocol over-consumes network
resources (e.g., waste of bandwidth due to too many repli-
cations) and may not perform well under resource-restricted

networks (e.g., short contact duration). A less greedy solu-
tion is hop-limited routing [3], [4] which limits the journey
of a message in the network to maximum h hops. More
sophisticated protocols aim to balance the tradeoff between
delivery ratio and resource consumption by tuning the protocol
parameters, e.g., the maximum number of replications [4],
lifetime of a message [5], replication/forwarding logic [6],
and so on. However, no matter how optimized the protocol
is, the performance of a mobile opportunistic network also
strongly depends on the node mobility. More specifically, two
properties related to node mobility are paramount: contact
duration and inter-contact time duration. Contact duration is
the time two nodes stay connected while inter-contact time
is the time elapsed between two consequent contacts of two
particular nodes. Both determine the transmission capacity
(i.e., how much data can be transmitted) as well as the speed
of change in the network topology.

Although opportunistic routing protocols have been stud-
ied extensively from many perspectives, the effect of hop
limitation is not yet fully understood. While [3] and [7]
provide theoretical analysis on hop-limited forwarding, our
work differs from them in two ways. First, rather than a pure
theoretical approach, we explore the effect of hop count using
the real human contact traces. Second, we research if the
analysis approach – modelling the network as static or time-
aggregated graphs– makes a difference in our conclusions.

We start with constructing the connectivity graph from a
trace and explore the change in the network performance
indicators, e.g., fraction of reached nodes, using the solution
for all hops optimal path problem (Section III). This static
graph aggregates all the contacts recorded in the trace into
a contact graph. Alternatively, we sample the network on
regular time intervals and analyze each time-aggregated graph
separately (Section IV). Social-aware opportunistic routing
schemes largely tend to aggregate contacts either using a
sliding window approach (e.g., BubbleRap [8]) or accounting
for the whole past events (e.g., SimBet [9]) to derive metrics
about the nodes, e.g., centrality. However, [10] shows that both
short and long time windows may fail to differentiate the nodes
according to their social metrics. Similarly, we compare the
two approaches for hop analysis to see how local observations
agree/disagree with the analysis of the static graph.

Finally, we simulate a hop-limited forwarding scheme to see



the change in performance during the actual operation (Sec-
tion V). Obviously, the third analysis explains the real effect
of the hop count. However, the formers are also useful for
estimating the performance if they provide similar conclusions.

Our main contribution is that we provide answers to the
following research questions for the considered opportunistic
networks: Q1: How is the average time to send a packet from
one arbitrary node to another arbitrary node affected by hop
restriction h?; Q2: How is the fraction of nodes reachable from
one arbitrary node affected by h?; Q3: How is the delivery
ratio from one arbitrary node to another arbitrary node affected
by h?

II. SYSTEM MODEL

We consider a network of n mobile nodes. A contact starts
when two nodes come in transmission range of each other,
and ends when they cannot maintain a connection. Nodes can
exchange messages only during contact time.

In a hop-limited routing scheme, each message has a hop
count field that shows the number of routers this message has
followed. When a message is forwarded from one node to
another, the hop count of this message is incremented by 1 at
the receiving node. If the hop limitation is h, the message can
only be forwarded h hops.

We use the following human contact traces in our analysis
Infocom05 [11], Cambridge and Infocom06 (collected by
Haggle project [12] and downloaded from [13]), whose basic
properties are listed in Table I.

TABLE I
HUMAN CONTACT TRACES USED IN THE ANALYSIS.

Trace Duration # of devices (n) Context
Infocom05 ≈3 days 41 Conference participants
Cambridge ≈11 days 36 1st and 2nd year undergrad-

