

Load Balancing in Cellular Networks Using First Policy Iteration

Johan van Leeuwaarden, Samuli Aalto & Jorma Virtamo Networking Laboratory Helsinki University of Technology

samuli.aalto@hut.fi

loadbal.ppt

1

Problem formulation: Routing of new calls in the overlapping area of two BS's

Signal based routing

Load based routing

Model

- Assumptions:
 - new calls arrive according to Poisson processes with rates λ_1, λ_2 and v

$$-\lambda_1 \ge \lambda_2$$

- connection holding times exponentially distributed with mean $1/\mu = 1$
- no mobility modelling
 ⇒ no handovers
- Notation:
 - c_k = capacity of BS_k
 - i_k = state of BS_k

Static (state-independent) routing policies

- Randomized Routing, RR(*p*)
 - arriving call in the overlapping area is routed to
 - BS_1 with probability p
 - BS_2 with probability 1 p
 - as a result, there are two independent Erlang loss systems with parameters $(c_1, \lambda_1 + pv)$ and $(c_2, \lambda_2 + (1-p)v)$

Optimal Randomized Routing (ORR)

• For RR(p), the blocking probability B(p) is clearly given by

$$B(p) = \frac{(\lambda_1 + pv)\operatorname{Erl}(c_1, \lambda_1 + pv) + (\lambda_2 + (1-p)v)\operatorname{Erl}(c_2, \lambda_2 + (1-p)v)}{\lambda_1 + \lambda_2 + v}$$

- The blocking probability is minimized by some p^*
- RR(*p**) is called the **Optimal Randomized Routing** (ORR)
- For the case $c_1 = c_2$, there is an explicit solution:

$$c_1 = c_2 \implies p^* = \begin{cases} \frac{1}{2}(1 - \frac{\lambda_1 - \lambda_2}{\nu}), & \text{if } \nu \ge \lambda_1 - \lambda_2\\ 0, & \text{if } \nu < \lambda_1 - \lambda_2 \end{cases}$$

- Idea: Balance the loads (as far as possible)

Dynamic (state-dependent) routing policies

- Dynamic routing policy α:
 - when in state (i_1, i_2) , arriving call in the overlapping area is routed to station $\alpha(i_1, i_2)$
- Policy α is **greedy** if
 - it chooses the other station whenever one is full, i.e.,
 - $\alpha(c_1, i_2) = 2$
 - $\alpha(i_1, c_2) = 1$
- Policy α is a switch-over strategy if
 - there is a non-decreasing switch curve $s(i_1)$ such that
 - $\alpha(i_1, i_2) = 1$, if $i_2 \ge s(i_1)$
 - $\alpha(i_1, i_2) = 2$, if $i_2 < s(i_1)$

8

Optimal dynamic policy (1)

- In principle, the optimal dynamic routing policy can be determined e.g. by the **policy iteration algorithm** (developed in the theory of **Markov Decision Processes**):
 - fix the immediate cost rate for each state
 - choose a basic policy α
 - determine the relative costs of states for the basic policy from the Howard equations
 - when iterating, the decision of the **iterated policy** α' made in state (i_1, i_2) minimizes the relative costs of the post-decision state (j_1, j_2) for the basic policy α
 - by this way, we get a new, better policy α' (with smaller average cost) used as the basic policy for the next iteration
 - an optimal policy is found as soon as the policy does not change anymore in this iteration

Optimal dynamic policy (2)

• Target: minimize blocking probability \Rightarrow immediate cost rate $r(i_1, i_2)$ is as follows:

$$r(i_1, i_2) = \begin{cases} \lambda_1 + \lambda_2 + \nu, & \text{for } i_1 = c_1, \ i_2 = c_2 \\ \lambda_1, & \text{for } i_1 = c_1, \ i_2 < c_2 \\ \lambda_2, & \text{for } i_1 < c_1, \ i_2 = c_2 \end{cases}$$

• Howard equations for relative costs $v_{\alpha}(i_1, i_2)$:

$$r(i_1, i_2) - r_{\alpha} + \sum_{(j_1, j_2)} q_{\alpha}((i_1, i_2), (j_1, j_2)) v_{\alpha}(j_1, j_2) = 0$$

