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Problem formulation

« Transient system
— Given a single-server queue
with 7 11D jobs and service time distribution /'(x),

what is the optimal non-anticipating service policy
so that the mean delay is minimized?

* Dynamic system
— Given an M/G/1 queue
with arrival rate 4 and service time distribution F(x),
what is the optimal non-anticipating service policy
so that the mean delay is minimized?
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Optimality of SRP

* For both problems,
the optimal anticipating policy is SRPT,
but it requires exact information about the service times

 However,
we are looking for the optimal non-anticipating policy,
since we are not given the service times, only their
distribution is known

* Note also that we allow preemptions
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Service time distribution classes

e Service times are
— IHR [DHR] if hazard rate /(x) is increasing [decreasing]
— DMRL[IMRL] if MR L(x) is decreasing [increasing]
— NBUE [NWUE] if MRL(0) > [<] MRL(x)
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Known optimality results
for non-anticipating policies

 Any MAS (a.k.a. NPR) is optimal for NBUE service times
Righter, Shanthikumar and Yamazaki (1990)

— MAS = Most Attained Service

— NPR = Non-Pre-emptive

— FIFO = First In First Out

— SIRO = Service In Random Order
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Known optimality results
for non-anticipating policies

 Any MAS (a.k.a. NPR) is optimal for NBUE service times
Righter, Shanthikumar and Yamazaki (1990)

- LAS (a.k.a. FB) is optimal for DHR service times
Righter and Shanthikumar (1989)

— LAS = Least Attained Service
— FB = Foreground Background

Aalto University
School of Science
and Technology 7



Known optimality results
for non-anticipating policies

 Any MAS (a.k.a. NPR) is optimal for NBUE service times
Righter, Shanthikumar and Yamazaki (1990)

- LAS (a.k.a. FB) is optimal for DHR service times
Righter and Shanthikumar (1989)

« Any Gl is optimal for any service time distribution
Sevcik (1974), Klimov (1974,1978), Gittins (1989),

Yashkov (1992)
&)
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Gittins index policy

o Definition:

— Gittins index policy (GI) gives service to the job 1
with the highest Gittins index G(a,).

Observations:

— Gl is not necessary unigque
— Any MAS is a Gl
if and only if G(a) > G(0) for all a.
— LASisa Gl
if and only if (G(a) is decreasing for all a.
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Example
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Hazard rate h(x)

F(x)= [ f(y)dy,
0

h(x)

f (x)

1-F(X)



Example 1
Constant hazard rate

h(x) =1

25 h X
2.0;

15F

30— ————

1.0}

0.5+
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Example 1
Constant hazard rate
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25, WC
20/

15-

1.0

05"

0.0 Lo 0 0 ey ]

Aalto University
School of Science
and Technology 13



Example 2
Increasing hazard rate

30 7

25 h X
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Example 2
Increasing hazard rate
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Example 3
Decreasing hazard rate

h(x) = 2, Xx<1
1 x>1

30 7

25 h X
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Example 3
Decreasing hazard rate
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Example 4
Increasing-decreasing hazard rate

1 x<1 x>2
h(x) =
2, 1<x<?2

30 7

25 h X
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Example 4
Increasing-decreasing hazard rate
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Example 5
Decreasing-increasing hazard rate

2, X<l x>2
h(x) =
1, 1<x<?2

30 7

25 h X

20"
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Example 5
Decreasing-increasing hazard rate

W
25 WC NPR
1.5\
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Hazard rate

» Service time distribution:
F(X)=P{S<x}, F(X)=1-F(x)>0 forall x
« Density function:
f (X) = P{S e dx} continuous

« Hazard rate function:

h(x)—llmA_>O P{S —x< A|S>x}_@

F(x)
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Inverse MRL

 Remaining service time distribution:

P{S—x<y|S>x}= F () = F(x+y)
F(x)
« Mean residual lifetime (MRL) function:

[¢ F(y)dy
F ()

E[S—X|S > X]=

* |Inverse MRL function:

1 _ Feo L T(ydy
E[S-x[S>X] [“F(y)dy [y F(y)dy

(]
A Aalto Uniyersity
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Gittins index