uate students
Infocom06 ≈4 days 78 (and 20 stationary

devices)
Conference participants

III. ALL HOPS OPTIMAL PATHS (AHOP)

One common practise in exploring the network capacity is
to analyze the network topology. In opportunistic networks, the
topology changes frequently. However, human contact traces
that are collected for a long duration can reflect the stationary
contact probabilities which then can be used for constructing
the expected network topology. Given the network’s stationary
meeting characteristics, we can model the encounter events as
a graph G = (V, E) where vertex set V is the set of nodes
and edge set E is the set of all possible pairwise contacts
among nodes. In this graph, there are n = |V| vertices and
maximum |E| = O(n2) edges for which we assign weights (w)
based on the contact characteristics (e.g., inter-contact time,
number of meetings) of the two connecting vertices. Given a
source node s, our aim is to find the shortest (e.g., fastest)
path to a destination d that has at most k hops for each k,
1 ≤ k ≤ h. In the most general form, this problem is known
as all hops optimal path problem (AHOP) [14]. Fig. 1(a) shows
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Fig. 1. (a) Static graph derived from the encounters in the contact trace, (b)
paths from A to L in h = {1, 2, 3, 4} hops.

an example connectivity graph. An edge in this graph indicates
that the two nodes has met at least once. Fig. 1(b) depicts some
of the paths from A to L (the leaf nodes). Number near each
leaf shows the hop count of the path. The optimal path among
all these paths depends on the edge weights.

Let p be a path from s to d consisting of vertices 〈s =
n0, n1, · · · , d = nk〉 in the given order, and let w(ni, nj) be
the weight of the edge between ni and nj . Denote by w(p)
the weight of a path p and define it as a function of weights
of edges along this path:

w(p) = f(w(n0, n1), w(n1, n2), . . . , w(nk−1, nk))

where k 6 h and ni ∈ V for all i. If f is additive, the weights
are said to be additive weights; if f is maximum/minimum,
the weights are bottleneck weights [14], [15]. Both metrics are
of our interest as they reflect different performance require-
ments in networks; bottleneck weight matches the minimum
bandwidth available for a service whereas additive weight is
more appropriate measure for the total delay of a path. As for
opportunistic forwarding, we consider both weights:

(i) additive weight: expected time to reach a target node
is the total expected inter-contact time of the selected path.
Hence, we compute the total delay between s and d as the
additive weight of the path p:

w(p) =
∑

(ni,nj)∈p

w(ni, nj)

where w(ni, nj) is the expected inter-contact time between ni

and nj .
(ii) bottleneck weight: as encounters are probabilistic, we

aim to select the edges that will appear with high probability.
In a sense, given the number of encounters among nodes, a
routing scheme tries to decrease the risk of relying on less
probable encounters by selecting the most probable paths. An
additive weight may not properly choose the most probable
paths if only the total delay is considered. Therefore, we
define the weight of an edge as the inverse of the number of
encounters between the corresponding nodes. Then, the weight
of p is the maximum weight of the edges along this path:

w(p) = max
(ni,nj)∈p

w(ni, nj).



Let l(p) denote the length of the path, i.e., the number of
edges. Then, we define an h-hop constrained optimal shortest
path as the path with at most h hops that yields the minimum
weight among all paths between s and d. More formally, ph∗
is defined as follows:

ph∗ = argmin
p

w(p) and l(p) 6 h.

Once we find ph∗, we can find the hop count h∗ realizing
the optimal path. We refer to it as the optimal hop count and
define as follows: h∗ = l(p∗h).

In [14], it was shown that Bellman-Ford algorithm provides
the best solution with complexity O(h|E|) for additive weights
whereas for the simpler case of bottleneck weights authors
propose an improvement upon Bellman-Ford with a lower
complexity. We should note that for human contact networks
h� n due to the small world structure [16]. Hence, although
the worst case complexity is cubic for additive weights, the
average complexity would be much lower, e.g., O(n2). We
compute the solution for AHOP by modifying the Bellman-
Ford algorithm for hop restricted shortest paths [17]. Even
though we do not focus on efficiency of this calculation, we
note that the running time of the algorithm can be decreased
by pruning some of the edges via thresholding.

