

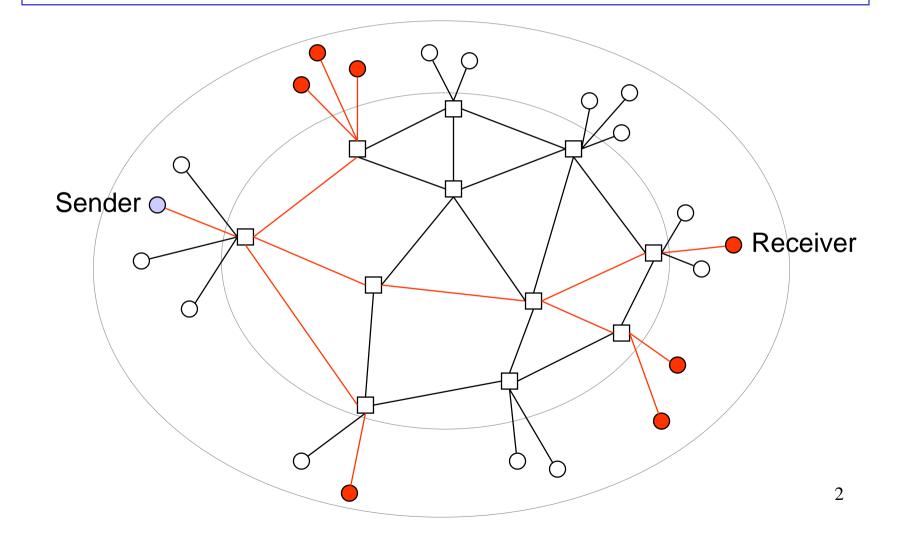
New Algorithms for Calculating Blocking Probabilities in Multicast Networks

Samuli Aalto, Jouni Karvo & Jorma Virtamo Networking Laboratory Helsinki University of Technology

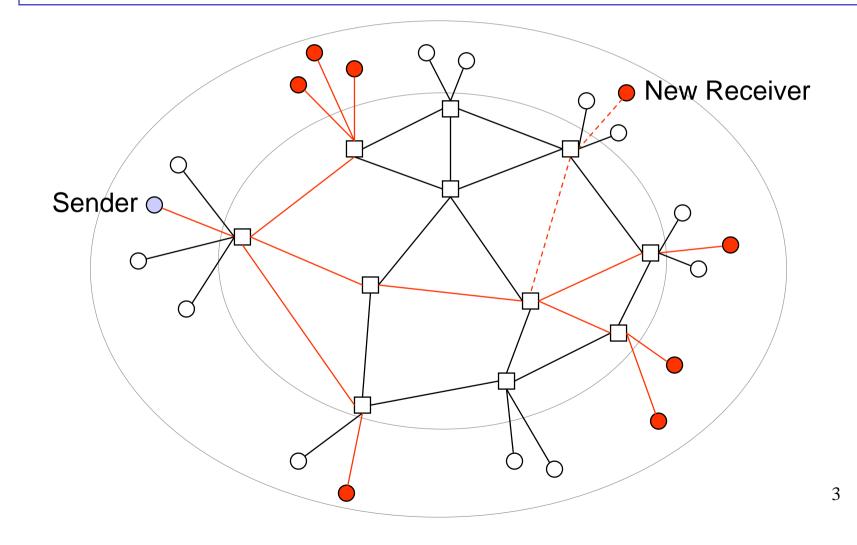
samuli.aalto@hut.fi

newmcast.ppt

Multicast connection with dynamic membership (1)



Multicast connection with dynamic membership (2)



Setup

- A (unique) service center offers a variety of channels $i \in I$
 - e.g. audio or video streams
 - required capacities d_i
- Each channel is delivered to users $u \in U$ by a **multicast connection** with **dynamic membership**
- Each multicast connection uses the same routing tree
 - service center located at the root node
 - users located at the leaf nodes

