Optimal Control of Batch Service Queues with Finite Service Capacity and General Holding Costs

Samuli Aalto EURANDOM Eindhoven

24-2-99

- Batch service queue
- Control problem
- Known results
- New results
- Open questions

Queueing models considered

- M/G(Q)/1
 - Poisson arrivals
 - generally distributed IID service times
 - single server with service capacity Q
- M^X/G(Q)/1
 - compound Poisson arrivals
 - generally distributed IID service times
 - single server with service capacity Q

Contents

- Batch service queue
- Control problem
- Known results
- New results
- Open questions

- Given
 - arrival process A(t) and
 - service times S_n
- Determine
 - service epochs T_n
 - service batches B_n
- Operating policy $\pi = ((T_n), (B_n))$
 - should be admissible

Optimal control

- Usual operating policy:
 - after a service completion, a new service is initiated as soon as

$X(t) \ge 1$

- a service batch includes as many customers as possible

- This is certainly reasonable
- But what is the **optimal** operating policy?
- The answer depends on
 - the cost structure and
 - the objective function

- Minimize
 - the long run average cost $\, \varphi^{\pi} \,$ or
 - the discounted cost $V_{\alpha}^{\ \pi}$
- Among all the admissible operating policies π

Contents

- Batch service queue
- Control problem
- Known results
- New results
- Open questions

Known results

	Infinite service capacity Q = [∞]	Finite service capacity Q < [∞]
Linear holding costs z = h(x)	Case A : - Deb & Serfozo (1973) - Deb (1984)	Case B: - Deb & Serfozo (1973)
General holding costs z = h(x,w)	Case C : - Weiss (1979) - Weiss & Pliska (1982)	Case D

Cases A and B: linear holding costs

- Deb & Serfozo (1973)
 - Poisson arrivals
 - finite or infinite service capacity
 - average cost & discounted cost
- Deb (1984)
 - compound Poisson arrivals
 - infinite service capacity
 - discounted cost case only
- Result:
 - h(x) is "uniformly increasing"
 - => a queue length threshold policy is optimal
- Note: Optimal threshold is never greater than Q

- Weiss (1979),
 Weiss & Pliska (1982)
 - compound Poisson arrivals
 - infinite service capacity
 - average cost case only
- Result:
 - Z(t) is increasing (without limits when service is postponed forever)
 a cost rate threshold policy is optimal

С

- Batch service queue
- Control problem
- Known results
- New results
- Open questions

New results

	Infinite service capacity Q = [∞]	Finite service capacity Q < [∞]
Linear holding costs z = h(x)	Case A : - Deb & Serfozo (1973) - Deb (1984)	Case B: - Deb & Serfozo (1973)
General holding costs z = h(x,w)	Case C : - Weiss (1979) - Weiss & Pliska (1982)	Case D : - Aalto (1997) [1] - Aalto (1998) [2]

- Aalto (1997) [1]
 - Poisson arrivals
 - finite service capacity
 - average cost & discounted cost cases
- Result:
 - FIFO queueing discipline,
 - consistent holding costs and
 - no serving costs included (K = c = 0)
 - => a cost rate threshold Q-policy is optimal

Case D2: General holding costs & finite capacity & group arrivals

- Aalto (1998) [2]
 - **compound** Poisson arrivals
 - finite service capacity
 - discounted cost case only
- Result:
 - FIFO queueing discipline
 - consistent holding costs,
 - no serving costs included (K = c = 0) and
 - bounded arrival batches (\leq M)

=> a general threshold Q-policy is optimal

- If linear and non-decreasing holding costs (Z(t) = h(X(t))), then
 - general threshold Q-policies = queue length threshold Q-policies

among all stationary Q-policies.

- Aalto (1998) [2]
 - **compound** Poisson arrivals
 - finite service capacity
 - discounted cost case only
- Corollary (of Case D2):
 - linear holding costs with h(x) non-decreasing,
 - no serving costs included (K = c = 0) and
 - bounded arrival batches

=> a queue length threshold Q-policy is optimal

- Batch service queue
- Control problem
- Known results
- New results
- Open questions

Case D1: General holding costs & finite capacity & single arrivals

- If serving costs are included (K > 0, c > 0),
 - What is the optimal policy in the average cost or discounted cost sense?

Case D2: General holding costs & finite capacity & group arrivals

- How to get rid of the boundedness assumption concerning the arrival batches?
- If no serving costs are included (K = 0, c = 0),
 - Is it true that similar results are valid in the average cost case as in the discounted cost case?
- If serving costs are included (K > 0, c > 0),
 - What is the optimal policy in the average cost or discounted cost sense?

Case B2 (as a special case of D2): Linear holding costs & finite capacity & group arrivals

- How to get rid of the boundedness assumption concerning the arrival batches?
- If no serving costs are included (K = 0, c = 0),
 - Is it true that similar results are valid in the average cost case as in the discounted cost case?
- If serving costs are included (K > 0, c > 0),
 - What is the optimal policy in the average cost or discounted cost sense?

B2

Optimal Control of Batch Service Queues

