

Control and optimization of single-server queues: the Gittins index approach revisited

Samuli Aalto, Aalto University, Finland in cooperation with

Urtzi Ayesta, BCAM, Spain Rhonda Righter, UC Berkeley, USA

NET-COOP 2010

29 Nov – 1 Dec 2010 Ghent, Belgium

Outline

- Introduction
- Gittins index for single-server queues
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Monotonicity in infinite intervals
- Service time distribution classes
- Gittins index policy
- Summary

Problem formulation

Transient system

- Given a single-server queue with n IID jobs and service time distribution F(x), what is the optimal non-anticipating service policy so that the mean delay is minimized?

Dynamic system

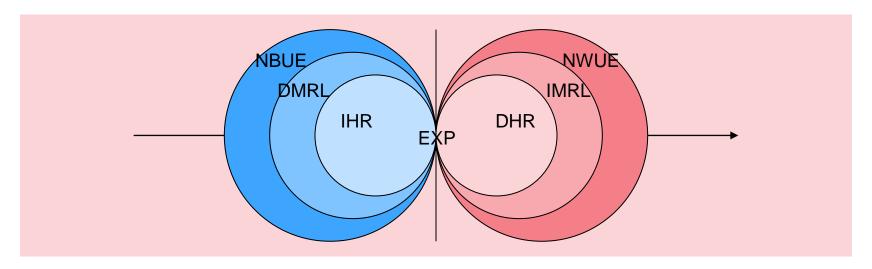
- Given an M/G/1 queue with arrival rate λ and service time distribution F(x), what is the optimal non-anticipating service policy so that the mean delay is minimized?

Optimality of SRPT

- For both problems, the optimal anticipating policy is SRPT, but it requires exact information about the service times
- However,
 we are looking for the optimal non-anticipating policy,
 since we are not given the service times, only their
 distribution is known
- Note also that we allow preemptions

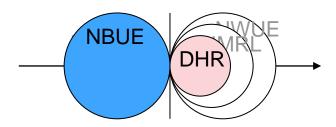
Service time distribution classes

- Service times are
 - IHR [DHR] if hazard rate h(x) is increasing [decreasing]
 - DMRL [IMRL] if MRL(x) is decreasing [increasing]
 - NBUE [NWUE] if $MRL(0) \ge [\le] MRL(x)$



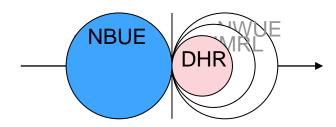
Known optimality results for non-anticipating policies

- Any MAS (a.k.a. NPR) is optimal for NBUE service times Righter, Shanthikumar and Yamazaki (1990)
 - MAS = Most Attained Service
 - NPR = Non-Pre-emptive
 - FIFO = First In First Out
 - SIRO = Service In Random Order



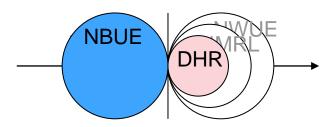
Known optimality results for non-anticipating policies

- Any MAS (a.k.a. NPR) is optimal for NBUE service times Righter, Shanthikumar and Yamazaki (1990)
- LAS (a.k.a. FB) is optimal for DHR service times Righter and Shanthikumar (1989)
 - LAS = Least Attained Service
 - FB = Foreground Background



Known optimality results for non-anticipating policies

- Any MAS (a.k.a. NPR) is optimal for NBUE service times Righter, Shanthikumar and Yamazaki (1990)
- LAS (a.k.a. FB) is optimal for DHR service times Righter and Shanthikumar (1989)
- Any GI is optimal for any service time distribution Sevcik (1974), Klimov (1974,1978), Gittins (1989), Yashkov (1992)



Gittins index policy

Definition:

- Gittins index policy (GI) gives service to the job i with the highest Gittins index $G(a_i)$.

Observations:

- GI is not necessary unique
- Any MAS is a GI if and only if $G(\alpha) \ge G(0)$ for all α .
- LAS is a GI if and only if $G(\alpha)$ is decreasing for all α .

Example

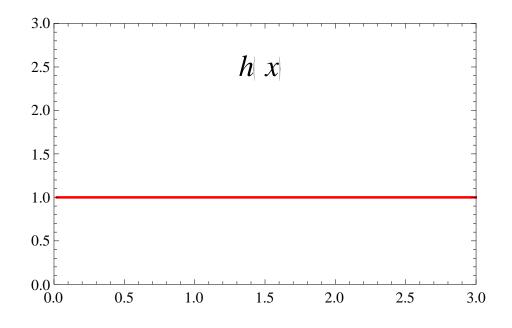
$$n = 3$$

Hazard rate h(x)

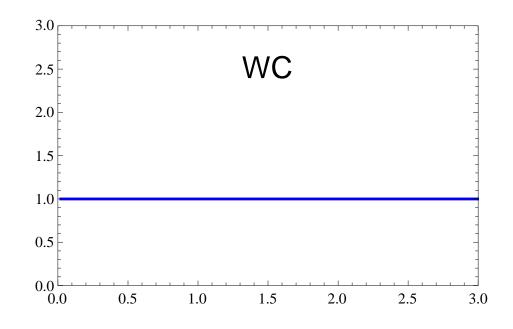
$$F(x) = \int_{0}^{x} f(y)dy, \qquad h(x) = \frac{f(x)}{1 - F(x)}$$