IV. ANALYSIS ON THE NETWORK SNAPSHOTS

Solving the AHOP problem as discussed above provides
us the shortest paths and their capacities for given hop
restrictions. With this knowledge, we can grasp the net-
work characteristics and the capacity limitations. One of the
shortcomings of such an analysis is the loss of temporal
network dynamics [18], [19]. In other words, we aggregate the
snapshots of the network as if an occurring edge always exists
there. On the other hand, temporal reachability graph [20] is
not identical to the aggregated connectivity graph. In the above
AHOP analysis, the time of appearing of the edges is lost.
Take the graph in Fig.1(a) as example. Node B can be a good
relay for A in reaching E, only if B meets E after meeting
A. Fig. 2 illustrates two snapshots of the same graph. Neither
of the networks is connected contrary to the network that is
formed by aggregating these two snapshots. The encounter
between A and B occurs after B-E meeting, which makes the
path A→ B→ E impossible. The static network derived from
the encounters does not express this property of the network.
Hence, some of the paths discovered by our AHOP solution
may be causally impossible due to the time ordering of the
edges in the temporal network. As a result, the connectivity
of the network is overestimated and thereby also the resulting
network capacity [10].

Another approach is to decrease the time window of the
analysis. Instead of aggregating the whole contact events, we
analyze the network several times and average the statistics
over these observations. In this approach, events occurring
inside a time window are aggregated, and at the end of
the time window we have a snapshot of the network. The
proper choice of the time window size is paramount and it
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Fig. 2. Connectivity graph (snapshot) in two consequent time intervals and
the aggregated graph.
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Fig. 3. Static (G), time-aggregated (Gi), and time-varying graph (Gt).

depends on the network dynamics which can be estimated
online [21]. Understanding the effect of time window length
is of our interest as many opportunistic routing protocols
collect encounter information to predict future meetings or
make informed forwarding decisions. However, the collected
information becomes stale due to the change in the network
dynamics. Therefore, the metrics that are derived from the
aggregated network may be misleading for these protocols
and result in performance degradation. Hence, time-varying
graph (TVG) and related metrics (e.g., temporal shortest path)
are argued to be more powerful [18], [20].

Time-varying graphs (TVG) have been studied under dif-
ferent contexts and with different terminology (see [18]). For
example, ad hoc networks [22], animal networks such as ant
colonies [23], and social networks [24] entail connections
among the network entities that are changing (appearing,
disappearing) over time and are complicated compared to the
static graphs. TVGs extend the static graphs on time dimension
by a presence function that shows whether a particular edge
exists at a specific time. An opportunistic network is obviously
a TVG and previous works [16], [20] highlighted the benefits
of TVG modelling for opportunistic networks. In this work,
we take a midway approach and analyze the traces by breaking
down the whole history of contacts into regular time intervals.
This approach is obviously not as accurate as TVGs, however
it alleviates the deficiency of the information loss by static
graphs to some extent.

Suppose that the aggregation time is Tagg for a trace of
T time units. Then, we have bT/Taggc intervals. A contact
event occurring in a specific interval is reflected as an edge in
the corresponding contact graph Gi where i is the index of the
graph. For each edge in Gi, we calculate average inter-contact



time and number of meetings. Finally, we apply the previous
analysis in Section III to each Gi. Fig. 3 summarizes the time
granularity of static, TVGs, and time-aggregated graphs.

Lastly, we observe the change in network capacity while
the network is under operation. We simulate a flooding-based
forwarding protocol that is subject to hop limitations.

V. NUMERICAL EVALUATION

We implemented AHOP algorithm in R and used ONE [25]
for simulations. In R, we generate network snapshots from
a trace and a list of time intervals using Timeordered pack-
age [23].

Fig. 4 shows the effect of hop count for all traces. We
normalize the bottleneck and additive weights for each trace
as we aim to show the change in the network dynamics
rather than the actual values of the related metrics. As
Figs.4(a) and 4(b) show, relaxing the hop limitation improves
the network capacity: higher bottleneck capacity indicating
the higher probability of path’s existence and lower additive
weight indicating lower delays among the nodes. The most
significant gain is achieved by letting two hop routing rather
than a direct delivery (i.e., h = 1). Increasing to h = 4
still brings benefits especially for bottleneck capacity, however
after h ≈ 4 change in the considered metrics is negligible.
Please note the consistency of the behaviour for all traces.
Regarding connectivity (not depicted), we observe that only
two hops are sufficient to reach all the nodes in the network
from any node. For h = 1, the reached fraction of nodes is
(0.96, 0.82, 0.88) for Infocom05, Cambridge, and Infocom06,
respectively. However, the existing path is not optimal as
shown in Figs. 4(c) and 4(d).

