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Background

• Ph.D. Thesis : “Studies in Queueing Theory”, University of
Helsinki, Finland, 1998

– [1] S. Aalto (1997) Optimal control of batch service queues with
Poisson arrivals and finite service capacity, Dep Mathematics,
University of Helsinki

– [2] S. Aalto (1998) Optimal control of batch service queues with
compound Poisson arrivals and finite service capacity, Math Meth
Oper Res

– [3] S. Aalto (1998) Characterization of the output rate process for a
Markovian storage model, J Appl Prob

– [4] S. Aalto (1998) Output of a multiplexer loaded by heterogeneous
on-off sources, Stoch Models

• Supervisors: Prof. E. Nummelin and Ph.D. T. Lehtonen
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Batch service queue

• In an ordinary queue
– customers are served individually

• In a batch service queue
– customers are served in batches of varying size

• Additional parameter needed:
– Q = service capacity = max nr of customers served in a batch
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Queueing models considered

• M/G(Q)/1
– Poisson arrivals
– generally distributed IID service times

– single server with service capacity Q

• MX/G(Q)/1
– compound Poisson arrivals

– generally distributed IID service times

– single server with service capacity Q
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An application
1 2 3 4 5 6
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• Given
– arrival process A(t) and
– service times Sn

• Determine
– service epochs Tn

– service batches Bn

• Operating policy π = ((Tn),(Bn))
– should be admissible

Control problem
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• Usual operating policy:
– after a service completion, a new service is initiated as soon as

– a service batch includes as many customers as possible

• This is certainly reasonable
• But what is the optimal operating policy?
• The answer depends on

– the cost structure and

– the objective function

Optimal control

1)( ≥tX
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Cost structure

• Holding costs : Z(t)
– described by the cost rate process Z(t)
– cost rate depends on

• the nr of waiting customers X(t), and

• the times they have been waiting, W1(t),…,WX(t)(t)
– called linear if

• Serving costs : K + cBn
– K per each service batch

– c per each customer served

))(()( tXhtZ =
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Objective function

• Minimize
– the long run average cost φπ or

– the discounted cost Vα
π

• Among all the admissible operating policies π
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Infinite
service capacity

Q = ∞∞∞∞

Finite
service capacity

Q < ∞∞∞∞

Linear
holding costs
z = h(x)

Case A :
- Deb & Serfozo (1973)
- Deb (1984)

Case B :
- Deb & Serfozo (1973)

General
holding costs
z = h(x,w)

Case C:
- Weiss (1979)
- Weiss & Pliska (1982)

Case D

Known results
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BA
Cases A and B:
linear holding costs

• Deb & Serfozo (1973)
– Poisson arrivals
– finite or infinite service capacity

– average cost & discounted cost

• Deb (1984)
– compound Poisson arrivals

– infinite service capacity
– discounted cost case only

• Result:
– h(x) is “uniformly increasing”

=> a queue length threshold policy is optimal

• Note: Optimal threshold is never greater than Q
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B

Queue length threshold policies

• Queue length threshold policy πx with threshold x:
– after a service completion, a new service is initiated as soon as

– a service batch includes as many customers as possible

• Sufficient to watch over the queue length process X(t)

• Note: the usual operating policy = π1

xtX ≥)(

A
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A

Declaration for cases A and B

• Linear holding costs
– cost rate remains constant between arrivals
– system can be reviewed discretely, just when

• a service has just been completed or

• the server is free and a new customer arrives
– Semi-Markov decision technique can be applied

– no reason to start a new service until the next customer arrives

– queue length threshold policies are optimal

B
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CCase C:
general holding costs & infinite service capacity

• Weiss (1979),
Weiss & Pliska (1982)

– compound Poisson arrivals
– infinite service capacity

– average cost case only

• Result:
– Z(t) is increasing (without limits when service is postponed forever)

=> a cost rate threshold policy is optimal
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Cost rate threshold policies

• Cost rate threshold policy π(z) with threshold z:
– after a service completion, a new service is initiated as soon as

– a service batch includes as many customers as possible

• infinite capacity => all waiting customers

• Sufficient to watch over the cost rate process Z(t)

• If linear and non-decreasing holding costs ( Z(t) = h(X(t)) ), then
– cost rate threshold policies = queue length threshold policies

C

ztZ ≥)(
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Declaration for case C

• Infinite capacity
– queue can be emptied at every service epoch
– no reason to watch over the queue length X(t)

– each service starts a new regeneration cycle (as regards the
stationary policies)