Example 1 Constant hazard rate

$$h(x) = 1$$

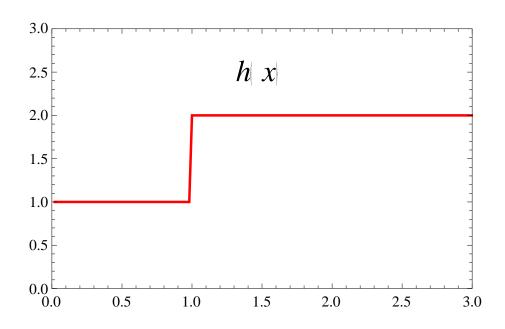


Example 1 Constant hazard rate

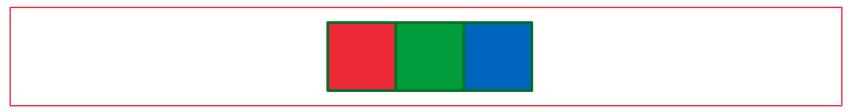


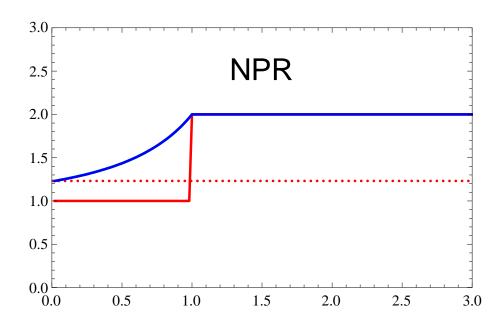
Example 2 Increasing hazard rate

$$h(x) = \begin{cases} 1, & x < 1 \\ 2, & x \ge 1 \end{cases}$$



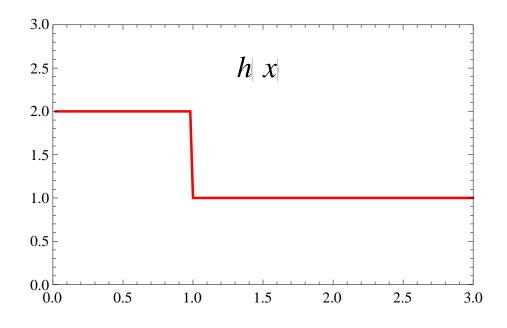
Example 2 Increasing hazard rate



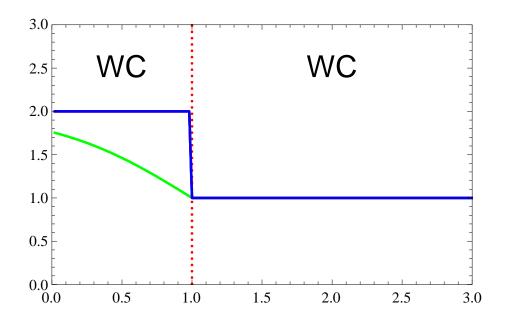


Example 3 Decreasing hazard rate

$$h(x) = \begin{cases} 2, & x < 1 \\ 1, & x \ge 1 \end{cases}$$

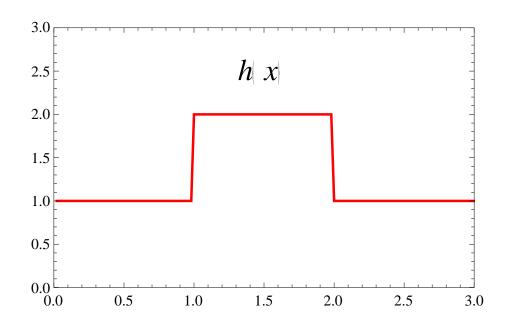


Example 3 Decreasing hazard rate

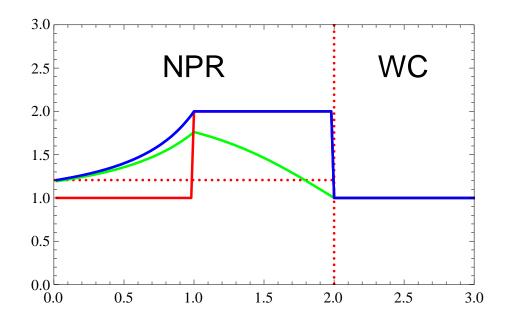


Example 4 Increasing-decreasing hazard rate

$$h(x) = \begin{cases} 1, & x < 1, & x > 2 \\ 2, & 1 \le x < 2 \end{cases}$$

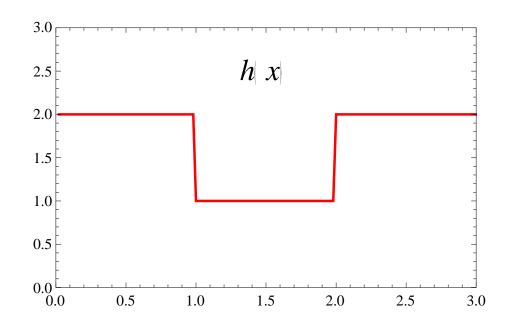


Example 4 Increasing-decreasing hazard rate

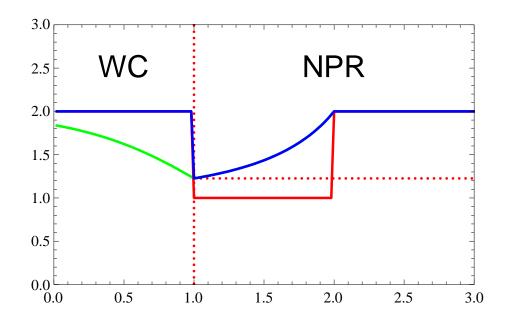


Example 5 Decreasing-increasing hazard rate

$$h(x) = \begin{cases} 2, & x < 1, x > 2 \\ 1, & 1 \le x < 2 \end{cases}$$



Example 5 Decreasing-increasing hazard rate



Outline

- Introduction
- Gittins index for single-server queues
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Monotonicity in infinite intervals
- Service time distribution classes
- Gittins index policy
- Summary

Hazard rate

Service time distribution:

$$F(x) = P\{S \le x\}, \ \overline{F}(x) = 1 - F(x) > 0 \text{ for all } x$$

Density function:

