
Performance-Energy Trade-off in 

Queueing Systems with Setup Delay

Samuli Aalto

Aalto University, Finland

12 February 2016

New York, USA

Sigmetrics TPC Workshop



Co-operation with

Misikir Eyob Gebrehiwot, Pasi Lassila
(Aalto University, Finland)

2



Model

• In this talk, we focus on a 
single energy-aware server

• M/G/1 queue: 
Jobs arrive according to a 
Poisson process with rate l
and service times S are
generally distributed and i.i.d.

• Setup delays D are
generally distributed and i.i.d.

• Four energy states with power
consumption denoted by Pstate

• Assumption:
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Performance-energy trade-off

• Energy saved

by switching the server off

when idle

• However, 

performance impaired

if switching the server back on 

takes some time (setup delay)
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Optimal control problem

• Two possible control actions: 

– When IDLE, 

how long an interval I

the server should wait for 

new jobs before switched off?

– When SLEEP, 

how many new jobs k

the server should wait for 

before switched on?

• Objective:

Choose optimal

timer I and threshold k

• Definition:

– INSTANTOFF (I = 0)

– NEVEROFF (I = )

– DELAYEDOFF (0 < I < )
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Performance and energy measures

• Performance: 

E[T] = mean response time

per job

E[X] = lE[T]

= mean number

of jobs

• Energy: 

E[E] = mean energy

per job

E[P] = lE[E]

= mean power

consumption
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Objective functions

• ERWS (Energy-Response-

time-Weighted-Sum):

e.g. Wierman & al. (2009)

• ERP (Energy-Response-time-

Product): 

e.g. Gandhi & al. (2010)

• General form: 

Maccio & Down (2013)

• Generalized ERP: 

Gebrehiwot & al. (2014)
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Energy-aware M/G/1-FIFO queue
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Optimal I-control for the FIFO discipline

• Theorem 1: 

Maccio & Down (2013)

For ERWS

with exponential

service times and setup delays, 

the optimal policy is either

NEVEROFF or INSTANTOFF

• Observation:

NEVEROFF is better 

if Pidle is sufficiently small 

compared to Psetup

• Theorem 2:

Gebrehiwot et al. (2014)

For ERWS and generaliz. ERP

with generally distributed

service times and setup delays, 

the optimal policy is either

NEVEROFF or INSTANTOFF

• Counter-example:

Gebrehiwot et al. (2014)

For the general form objective

the result is not necessarily true
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Proof of Theorem 2

• Analysis (1)

– Consider working cycles starting

whenever the server is switched off

– Let C denote the length of one cycle
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Proof of Theorem 2

• Analysis (2)

– distribution of I is irrelevant when the mean value E[I] is fixed
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service times and setup delays, 

the optimal policy is either
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Proof of Theorem 2

• Optimization (1)

– where a1,a2,b1,c > 0, but b2 may be negative since Psleep < Pidle

– NEVEROFF is always optimal if b2 > 0

12

cI

b
aT




]E[1
1]E[

cI

b
aP




]E[2
2]E[

 )](E[)()1( idlesetupidlesleep2 PPDPPb k 
l



Theorem 2:

Gebrehiwot et al. (2014)

For ERWS and generalized ERP

with generally distributed

service times and setup delays, 

the optimal policy is either

NEVEROFF or INSTANTOFF



Proof of Theorem 2

• Optimization (2)

– objective function for ERWS is clearly monotonic w.r.t. E[I]

– objective function for generalized ERP may be nonmonotonic

w.r.t. E[I] but it does not have any local minima in (0, )

– Q.E.D.
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Generalizations of Theorem 2

• Multiple sleep states

– Randomized policies (”choose sleep state randomly”)

Gandhi et al. (2010) for the exponential case

Gebrehiwot et al. (2014) for general distributions

– Sequential policies (”sleep deeper and deeper”)

Gebrehiwot et al. (2015) for general distributions

• Idling timer resetting options

– Timer I reset only when it expires

Maccio & Down (2013) for the exponential case

Gebrehiwot et al. (2014) for general distributions

– Timer I reset every time an idle period starts

Gebrehiwot et al. (2014) for general distributions
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Counter-example

• Arrival rate

l = 0.1

• Exponential service times and 

deterministic setup delays with

E[S] = D = 1

• Power consumptions

Pbusy = Psetup = 1, 

Pidle = 0.6, Psleep = 0

• Following general form

objective function considered:

• Optimal E[I] = 20.723
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Optimal k-control for the FIFO discipline