Fig. 4(c) and Fig. 4(d) illustrate optimal hop count for
bottleneck and additive weights, respectively. We have two
observations: all networks represented by the traces achieve
optimal operation at very few hops, three to four. Second, gen-
erally speaking, the optimal bottleneck capacities are achieved
at higher hops compared to additive weights. This is due
to the strength of weak ties [26] for the additive weights;
in bottleneck capacity calculation our algorithm avoids the
weak links (with low number of meetings) whereas in additive
weights these links may be a fast move towards the target.

In summary, for the research questions we listed in Sec-
tion I, we have the following conclusions from the AHOP
analysis. As for (Q1), nodes can be reached faster by relaxing
hop count, however the improvement vanishes after several
hops. More specifically, optimal hop counts considering the to-
tal path delay are h ≈ 3 for Infocom05, h ≈ 2 for Cambridge,
and h ≈ 2.6 for Infocom06. As for (Q2), the first two hops are
sufficient to reach every node from every other node. As for
(Q3), indirectly from our bottleneck weight analysis, we can
conjecture that delivery ratio increases significantly if at least
two hops are allowed. However, for all traces the performance
increase tends to stabilise after h ≈ 4.

Next, we set Tagg = {1, 6, 24} hours to analyze how time-
aggregation affects the network dynamics. We refer to these
settings as short, medium, and long aggregation windows.
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Fig. 4. AHOP analysis for Infocom05, Cambridge, Infocom06.

Before presenting the average capacity and optimal hop count,
let us see how optimal hop count changes over time for each
trace. In Fig. 5(a), we plot the results for short Tagg. As
Infocom05 trace is approximately 3 days long, we have 70
snapshots while Cambridge has 274, and Infocom06 has 93
snapshots. The figures show the hop counts providing the best
bottleneck weights for h = 3 and h = 8 for both the time-
aggregated graph and static graph. The reachable fraction of
nodes is not presented here due to space restrictions, but our
results show that static graph overestimates the connectivity of
the network. All nodes can be reached in two hops if waited
sufficiently long. However, the actual reachable fraction is
much lower according to the results of our snapshot analysis
in Fig. 6(a). This is not primarily because of the hop restriction
but the inherent network dynamics. Albeit setting h = 8 leads
to a higher connectivity than with h = 3, the connectivity is
still drastically lower than with the static graph. Figures also
capture the difference in time of the day: connectivity during
daytime is higher compared to the night times. This change in
the connectivity manifests itself as the change in the optimal
hop count over time. During some periods, connectivity is so
low that although the protocol lets 8 hops, single hop routing
achieves the optimal performance (which is very low). This
change in hop count may call for protocols that adapt the
parameters according to the time of the operation. Regarding
the amount of change, the standard deviation is 0.54 hops for
h = 2 and 0.77 hops for h = 8 in Infocom05, while they
are (0.45, 0.62) hops in Cambridge and (0.42, 0.83) hops in
Infocom06.

Fig. 6 demonstrates the average results collected from
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Fig. 5. Change in optimal hops over time.
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Fig. 6. AHOP analysis for Tagg = {1, 6, 24} hours. Infocom05 trace.

multiple snapshots of the network. We present only results
for Infocom05 as the rest behave similarly. As our simple
example showed, reachable fraction of nodes in static graph
is higher than what actual graph Gt could provide. The
overestimation is clear in Fig. 6(a): static and long Tagg have
the highest reachable fraction (≈ 0.9− 1) whereas short Tagg

is significantly lower (≈ 0.3). Regarding the improvement
with increasing h, all exhibit the same behaviour. In line
with the results of Section III, we see that h = 2 provides
most of the benefits of multi-hop routing. However, our
previous conclusion that two hops are sufficient to provide
full connectivity among all nodes does not hold. Increasing
the hop count does not help as the dynamics of the network
put a limit on the ratio of reachable nodes in the given
time period. Regarding the bottleneck capacity, increasing hop
count (h > 2) leads to a higher bottleneck capacity for all
cases. Similar to our previous results, the benefits diminish
after h ≈ 4. As Fig. 6(c) illustrates, the optimal number of
hops are on the average higher for higher Tagg. This is due to
the added edges that may violate the time ordering in reality
but increasing the bottleneck capacity. The closest results to
the simulation results are achieved by medium aggregation
window while long Tagg and static overestimate the hop
count and short Tagg underestimates it. Please note that best
aggregation window size depends on how fast the network
evolves and how the protocol operates. Hence, our analysis
should not be generalized but rather highlight the change in
results with change in Tagg.