Iterated policy α':

$$\alpha'(i_1, i_2) = \begin{cases} 1, & \text{if } v_{\alpha}(i_1 + 1, i_2) \le v_{\alpha}(i_1, i_2 + 1) \\ 2, & \text{if } v_{\alpha}(i_1 + 1, i_2) > v_{\alpha}(i_1, i_2 + 1) \end{cases}$$
¹⁰

Relative costs for static policies

• If the basic policy is RR(*p*), we have two independent subsystems. Thus,

$$v_{\alpha}(i_1, i_2) = v_1(i_1) + v_2(i_2)$$

• Iterated policy α' is therefore:

$$\alpha'(i_1, i_2) = \begin{cases} 1, & \text{if } v_1(i_1+1) - v_1(i_1) \le v_2(i_2+1) - v_2(i_2) \\ 2, & \text{if } v_1(i_1+1) - v_1(i_1) > v_2(i_2+1) - v_2(i_2) \end{cases}$$

• Moreover, these subsystems are Erlang loss systems for which the relative costs are easily found:

$$v(i+1) - v(i) = \frac{\operatorname{Erl}(c,\lambda)}{\operatorname{Erl}(i,\lambda)}$$

First policy iteration: policy FPI

- All iterated policies are dynamic
- The calculation of the relative costs for dynamic policies is (much) more demanding, albeit possible
 - linear equation system of $(c_1 + 1)(c_2 + 1)$ variables
- On the other hand, it is known that (typically) the first iteration step is the most significant
- Straightforward idea:
 - Use ORR as the basic policy
 - The two independent Erlang loss systems are
 - $(c_1, \lambda_1 + p * v)$ and $(c_2, \lambda_2 + (1 p *)v)$
 - Iterate only once
- Call this FPI
 - It is easily seen to be a greedy switch-over strategy

FPI vs. Optimal dynamic policy $\lambda_1 = \nu = 10, c_1 = 20, c_2 = 25, (a) \lambda_2 = 10, (b) \lambda_2 = 5$

First policy iteration: policy FPI*

- But, is ORR an optimal basic policy (among static policies) minimizing the blocking probability of the iterated policy (after one step)?
- Johan's idea:
 - ORR tries to balance the loads, thus ignoring the impact of (possibly) different dedicated streams
 - What if we simply ignore the flexible arrival stream (with rate v)?
 - This basic policy rejects all new calls in the overlapping area!
 - The two independent Erlang systems are (c_1, λ_1) and (c_2, λ_2)
 - Iterate only once
- Call this FPI*
 - It is also easily seen to be a greedy switch-over strategy

FPI vs. FPI* vs. Optimal dynamic policy $\lambda_1 = \nu = 10, \ \lambda_2 = 5, \ c_1 = 20, \ c_2 = 25$

First policy iteration: basic policy optimization

- Consider a combined admission & routing policy RAR(*f*,*p*) that
 - accepts the new call arriving in the overlapping area with prob. f
 - routes an accepted call to station 1 with prob. *p*
- This is a static policy
 - the two independent Erlang loss systems are $(c_1, \lambda_1 + pfv)$ and $(c_2, \lambda_2 + (1-p)fv)$
- Note that
 - FPI is the iterated policy corresponding to basic policy $RAR(1,p^*)$
 - FPI* is the iterated policy corresponding to basic policy RAR(0)
- Parameters f and p can be optimized so that the blocking probability of the iterated policy (after one step) is minimized
 - the optimal value seems to be f = 0 leading to FPI*

р

Greedy heuristic policies

18

ORR vs. greedy heuristic policies vs. FPI* $\lambda_1 = v = \lambda_2 = 10, c_1 = 25, c_2 = 15$

19

Open questions

- Rigorous proofs
 - Optimal dynamic policy is a greedy switch-over policy, isn't it?
 - FPI* is the optimal one-step-iterated policy based on static basic policies, isn't it?
- Sensitivity analysis
 - What if λ_1 , λ_2 and ν are only approximately known?
 - Is FPI* still a good policy?
- Mobility modelling & handovers
 - geometric approach
 - stochastic approach

THE END