• General holding costs
– system needs to be reviewed continuously

– Semi-Markov decision technique cannot be applied:

• Cost rate Z(t) non-decreasing (until the next service)
– cost rate threshold policies are optimal

C
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Infinite
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Q = ∞∞∞∞

Finite
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Q < ∞∞∞∞

Linear
holding costs
z = h(x)

Case A :
- Deb & Serfozo (1973)
- Deb (1984)

Case B :
- Deb & Serfozo (1973)

General
holding costs
z = h(x,w)

Case C:
- Weiss (1979)
- Weiss & Pliska (1982)

Case D:
- Aalto (1997) [1]
- Aalto (1998) [2]

New results
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Case D1:
General holding costs & finite capacity & single arrivals

• Aalto (1997) [1]
– Poisson arrivals
– finite service capacity

– average cost & discounted cost cases

• Result:
– FIFO queueing discipline,

– consistent holding costs and
– no serving costs included (K = c = 0)

=> a cost rate threshold Q-policy is optimal

D1
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Consistent holding costs

• Assume that

where W(t) = (W1(t),W2(t),…) denotes the vector of
– the waiting times of the customers waiting at time t (in decreasing

order)

• Definition: Holding costs are consistent if

• Examples: 1. h(x,w) = x , 2. h(x,w) = w 1 + … + wx

)','(),('and' wxhwxhwwxx ≤⇒≤≤

))(),(()( tWtXhtZ =

D1
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Cost rate threshold Q-policies

• Cost rate threshold Q-policy πQ(z) with threshold z:
– after a service completion, a new service is initiated as soon as

– a service batch includes as many customers as possible

• finite capacity => min{X(t),Q}

• Necessary to watch over both the queue length process X(t)
and the cost rate process Z(t)

• If linear and non-decreasing holding costs ( Z(t) = h(X(t)) ), then
– cost rate threshold Q-policies = queue length threshold Q-policies

QtXztZ ≥≥ )(or)(

D1
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Declaration

• Finite capacity
– queue cannot be emptied at every service epoch

• First key observation:
– To minimize the holding costs, it is sufficient to consider the class of

Q-policies

• Second key observation (due to single arrivals):
– For each Q-policy, the queue becomes empty at every non-trivial

service epoch
– such an epoch starts a new regeneration cycle (as regards the

stationary Q-policies)

D1
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Q-policies

• An operating policy π is called a Q-policy if
– after a service completion, a new service is initiated at latest when

– a service batch includes as many customers as possible

• finite capacity => min{X(t),Q}

D1

QtX ≥)(
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Why just Q-policies?

• For each admissible policy π, it is possible to construct such a
Q-policy πQ that

• Due to FIFO principle and consistent holding costs, this implies
that

ttXtX
Q

∀≤ )()( ππ

ttZtZ
Q

∀≤ )()( ππ

D1
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Non-trivial service epochs

• Idea: Find such service completions that leave less than Q
customers waiting

• For each Q-policy π, let

• Note: N1 is the same for all Q-policies π
• Definition: Non-trivial service epochs

})(|min{ 11 QSTXNnN nnnkk <+>= −−
ππππ

ππ
π
kNk TT =~

D1
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Stationary Q-policies

• Definition: A Q-policy π is called stationary if
– the non-trivial service epochs constitute a renewal sequence, and

– the process (Xπ,Wπ) is regenerative w.r.t. this sequence

• Long run average cost φπ:

where
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Average cost optimal stationary Q-policy

• Denote:

• Theorem:

– The cost rate threshold Q-policy πQ(φ) is average cost optimal
among all stationary Q-policies.

• Idea of the proof:
– Show first that the cost rate threshold Q-policy πQ(φπ) is better in

the average cost sense for any stationary π
– Then iterate!

D1

}policies-stationary|inf{ Q∈= πφφ π
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Discounted cost optimal stationary Q-policy

• Discounted cost for a stationary Q-policy π:

• Denote:

• Theorem:

– The cost rate threshold Q-policy πQ(αVα) is discounted cost optimal
among all stationary Q-policies.

• Similar proof as in the average cost case

D1
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Discounted cost optimal Q-policy

• Theorem:
– The cost rate threshold Q-policy πQ(αVα) is discounted cost optimal

among all Q-policies.

• Idea of the proof:

– for any policy π, consider a sequence of policies π*k, where π*k is
identical to π up to the kth non-trivial service epoch but thereafter
changes to the optimal stationary rule

– the difference between discounted costs of π and π*k can be made
arbitrarily small by taking k great enough

– π*k is better than π*k+1 in the discounted cost sense

– π*0 does not depend on the original policy π but is, in fact, the
optimal stationary Q-policy πQ(αVα)

D1
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Average cost optimal Q-policy

• Theorem:
– The cost rate threshold Q-policy πQ(φ) is average cost optimal

among all Q-policies.