$$f(x) = P\{S \in dx\}$$
 continuous

Hazard rate function:

$$h(x) \triangleq \lim_{\Delta \to 0} \frac{1}{\Delta} P\{S - x \le \Delta \mid S > x\} = \frac{f(x)}{\overline{F}(x)}$$

Inverse MRL

Remaining service time distribution:

$$P\{S - x \le y \mid S > x\} = \frac{\overline{F}(x) - \overline{F}(x + y)}{\overline{F}(x)}$$

Mean residual lifetime (MRL) function:

$$E[S - x \mid S > x] = \frac{\int_{x}^{\infty} \overline{F}(y) dy}{\overline{F}(x)}$$

Inverse MRL function:

$$H(x) \triangleq \frac{1}{E[S-x \mid S>x]} = \frac{\overline{F}(x)}{\int_{x}^{\infty} \overline{F}(y) dy} = \frac{\int_{x}^{\infty} f(y) dy}{\int_{x}^{\infty} \overline{F}(y) dy}$$

Gittins index

Gittins index for a job with age α:

$$G(a) \triangleq \sup_{\Delta \ge 0} J(a, \Delta)$$

• Optimal service quota for a job with age α :

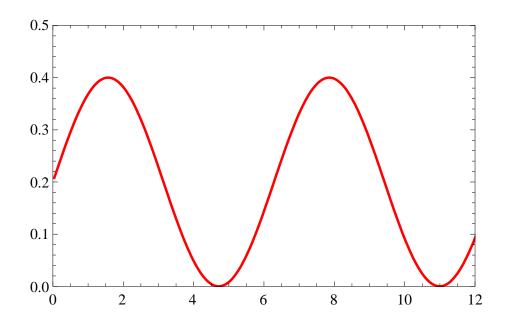
$$\Delta^*(a) = \sup\{\Delta \ge 0 \mid J(a, \Delta) = G(a)\}\$$

Efficiency function for age α and service quota Δ:

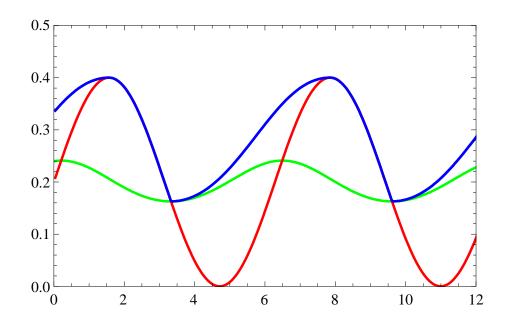
$$J(a,0) = h(a), \quad J(a,\infty) = H(a)$$

$$J(a,\Delta) \triangleq \frac{P\{S - a \le \Delta \mid S > a\}}{E[\min\{S - a,\Delta\} \mid S > a]} = \frac{\int_a^{a + \Delta} f(y) dy}{\int_a^{a + \Delta} \overline{F}(y) dy}$$

$$h(x) = \frac{1 + \sin x}{5}$$



Gittins index G(x) inverse MRL H(x) hazard rate h(x)

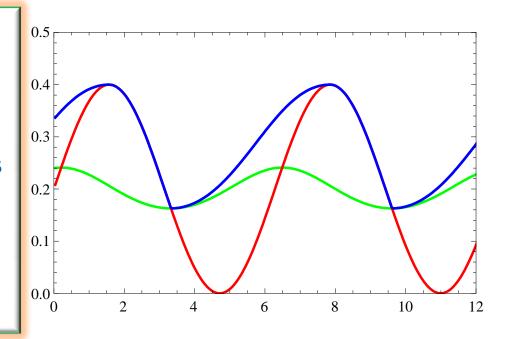


Gittins index G(x) inverse MRL H(x) hazard rate h(x)