 Gittins index for a job with age a:
G(a) =supp>0 J(a,A)
« Optimal service quota for a job with age a :
A (@) = sup{A>0|J(a,A) = G(a)}
- Efficiency function for age a and service quota A:
J(a,0)=h(a), J(a,«)=H(a)

P{S-a<A|S>a} _I:+Af()/)dy

J (a’A) = :  atA =
E[min{S —a,A}|S>a] [ F(y)dy

[
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Example 6
Oscillating hazard rate

1+sin X

h(x) =

5
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

NOTE!

h(X) continuous

—
G(x) continuous

Aalto University
School of Science
and Technology 28



Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

NOTE! ~..__

G(x) decreasing |
—

h(x) decreasing
and

G(x) = h(x)
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

NOTE! ~.___

h(X) increasing
or

H(X) increasing
—

G(X) increasing
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Example 6
Oscillating hazard rate

Gittins index G(x) (rescaled)
optimal service quota A*(x)
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Example 6
Oscillating hazard rate

Gittins index G(x) (rescaled)
optimal service quota A*(x)

Here A*(x) = o0
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Continuity result

f (x) Is continuous for all x
<> h(x) Is continuous for all x
< J(x,d) Is continuous for all x,d

h(x) 1s continuous for all x
= G(X) Is continuous for all x
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Monotonicity result 1

* Proposition:
h(x) strictly decreasing for all x € (a,b)
—
G(x) strictly decreasing for all x € (a,c),
G(x) Increasing for all x € (c,b)
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

a C b

05— —— T T T T T ]

0.4
0.3 Z
0.2"

0.1}

0.07 I I | | \E\ | w0
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Monotonicity result 2

* Proposition:
h(x) increasing for all x  (a,b)
—
G(x) increasing for all x € (a,b)
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

05 o ———— 7

0.4
0.3}
0.2

0.1}

00—
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Continuity and monotonicity result

¢ Summary:
h(x) Is continuous and piecewise monotonic for all x
= G(X) Is continuous and piecewise monotonic for all x

Aalto University
School of Science
and Technology 39



Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

0.5 [ T pr—
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

NOTE!x\\ oS— T T

Continuity
needed here
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Monotonicity In finite intervals 1

* Proposition:
G(x) Is strictly increasing for all x  (a,b)
—
G(x) > h(x) for all x € (a,b)
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Example 6

Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

0.5
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Monotonicity In finite intervals 2

* Proposition:
G(x) Is Increasing for all x  (a,b)
S

A (x) >0 forall x e (a,b)
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Example 6
Oscillating hazard rate

Gittins index G(x) (rescaled)
optimal service quota A*(x)

A

a b
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Monotonicity in finite intervals 3

* Proposition:
G(x) I1s constant for all x € (a,b)
S

G(x) =h(x) and A*(x)>0 for all x € (a,b)
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Example 3

Decreasing hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

3.0

250

2.0

151
1.0}
0.5+

0.0
0.
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Monotonicity In finite intervals 4

* Proposition:
G(x) I1s decreasing for all x € (a,b)

—
G(x) =h(x) forall x e (a,b)



Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

05, + [t 7
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Monotonicity in finite intervals 5

* Proposition:
G(x) Is strictly decreasing for all x € (a,b)
S

A (x) =0 forall x e (a,b)

Aalto University
School of Science
and Technology o1



Example 6
Oscillating hazard rate

Gittins index G(x) (rescaled)
optimal service quota A*(x)
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Monotonicity in infinite intervals 1

* Proposition:
G(x)>G(a) forall x € (a,)
<>
H(x)>H(a) forall x e (a,x)
S
G(a)=H(a)



Example 6

Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

NOTE! -.__
G(a)=H(@) -
G(x) > G(a)

H(x) > H(a)
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Monotonicity in infinite intervals 2

* Proposition:
G(x) is increasing for all x € (a,x)
=
H (x) 1s increasing for all x € (a, )
S
G(x) =H(x) forall x e (a,»)
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Example 5
Decreasing-increasing hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

a X

NOTE! -._ B0

< L
SO L
S 2.57

~ L

~ L

G(x) = H(x)

forall x > a

05"
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Monotonicity in infinite intervals 3