• Idea of the proof:

– Limit of the discounted cost case as α tends to 0

D1
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Case D2:
General holding costs & finite capacity & group arrivals

• Aalto (1998) [2]
– compound Poisson arrivals
– finite service capacity

– discounted cost case only

• Result:
– FIFO queueing discipline

– consistent holding costs,
– no serving costs included (K = c = 0) and

– bounded arrival batches (≤ M)
=> a general threshold Q-policy is optimal

D2
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General threshold Q-policies

• General threshold Q-policy πQ(z,ζ) with threshold z and (non-
decreasing) value function ζ:
– after a service completion, a new service is initiated as soon as

– a service batch includes as many customers as possible
• finite capacity => min{X(t),Q}

• Necessary to watch over both the queue length process X(t)
and the cost rate process Z(t)

• If linear and non-decreasing holding costs ( Z(t) = h(X(t)) ), then
– general threshold Q-policies = queue length threshold Q-policies

QtXztXtZ ≥≥+ )(or))(()( ζ

D2
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Declaration

• Finite capacity
– queue cannot be emptied at every service epoch

• First key observation:
– To minimize the holding costs, it is (still) sufficient to consider the

class of Q-policies

• Second key observation (due to FIFO principle):
– All those customers that remain waiting at a non-trivial service

epoch arrived at that time => their waiting times are zero

– such an epoch starts a new “semi-regeneration cycle” (as regards
the stationary Q-policies)

D2
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Batch arrivals
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Stationary Q-policies

• Definition: A Q-policy π is called stationary if
– the non-trivial service epochs together with the number of

customers that remain waiting at those epochs (ξπ
k) constitute a

Markov renewal sequence, and

– the process (Xπ,Wπ) is semi-regenerative w.r.t. this sequence

• Discounted cost for a stationary Q-policy π:

where

• Note: ξπ
k < M for all π and k

D2
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Discounted cost optimal stationary Q-policy (1)

• Definition: Let

• With each v in IM, associate a general threshold Q-policy πv:

• Proposition: For any v in IM and x in {0,1,…,M-1}

• Definition: For any v in IM and x in {0,1,…,M-1}, let

D2
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Discounted cost optimal stationary Q-policy (2)

• Definition: Let

• Proposition:

• Proposition:

• Theorem:

– The general threshold Q-policy πw is discounted cost optimal
among all stationary Q-policies.

D2

**
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Discounted cost optimal Q-policy

• Theorem:
– The general threshold Q-policy πw is discounted cost optimal

among all Q-policies.

• Idea of the proof:

– for any policy π, consider a sequence of policies π*k, where π*k is
identical to π up to the kth non-trivial service epoch but thereafter
changes to the optimal stationary rule

– the difference between discounted costs of π and π*k can be made
arbitrarily small by taking k great enough

– π*k is better than π*k+1 in the discounted cost sense

– π*0 does not depend on the original policy π but is, in fact, the
optimal stationary Q-policy πw

D2
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B2
Case B2 (as a special case of D2):
Linear holding costs & finite capacity & group arrivals

• Aalto (1998) [2]
– compound Poisson arrivals
– finite service capacity

– discounted cost case only

• Corollary (of Case D2):
– linear holding costs with h(x) non-decreasing,

– no serving costs included (K = c = 0) and
– bounded arrival batches

=> a queue length threshold Q-policy is optimal
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Case D1:
General holding costs & finite capacity & single arrivals

• If serving costs are included (K > 0, c > 0),
– What is the optimal policy in the average cost or discounted cost

sense?

D1
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Case D2:
General holding costs & finite capacity & group arrivals

• How to get rid of the boundedness assumption concerning the
arrival batches?

• If no serving costs are included (K = 0, c = 0),
– Is it true that similar results are valid in the average cost case as in

the discounted cost case?

• If serving costs are included (K > 0, c > 0),
– What is the optimal policy in the average cost or discounted cost

sense?

D2
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B2
Case B2 (as a special case of D2):
Linear holding costs & finite capacity & group arrivals

• How to get rid of the boundedness assumption concerning the
arrival batches?

• If no serving costs are included (K = 0, c = 0),
– Is it true that similar results are valid in the average cost case as in

the discounted cost case?

• If serving costs are included (K > 0, c > 0),
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sense?
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