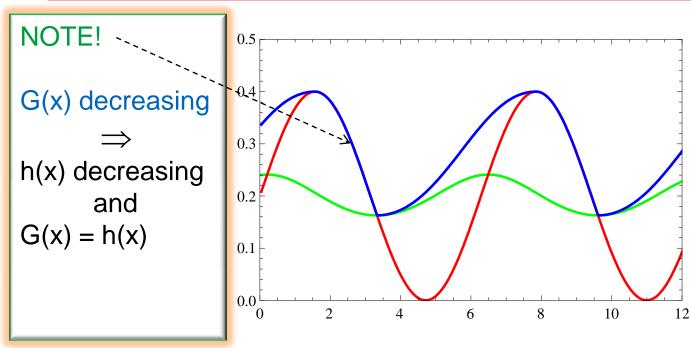
h(x) continuous

 \Rightarrow

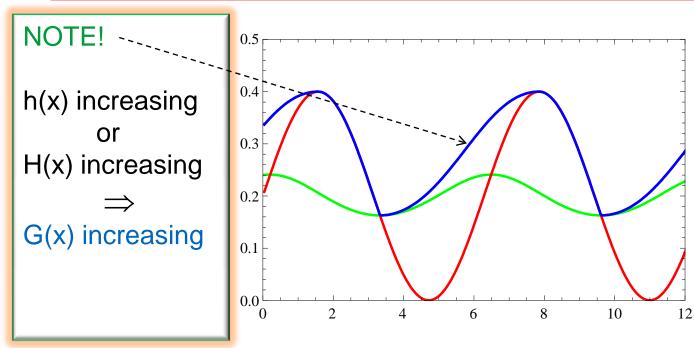
G(x) continuous



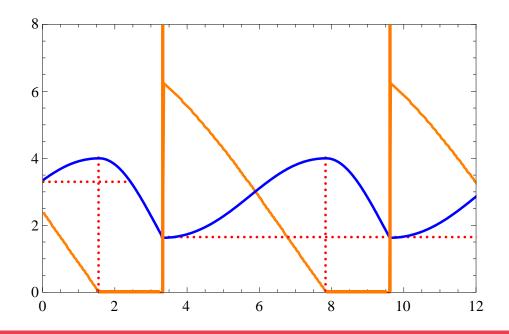
Gittins index G(x) inverse MRL H(x) hazard rate h(x)



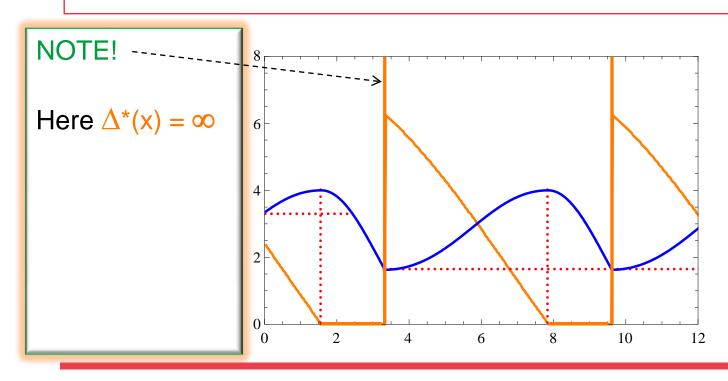
Gittins index G(x) inverse MRL H(x) hazard rate h(x)



Gittins index G(x) (rescaled) optimal service quota $\Delta^*(x)$



Gittins index G(x) (rescaled) optimal service quota $\Delta^*(x)$



Outline

- Introduction
- Gittins index for single-server queues
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Monotonicity in infinite intervals
- Service time distribution classes
- Gittins index policy
- Summary

Continuity result

Property:

f(x) is continuous for all x

 $\Leftrightarrow h(x)$ is continuous for all x

 $\Leftrightarrow J(x,d)$ is continuous for all x,d

Proposition:

h(x) is continuous for all x

 \Rightarrow G(x) is continuous for all x

Monotonicity result 1

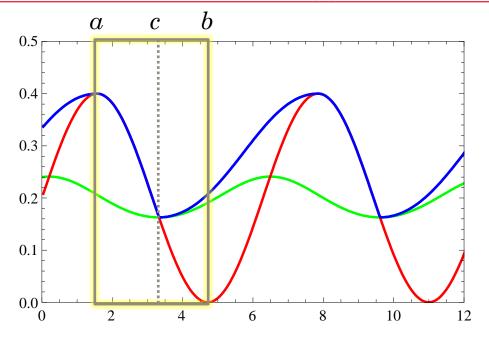
Proposition:

h(x) strictly decreasing for all $x \in (a,b)$

G(x) strictly decreasing for all $x \in (a,c)$,

G(x) increasing for all $x \in (c,b)$

Gittins index G(x) inverse MRL H(x) hazard rate h(x)