In Fig. 7, we plot the simulation results: the delivery ratio,
delivery delay, and average hop count of the delivered mes-
sages for Infocom05 and Infocom06 traces. In these scenarios,
we set time-to-live (TTL) of a message to ttl = {1, 6, 24}
hours. A message exceeding its ttl is dropped. For the sake of
comparison, we set buffer capacity and contact capacity large
so that the performance is not restricted by these factors. From
Fig. 7(a), we can see the improvement facilitated by increasing
h. In all scenarios, we see two regions; in the first region the
delivery ratio increases with increasing h which later changes
marginally in the second region. The turning point is 3 − 4
hops. This behaviour agrees with our previous AHOP analysis.
Unsurprisingly, delivery delay in Fig. 7(b) shows a similar
trend to that of additive weights in Fig. 4(b). In this figure,
the results are not normalized to give an idea about the delay of
communication in such opportunistic networks. For ttl = 1 h,
the delay changes slightly across different h, which indicates
that the performance is primarily determined by the time
restriction (and network mobility) rather than the hop count
restriction. Lower average hop count in Fig. 7(c) corroborates
this claim. For other settings, we observe a significant drop in
delivery delay from h = 1 to h = 2. Another thing to note is
that messages are routed in h ≈ 2.3 hops in Infocom05 trace
independently of ttl, whereas h ≈ 3.2 for Infocom06.

VI. CONCLUSIONS

We have explored the effect of hop count restriction on
opportunistic routing by modelling our problem as all hops
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Fig. 7. Simulation results for ttl = {1, 6, 24} hours. Infocom05 and Infocom06 traces.

optimal path problem (AHOP). We analyzed human contact
traces using three approaches: static graph, network snapshots,
and simulations. AHOP analysis on static graph is optimistic
as it disregards the time ordering of the links. To decrease the
deviation from the actual graph, we observed the network on
multiple time points and aggregated all events occurring in a
time interval into a network snapshot. We derived the perfor-
mance by averaging related metrics over the snapshots. Finally,
we simulated hop-limited routing. Although characteristics
(e.g., connectivity) of the network snapshots may be different
than the static graph, they are similarly affected by the hop
count limitation. Connectivity of the network as well as the
performance (e.g., lower delay) improves with increasing hop
count. Our simulation experiments strongly suggest that while
two hops are sufficient to achieve the highest connectivity
the network can provide given the time restrictions, routing
protocols can perform better by increasing hop count to h ≈ 4.
After this point, we did not observe significant improvements
in the performance.

In this work, we have studied small-world networks that ex-
hibit some community structure which reflected this property
as a low number of hops achieving a good connectivity for
the static graph. As future work, we plan to provide a formal
framework which can guide us to a better understanding of
the effect of the hop count for general opportunistic networks.
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[14] R. Guérin and A. Orda, “Computing shortest paths for any number of

hops,” IEEE/ACM Transactions on Networking (TON), vol. 10, no. 5,
pp. 613–620, 2002.

[15] D. H. Lorenz and A. Orda, “QoS routing in networks with uncertain
parameters,” IEEE/ACM Transactions on Networking (TON), vol. 6,
no. 6, pp. 768–778, 1998.

[16] A. Chaintreau, A. Mtibaa, L. Massoulie, and C. Diot, “The diameter
of opportunistic mobile networks,” in Proc. of the 2007 ACM CoNEXT
conference, 2007, p. 12.

[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms, 2009. MIT Press, 2009, ch. Single-Source Shortest Paths.

[18] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, “Time-
varying graphs and dynamic networks,” Int. Journal of Parallel, Emer-
gent and Distributed Systems, vol. 27, no. 5, pp. 387–408, 2012.
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