* Proposition:
G(x) is decreasing for all x € (a,)
=
h(x) Is decreasing for all x € (a, )
=
G(x) =h(x) forall x € (a,)
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Example 4
Increasing-decreasing hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

a X
NOTE! --.___ Y
) G
G(x) = h(x) : =
20" >
forall x > a 15
1.0}
05
0.0:\\\\\\\\\é\\\\\\\\\x\\\\\\\\\f
0.0 05 1.0 15 2.0 25 3.0
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Monotonicity in infinite intervals 4

* Proposition:

G(x) 1s constant for all x e (a, )

=
H (x) Is constant for all X € (a,0)

=
h(x) Is constant for all x e (a, )

=

G(x) = H(x) =h(x) forall x e (a,»)
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Service time distribution classes

e Service times are
— IHR [DHR] if h(X) is increasing [decreasing]
— DMRL [IMRL] if H(X) is increasing [decreasing]
— NBUE [NWUE] if H(0) < [>] H(X)
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NBUE service times

« Corollary:
G(x) > G(0) for all x
S
Service times are NBUE

e
G(0) = H (0)
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DMRL service times

« Corollary:
G(x) 1s Increasing for all x
S
Service times are DMRL
S
G(x)=H(x) for all x
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DHR service times

« Corollary:
G(x) 1s decreasing for all x
=
Service times are DHR
S
G(x) =h(x) forall x
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EXP service times

« Corollary:
G(x) 1s constant for all x
S
Service times are EXP
S
G(x) =H(x)=h(x) forall x
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Gittins index policy

 Definition:
— Gittins index policy (GI) gives service to the job 1
with the highest Gittins index G(a,).
« Known result:
— Any Gl is optimal for any service time distributions
* Observations:
— Any MAS is a Gl
if and only if G(a) > G(0) for all a.
— LASisa Gl
if and only if (G(a) is decreasing for all a.
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NBUE service times

« Corollary:

Any MAS is optimal
=
Service times are NBUE
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Example 2
Increasing hazard rate

T T :
25 MAS

20"

15-
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DHR service times

« Corollary:

LAS is optimal
=
Service times are DHR
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Example 3
Decreasing hazard rate

2.5 LAS

20"

15-
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1.0¢

05"
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NBUE+DHR service times

« Corollary:

Service times are NBUE + DHR(k)
p—
MAS + LAS(k*) Is optimal
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Example 4
Increasing-decreasing hazard rate

k ok
3.0
25 MAS {1 LAS

2.0? P

1.5?—

e T W

05"
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DHR+IHR service times

« Corollary:

Service times are DHR + IHR(k),
h(0) > H ()
—
LAS + MAS(k*) Is optimal
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Example 5
Decreasing-increasing hazard rate

k*

3.0 [
250 LAS MAS
20: ? f
1.5\
) o
05" :
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ransient system 1

« Assume h(x) Iis continuous and piecewise monotonic
« Corollary:

Hazard rate h(x) is first increasing

—
MAS + LAS + MAS +...(kg*,ko*,...) Is optimal

« MAS+LAS+MAS+... belongs to MLPS (Multi-Level
Processor Sharing) policies, cf. Kleinrock (1976)
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Example 6
Oscillating hazard rate

1+sin X

h(x) =

5
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

kR.* ky*

05——————

- MAS LAS MAS

0.4
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ransient system 2

« Assume h(x) Iis continuous and piecewise monotonic
« Corollary:

Hazard rate h(x) is first decreasing

—
LAS + MAS + LAS +...(ky*, ko*,...) Is optimal

« LAS+MAS+LAS+... belongs to MLPS (Multi-Level
Processor Sharing) policies, cf. Kleinrock (1976)
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Example 7
Oscillating hazard rate

1—sin X

h(x) =

5
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Example 7
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)
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Additional reading

« S. Aalto, U. Ayesta and R. Righter,
On the Gittins index in the M/G/1 queue,
Queueing Systems 63, 437-458, 2009

« S. Aalto, U. Ayesta and R. Righter,
Properties of the Gittins index with application
to optimal scheduling, submitted, 2010
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