- Physical links $j \in J$ with finite capacities C_i
 - (possibly) shared with bg (unicast) traffic

Teletraffic study

- Calculation of call blocking (of a user requesting a channel)
 - call blocking = probability that the user fails to join the requested multicast connection
- 1st step:

Find out how to calculate time blocking (for that user)

- time blocking = probability of such network states that do not allow the user to join the requested multicast connection
- 2nd step:

Express call blocking by means of time blocking (possibly in a slightly modified network)

- exact expression depends always on the chosen user model

Time blocking (1)

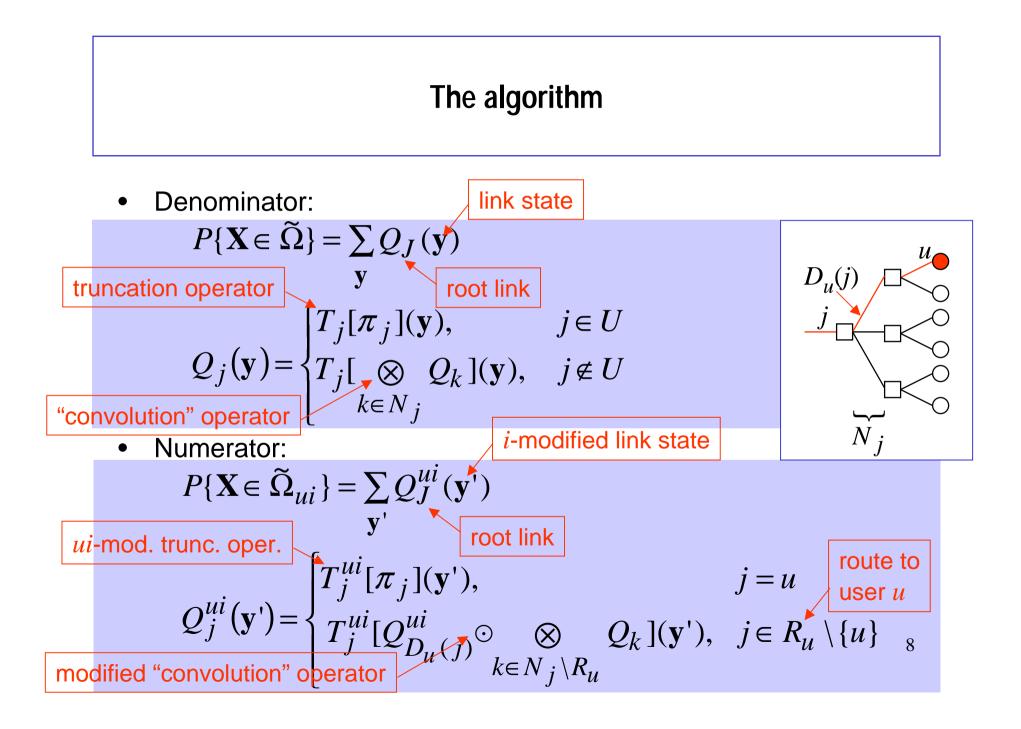
- X = network state (without capacity constraints)
- $\widetilde{\mathbf{X}}$ = network state (with capacity constraints)
- $\widetilde{\Omega}$ = network state space (with capacity constraints)
- $\widetilde{\Omega}_{ui}$ = nonblocking states for user *u* and channel *i*
- B_{ui}^{t} = time blocking probability for user u and channel i

$$B_{ui}^{t} \coloneqq 1 - P\{\widetilde{\mathbf{X}} \in \widetilde{\Omega}_{ui}\} = 1 - \frac{P\{\mathbf{X} \in \widetilde{\Omega}_{ui}\}}{P\{\mathbf{X} \in \widetilde{\Omega}\}}$$

Due to the Truncation Principle!