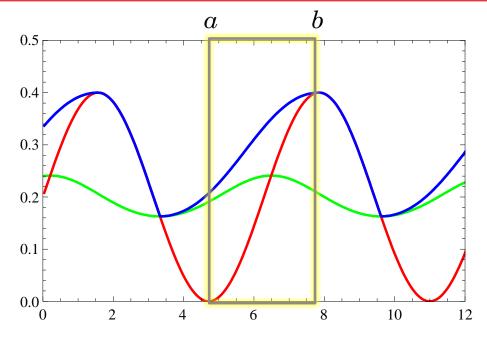
Monotonicity result 2

Proposition:

$$h(x)$$
 increasing for all $x \in (a,b)$

$$\Rightarrow$$

G(x) increasing for all $x \in (a,b)$

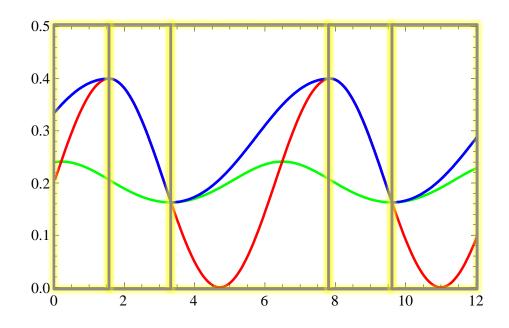


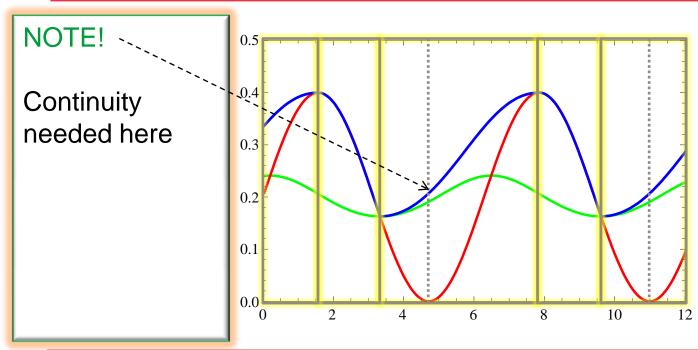
Continuity and monotonicity result

Summary:

h(x) is continuous and piecewise monotonic for all x

 \Rightarrow G(x) is continuous and piecewise monotonic for all x





Outline

- Introduction
- Gittins index for single-server queues
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Monotonicity in infinite intervals
- Service time distribution classes
- Gittins index policy
- Summary

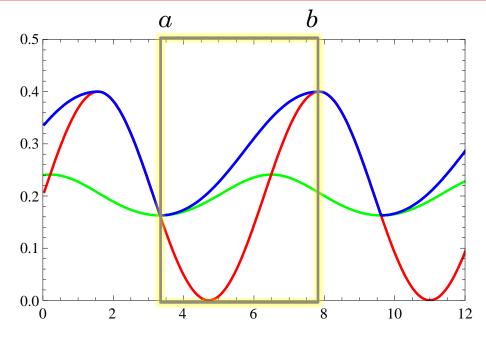
Monotonicity in finite intervals 1

• Proposition:

$$G(x)$$
 is strictly increasing for all $x \in (a,b)$

$$\Leftrightarrow$$

$$G(x) > h(x)$$
 for all $x \in (a,b)$



Monotonicity in finite intervals 2

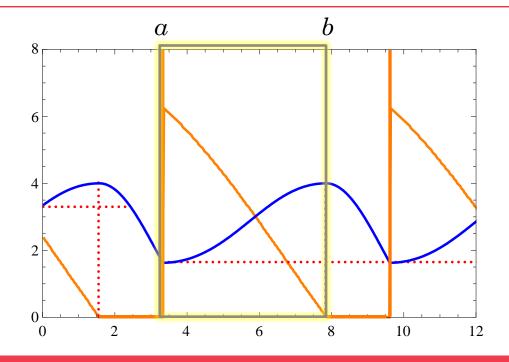
Proposition:

$$G(x)$$
 is increasing for all $x \in (a,b)$

$$\Leftrightarrow$$

$$\Delta^*(x) > 0$$
 for all $x \in (a,b)$

Gittins index G(x) (rescaled) optimal service quota $\Delta^*(x)$



Monotonicity in finite intervals 3

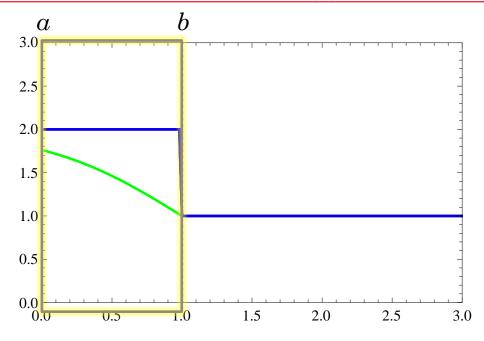
Proposition:

$$G(x)$$
 is constant for all $x \in (a,b)$

$$\Leftrightarrow$$

$$G(x) = h(x)$$
 and $\Delta^*(x) > 0$ for all $x \in (a,b)$

Example 3 Decreasing hazard rate



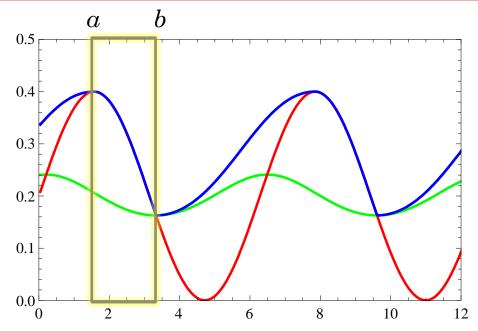
Monotonicity in finite intervals 4

Proposition:

$$G(x)$$
 is decreasing for all $x \in (a,b)$

$$\Leftrightarrow$$

$$G(x) = h(x)$$
 for all $x \in (a,b)$



Monotonicity in finite intervals 5

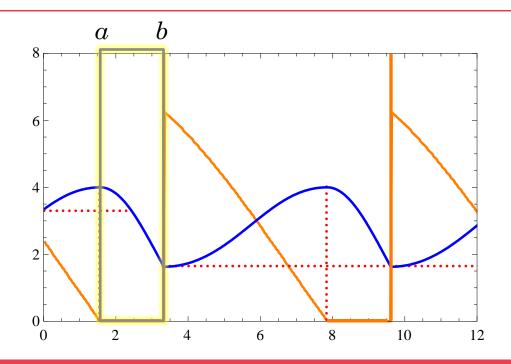
Proposition:

G(x) is strictly decreasing for all $x \in (a,b)$

$$\Leftrightarrow$$

$$\Delta^*(x) = 0$$
 for all $x \in (a,b)$

Gittins index G(x) (rescaled) optimal service quota $\Delta^*(x)$



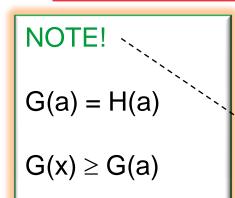
Outline

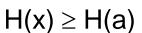
- Introduction
- Gittins index for single-server queues
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Monotonicity in infinite intervals
- Service time distribution classes
- Gittins index policy
- Summary

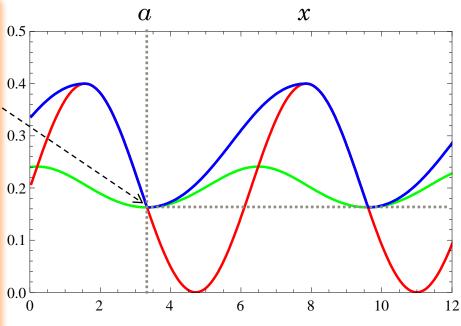
Monotonicity in infinite intervals 1

Proposition:

$$G(x) \ge G(a)$$
 for all $x \in (a, \infty)$
 \Leftrightarrow
 $H(x) \ge H(a)$ for all $x \in (a, \infty)$
 \Leftrightarrow
 $G(a) = H(a)$







Monotonicity in infinite intervals 2

Proposition:

$$G(x)$$
 is increasing for all $x \in (a, \infty)$

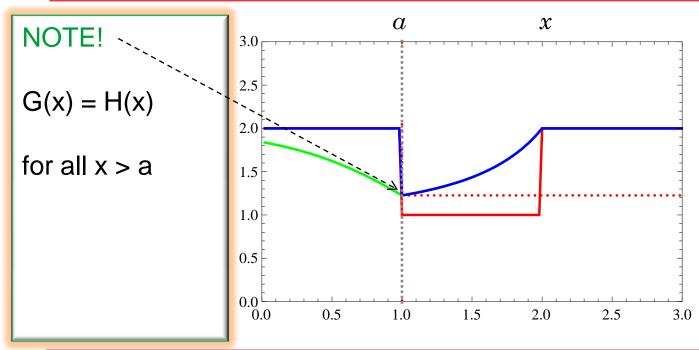
$$\Leftrightarrow$$

H(x) is increasing for all $x \in (a, \infty)$

$$\Leftrightarrow$$

$$G(x) = H(x)$$
 for all $x \in (a, \infty)$

Example 5 Decreasing-increasing hazard rate



Monotonicity in infinite intervals 3

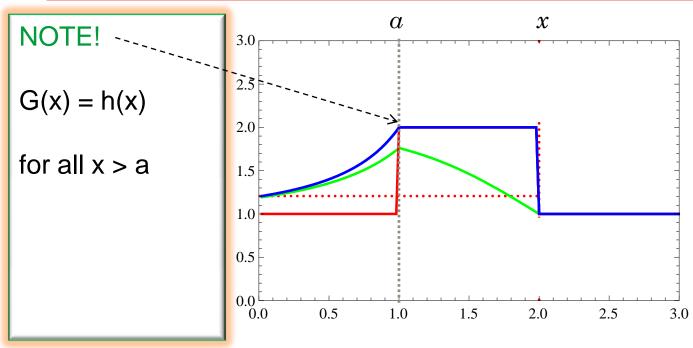
Proposition:

G(x) is decreasing for all $x \in (a, \infty)$

h(x) is decreasing for all $x \in (a, \infty)$

G(x) = h(x) for all $x \in (a, \infty)$

Example 4 Increasing-decreasing hazard rate



Monotonicity in infinite intervals 4

Proposition:

$$G(x)$$
 is constant for all $x \in (a, \infty)$

$$\Leftrightarrow$$

H(x) is constant for all $x \in (a, \infty)$

$$\Leftrightarrow$$

h(x) is constant for all $x \in (a, \infty)$

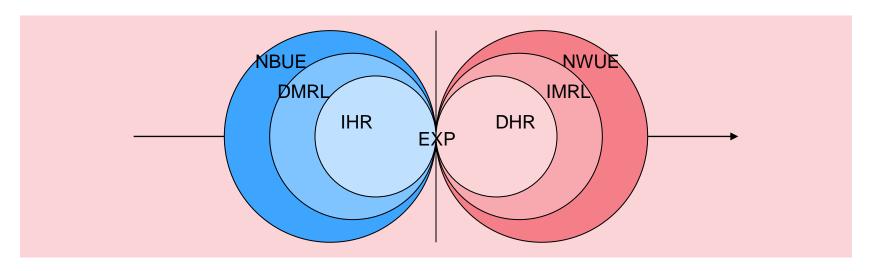
$$G(x) = H(x) = h(x)$$
 for all $x \in (a, \infty)$

Outline

- Introduction
- Gittins index for single-server queues
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Monotonicity in infinite intervals
- Service time distribution classes
- Gittins index policy
- Summary

Service time distribution classes

- Service times are
 - IHR [DHR] if h(x) is increasing [decreasing]
 - DMRL [IMRL] if H(x) is increasing [decreasing]
 - NBUE [NWUE] if H(0) ≤ [≥] H(x)



NBUE service times

Corollary:

$$G(x) \ge G(0)$$
 for all x

Service times are NBUE

$$\Leftrightarrow$$

$$G(0) = H(0)$$

DMRL service times

Corollary:

G(x) is increasing for all x

Service times are DMRL

$$\Leftrightarrow$$

$$G(x) = H(x)$$
 for all x

DHR service times

Corollary:

G(x) is decreasing for all x

Service times are DHR

$$\Leftrightarrow$$

$$G(x) = h(x)$$
 for all x

EXP service times

Corollary:

G(x) is constant for all x

Service times are EXP

$$\Leftrightarrow$$

$$G(x) = H(x) = h(x)$$
 for all x

Outline

- Introduction
- Gittins index for single-server queues
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Monotonicity in infinite intervals
- Service time distribution classes
- Gittins index policy
- Summary

Gittins index policy

Definition:

- Gittins index policy (GI) gives service to the job i with the highest Gittins index $G(a_i)$.
- Known result:
 - Any GI is optimal for any service time distributions
- Observations:
 - Any MAS is a GI if and only if $G(\alpha) \ge G(0)$ for all α .
 - LAS is a GI if and only if $G(\alpha)$ is decreasing for all α .

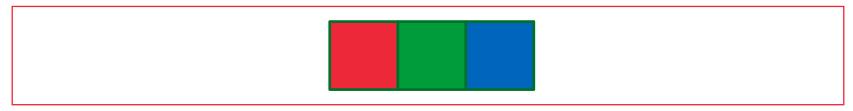
NBUE service times

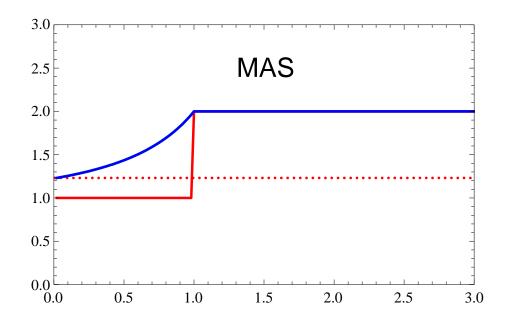
Corollary:

Any MAS is optimal

Service times are NBUE

Example 2 Increasing hazard rate





DHR service times

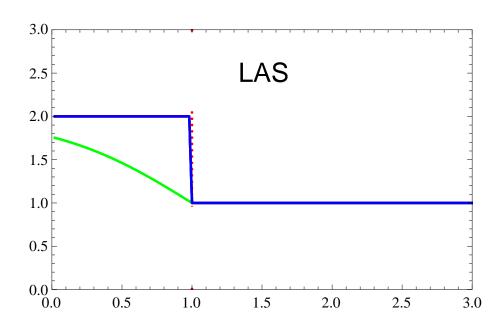
Corollary:

LAS is optimal

Service times are DHR

Example 3 Decreasing hazard rate





NBUE+DHR service times

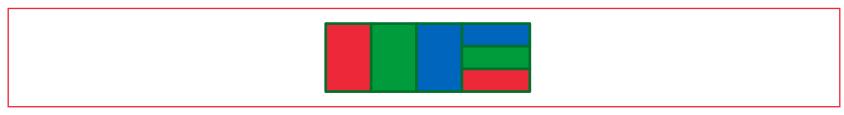
Corollary:

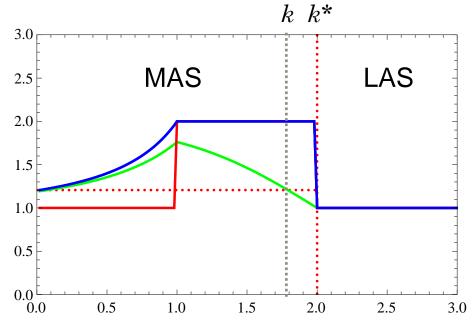
Service times are NBUE + DHR(k)

