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Problem formulation:
Routing of new calls in the overlapping area of two BS’s

BS2BS1

new call arriving
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Signal based routing

choose base station 1

BS2BS1
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Load based routing

BS2BS1

c1 c2

choose the optimal base station
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Model

BS1

• Assumptions:
– new calls arrive according to

Poisson processes with rates
λ1, λ2 and ν

– λ1≥ λ2
– connection holding times

exponentially distributed with
mean 1/µ = 1

– no mobility modelling

� no handovers

• Notation:
– ck = capacity of BSk

– ik = state of BSk

BS2

apply routing policy α
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Static (state-independent) routing policies

• Randomized Routing , RR(p)
– arriving call in the overlapping

area is routed to

• BS1 with probability p

• BS2 with probability 1 − p
– as a result, there are two

independent Erlang loss
systems with parameters
(c1, λ1+pν) and
(c2, λ2+(1−p)ν)

BS1

BS2

c1

c2

λ1+pν i1µ

i2µλ2+(1−p)ν
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Optimal Randomized Routing (ORR)

• For RR(p), the blocking probability B(p) is clearly given by

• The blocking probability is minimized by some p*

• RR(p* ) is called the Optimal Randomized Routing (ORR)

• For the case c1 = c2, there is an explicit solution:

– Idea: Balance the loads (as far as possible)
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Dynamic (state-dependent) routing policies

• Dynamic routing policy α:

– when in state (i1, i2),
arriving call in the overlapping area is routed to station α(i1, i2)

• Policy α is greedy if
– it chooses the other station whenever one is full, i.e.,

• α(c1, i2) = 2
• α(i1, c2) = 1

• Policy α is a switch-over strategy if
– there is a non-decreasing switch curve

s(i1) such that

• α(i1, i2) = 1, if i2 ≥ s(i1)

• α(i1, i2) = 2, if i2 < s(i1)

i2

i1
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Optimal dynamic policy (1)

• In principle, the optimal dynamic routing policy can be
determined e.g. by the policy iteration algorithm
(developed in the theory of Markov Decision Processes ):
– fix the immediate cost rate for each state

– choose a basic policy α
– determine the relative costs of states for the basic policy from the

Howard equations

– when iterating, the decision of the iterated policy α′ made in state
(i1, i2) minimizes the relative costs of the post-decision state (j1, j2)
for the basic policy α

– by this way, we get a new, better policy α′ (with smaller average
cost) used as the basic policy for the next iteration

– an optimal policy is found as soon as the policy does not change
anymore in this iteration
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Optimal dynamic policy (2)

• Target: minimize blocking probability �

immediate cost rate r(i1, i2) is as follows:

• Howard equations for relative costs vα(i1, i2) :

• Iterated policy α′:
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Relative costs for static policies

• If the basic policy is RR(p), we have two independent
subsystems. Thus,

• Iterated policy α′ is therefore:

• Moreover, these subsystems are Erlang loss systems for which
the relative costs are easily found:
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First policy iteration: policy FPI

• All iterated policies are dynamic
• The calculation of the relative costs for dynamic policies is

(much) more demanding, albeit possible

– linear equation system of (c1 + 1)(c2 + 1) variables

• On the other hand, it is known that (typically) the first iteration
step is the most significant

• Straightforward idea:
– Use ORR as the basic policy

• The two independent Erlang loss systems are
(c1, λ1+p*ν) and (c2, λ2+(1−p*)ν)

– Iterate only once

• Call this FPI
– It is easily seen to be a greedy switch-over strategy



13

FPI vs. Optimal dynamic policy
λ1 = ν = 10, c1 = 20, c2 = 25, (a)λ2 = 10, (b)λ2 = 5
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First policy iteration: policy FPI*

• But, is ORR an optimal basic policy (among static policies)
minimizing the blocking probability of the iterated policy (after
one step)?

• Johan’s idea:
– ORR tries to balance the loads, thus ignoring the impact of

(possibly) different dedicated streams

– What if we simply ignore the flexible arrival stream (with rate ν)?

• This basic policy rejects all new calls in the overlapping area!

• The two independent Erlang systems are (c1, λ1) and (c2, λ2)
– Iterate only once

• Call this FPI*
– It is also easily seen to be a greedy switch-over strategy



15

FPI vs. FPI* vs. Optimal dynamic policy
 λ1 = ν = 10, λ2 = 5, c1 = 20, c2 = 25
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First policy iteration: basic policy optimization

• Consider a combined admission & routing policy RAR(f,p) that

– accepts the new call arriving in the overlapping area with prob. f

– routes an accepted call to station 1 with prob. p

• This is a static policy
– the two independent Erlang loss systems are

(c1, λ1+pfν) and (c2, λ2+(1−p) fν)

• Note that
– FPI is the iterated policy corresponding to basic policy RAR(1,p*)

– FPI* is the iterated policy corresponding to basic policy RAR(0)

• Parameters f and p can be optimized so that the blocking
probability of the iterated policy (after one step) is minimized

– the optimal value seems to be f = 0 leading to FPI*
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Optimal basic policy
 λ1 = ν = 10, λ2 = 5, c1 = 20, c2 = 25
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Greedy heuristic policies
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ORR vs. greedy heuristic policies vs. FPI*
 λ1 = ν = λ2 = 10,c1 = 25, c2 = 15
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Open questions

• Rigorous proofs
– Optimal dynamic policy is a greedy switch-over policy, isn’t it?
– FPI* is the optimal one-step-iterated policy based on static basic

policies, isn’t it?

• Sensitivity analysis
– What if λ1, λ2 and ν are only approximately known?

– Is FPI* still a good policy?

• Mobility modelling & handovers
– geometric approach
– stochastic approach
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THE END