Time blocking (2)

- In principle, there is a closed form analytical expression both for the numerator and the denominator
- **Problem**: computationally extremely complex
 - exponential in U
- Solution: use recursive convolution-truncation algorithms to calculate the numerator and the denominator
 - linear in U



Cases studied

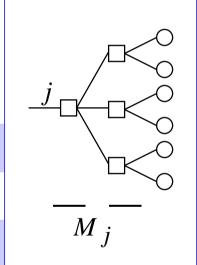
- Single link analysis (Karvo, Virtamo, Martikainen & Aalto, 1997-1998)
 - starting point
- Network wide analysis (Nyberg, Virtamo & Aalto, 1999)
 - all channels handled individually
 - first convolution-truncation algorithm
- Multi-class case (Aalto, Karvo & Virtamo, 2000)
 - class = group of statistically indistinguishable channels
 - combinatorial convolution needed
- Multi-layer case (Karvo, Aalto & Virtamo, 2000-2001)
 - layered coding of audio/video streams
 - individual channels / single class / multiple classes

DIMINIS

Individually handled channels

- Denominator:
 - Link state = $y = (y_1, ..., y_I)$
 - $y_i = 1$ (0) if channel *i* is active (idle)
 - Q-function: $Q_j(\mathbf{y}) = P\{\mathbf{Y}_j = \mathbf{y}; r(\mathbf{Y}_{j'}) \le C_{j'}, j' \in M_j\}$
 - Truncation:

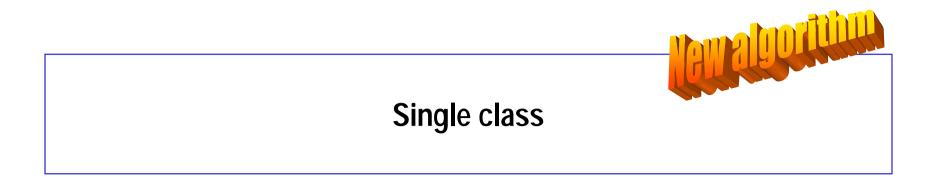
$$T_j f(\mathbf{y}) = f(\mathbf{y}) \, \mathbb{I}\{r(\mathbf{y}) \le C_j\}$$



- OR-convolution:

$$[f \otimes g](\mathbf{y}) = \sum_{\mathbf{u} \oplus \mathbf{v} = \mathbf{y}} f(\mathbf{u})g(\mathbf{v})$$

• Numerator: slightly different! componentwise OR



- Denominator:
 - Link state = n = number of active channels
 - *Q*-function:

total capacity req.

$$Q_j(n) = P\{N_j = n; r(N_{j'}) \le C_{j'}, j' \in M_j\}$$

– Truncation:

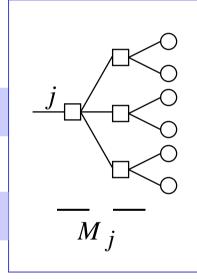
$$T_j f(n) = f(n) \operatorname{l}\{r(n) \le C_j\}$$

– Combinatorial convolution:

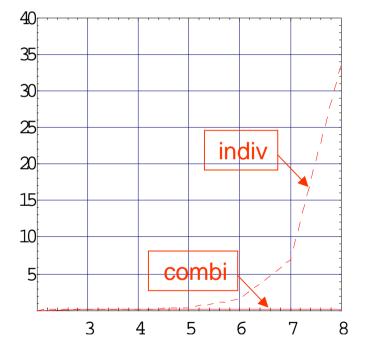
$$[f \otimes g](n) = \sum_{l,m} s(n \mid l, m, I) f(l) g(m)$$

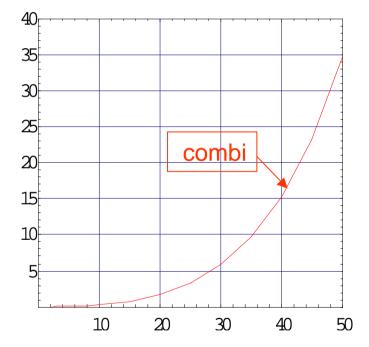
• Numerator: slightly different!