• Theorem 3: 

Gandhi et al. (2010)

For ERP

with exponential service times

and deterministic setup delays, 

the optimal threshold of  

INSTANTOFF is k* = 1

• Counter-example:

Gebrehiwot et al. (2014)

For more variable service time

distributions, the result is not

necessarily true

• Theorem 4: 

Gebrehiwot et al. (2015)

For ERP

with generally distributed

service times for which

and deterministic setup delays, 

the optimal threshold of  

INSTANTOFF is k* = 1
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Energy-aware M/G/1-PS queue
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Optimal I-control for the PS discipline

• Theorem 5: 

Gebrehiwot et al. (2016)

For ERWS and ERP

with generally distributed

service times and setup delays, 

the optimal policy is either

NEVEROFF or INSTANTOFF
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Proof of Theorem 5

• Analysis (1)

– Consider again working cycles starting

whenever the server is switched off

– Let C denote the length of one cycle
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Proof of Theorem 5

• Analysis (2)

– Response time consists of 

waiting time (from arrival to the beginning of service) and 

residence time (the rest): T = W + R

– Consider a test job with service time s

– Let r(s) = E[R | S = s]. Then r’(s) is the unique solution of 
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Proof of Theorem 5

• Analysis (3)

– Let g(s) = (r’(s) – 1/(1 – ))/(2lE[W]). Then g(s) is the uniq. sol. of

where

– Observation: g(s) depends on the arrival rate l and the service

time distribution F(s) but not at all on E[I]

21

Theorem 5: 

Gebrehiwot et al. (2016)

For ERWS and ERP with

generally distributed

service times and setup delays, 

the optimal policy is either

NEVEROFF or INSTANTOFF

dttsFtgdttsFtgsFsg
s

)()()()()()(

00

 


ll

}{)( sSPsF 



Proof of Theorem 5

• Analysis (4)

– distribution of I is irrelevant when the mean value E[I] is fixed
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Proof of Theorem 5

• Optimization (1)

– where a1,a2,b1,c > 0, but b2 may be negative since Psleep < Pidle

– NEVEROFF is always optimal if b2 > 0
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Proof of Theorem 5

• Optimization (2)

– objective function for ERWS is clearly monotonic w.r.t. E[I]

– objective function for ERP may be nonmonotonic w.r.t. E[I]

but it does not have any local minima in (0, )

– Q.E.D.
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Generalizations of Theorem 5

• Batch arrivals
– Batch Poisson arrivals

with k referring to the number batches arrived
Gebrehiwot et al. (2016)

• Multiple sleep states
– Randomized policies (”choose sleep state randomly”)

Gebrehiwot et al. (2016)

• Idling timer resetting options
– Timer I reset only when it expires

Gebrehiwot et al. (2016)

– Timer I reset every time an idle period starts
Gebrehiwot et al. (2016)

• Generalized ERP
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Numerical illustrations

• INSTANTOFF vs NEVEROFF

• Deterministic setup delays with

D = 10 s

• Power consumptions

Pbusy = Psetup = 200 W, 

Pidle = 120 W, Psleep = 15 W

• Different loads and service time

distributions considered with

fixed mean E[S] = 1 s

• Observation:

Deterministic service times give 

always the worst results!
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Worst case service time distribution for 

batch PS queues
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Batch PS queueing models

• PS queue with multiple jobs in the system

when the service starts

– Energy-aware PS queue with setup delay

– PS queue with multiple vacations

– Batch arrival PS queue

– Two-level MLPS queue (2nd level)

• Note:

– In the ordinary PS queue there is only one job in the system

when the service starts (after an idle period) 
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Intuition

• Deterministic service times

– S1 = 2

– S2 = 2

– S3 = 2

– Average response time: 6.0

– All jobs leave at the same time

• Variable service times

– S1 = 1

– S2 = 2

– S3 = 3

– Average response time: 4.7 < 6.0

– Shortest job leaves first
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Worst case service time distribution 

• Theorem 6: 

(Unpublished)

For batch PS queues

with (batch) Poisson arrivals, 

deterministic service times

give the worst mean

response time E[T] among

all service time distributions

• Proof: Utilizes an upper bound

in Avrachenkov et al. (2005)

• Conjecture 7: 

(Unpublished)

For batch PS queues

with (batch) Poisson arrivals, 

deterministic service times

give even the worst

conditional mean response

time E[T |S = s] among

all service time distributions

• Proposal: Anybody interested

in cooperation to solve the

remaining problems in its proof?
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The End
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