 \Rightarrow

 $MAS + LAS(k^*)$ is optimal

Example 4 Increasing-decreasing hazard rate



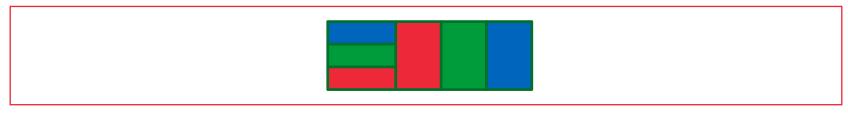


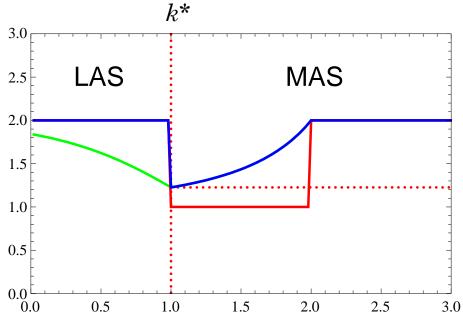
DHR+IHR service times

Corollary:

Service times are DHR + IHR(
$$k$$
),
 $h(0) \ge H(\infty)$
 \Rightarrow
LAS + MAS(k^*) is optimal

Example 5 Decreasing-increasing hazard rate





Transient system 1

- Assume h(x) is continuous and piecewise monotonic
- Corollary:

Hazard rate h(x) is first increasing

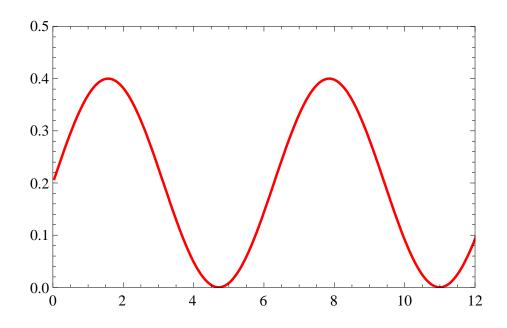
$$\Rightarrow$$

MAS + LAS + MAS + ...
$$(k_1^*, k_2^*,...)$$
 is optimal

 MAS+LAS+MAS+... belongs to MLPS (Multi-Level Processor Sharing) policies, cf. Kleinrock (1976)

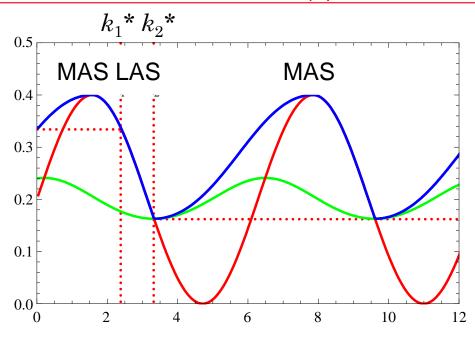
Example 6 Oscillating hazard rate

$$h(x) = \frac{1 + \sin x}{5}$$



Example 6 Oscillating hazard rate

Gittins index G(x) inverse MRL H(x) hazard rate h(x)



Transient system 2

- Assume h(x) is continuous and piecewise monotonic
- Corollary:

Hazard rate h(x) is first decreasing

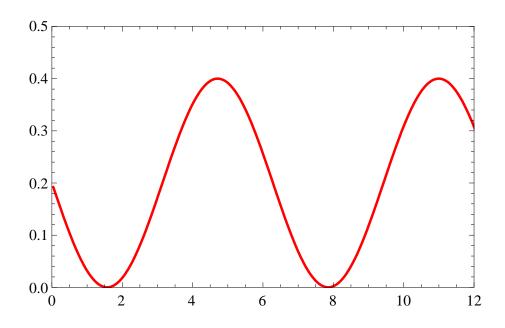
$$\Rightarrow$$

LAS + MAS + LAS + ...
$$(k_1^*, k_2^*,...)$$
 is optimal

 LAS+MAS+LAS+... belongs to MLPS (Multi-Level Processor Sharing) policies, cf. Kleinrock (1976)

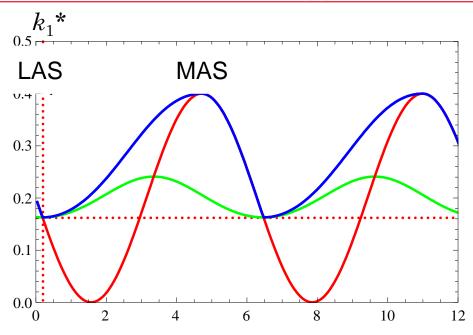
Example 7 Oscillating hazard rate

$$h(x) = \frac{1 - \sin x}{5}$$



Example 7 Oscillating hazard rate

Gittins index G(x) inverse MRL H(x) hazard rate h(x)



Outline

- Introduction
- Gittins index for single-server queues
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Monotonicity in infinite intervals
- Service time distribution classes
- Gittins index policy
- Summary

Additional reading

- S. Aalto, U. Ayesta and R. Righter,
 On the Gittins index in the M/G/1 queue,
 Queueing Systems 63, 437-458, 2009
- S. Aalto, U. Ayesta and R. Righter,
 Properties of the Gittins index with application to optimal scheduling, submitted, 2010