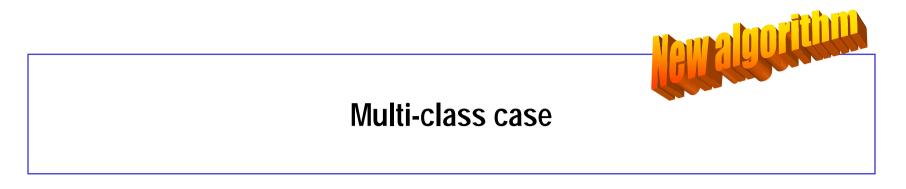
simple combinatorial factor by a random sampling' -argument



Processing time (sec) vs. number of channels





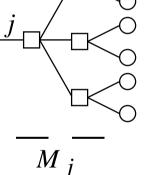


- Denominator: •
 - Link state = $n = (n_1, ..., n_K)$ —
 - n_k = number of active channels of class k
 - total capacity req. *Q*-function:

$$Q_j(\mathbf{n}) = P\{\mathbf{N}_j = \mathbf{n}; r(\mathbf{N}_{j'}) \le C_{j'}, j' \in M_j$$

Truncation:

$$T_j f(\mathbf{n}) = f(\mathbf{n}) \, \mathbb{I}\{r(\mathbf{n}) \le C_j\}$$



13

Combinatorial convolution:

$$[f \otimes g](\mathbf{n}) = \sum_{\mathbf{l},\mathbf{m}} \sum_{k} s(n_k \mid l_k, m_k, I_k) f(\mathbf{l}) g(\mathbf{m})$$

the same combinatorial factor
as before

Numerator: slightly different! ۲

Multi-layer case (individually handled channels)

- Denominator:
 - Link state = $y = (y_1, ..., y_I)$
 - $y_i = \text{layer on which channel } i \text{ is active } (0 \text{ when idle})$
 - *Q*-function: $Q_j(\mathbf{y}) = P\{\mathbf{Y}_j = \mathbf{y}; r(\mathbf{Y}_{j'}) \le C_{j'}, j \in M_j\}$
 - Truncation:

$$T_j f(\mathbf{y}) = f(\mathbf{y}) \, \mathbb{1}\{r(\mathbf{y}) \le C_j\}$$

AW algorium

– Max-convolution:

$$[f \otimes g](\mathbf{y}) = \sum_{\max{\{\mathbf{u}, \mathbf{v}\} = \mathbf{y}}} f(\mathbf{u})g(\mathbf{v})$$

Numerator: slightly different! componentwise max

Multi-layer case (single class)

- Denominator:
 - Link state = $n = (n_1, ..., n_L)$
 - n_l = number of active channels on layer l
 - Q-function: total capacity req. $Q_{i}(\mathbf{n}) = P(\mathbf{N} - \mathbf{n}) \cdot \mathbf{n} (\mathbf{N} - \mathbf{n}) \leq C - i \leq A$

$$Q_j(\mathbf{n}) = P\{\mathbf{N}_j = \mathbf{n}; \hat{r}(\mathbf{N}_{j'}) \le C_{j'}, j' \in M_j\}$$

– Truncation:

$$T_j f(\mathbf{n}) = f(\mathbf{n}) \, \mathbb{1}\{r(\mathbf{n}) \le C_j\}$$

j

– Combinatorial convolution:

$$[f \otimes g](\mathbf{n}) = \sum_{\mathbf{l},\mathbf{m}} s(\mathbf{n} | \mathbf{l}, \mathbf{m}) f(\mathbf{l}) g(\mathbf{m})$$

numerator: slightly different!
much more complicated
combinatorial factor
15

Multi-layer case (multiple classes)

THE END

