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Queueing models 

• Single-server queue (M/G/1) 

 

 

 

 

 

• Multi-server queue (M/M/n) 

• Parallel queues 
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Performance-energy trade-off 

• Energy saved by switching 

the server off when idle 

 

• However,  

performance impaired, if 

switching the server back on 

takes time (setup delay) 
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Cost model 

• Performance:  

 

E[T] = mean delay per job  

           (in seconds) 

 

E[X] = mean number of jobs 

        = lE[T] 

 
• Definition:  

delay = response time 

• Energy:  

 

E[E] = mean energy per job  

           (in joules) 

 

E[P] = mean power consumed 

        = lE[E] 

 

Power consumption levels: 
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Objective function 

• Energy-Response-time-

Weighted-Sum (ERWS):  

 

E[T] + E[E]/b 

 

e.g. Wierman & al. (2009) 

 

• Energy-Response-time-Product 

(ERP):  

 

E[T]E[E] 

 

e.g. Gandhi & al. (2010b) 

• General form:  

 

 

w1E[T]t1E[E]e1 + w2E[T]t2E[E]e2 

 

by Maccio & Down (2013) 

 

– ERWS:  

w1 = 1, t1 = 1, e1 = 0 

w2 = 1/b, t2 = 0, e2 = 1 

– ERP:  

w1 = 1, t1 = 1, e1 = 1 

w2 = 0, t2 = 0, e2 = 0 
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Part I 

Single-server queue with setup delays 
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Optimal switching on/off policy 
Maccio & Down (2013) 

• M/G/1-FIFO 

– Setup delay D generally 

distributed with mean 1/g 

 

• Control parameters: 

– Delayed switch-off for an 

exponential time with mean 1/a 

– Server switched on after k new 

job arrivals 

 

• Objective function: Gen. form 

 

 

• Policies: 

– NEVEROFF: a  0 

– DELAYEDOFF: 0  a   

– INSTANTOFF: a   

 

• Theorem: 

For ERWS objective function  

optimal policy is either 

NEVEROFF or INSTANTOFF 

 

– Similar result in  

Gandhi & al. (2010b) for  

ERP objective function 
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Optimal switching on/off policy 
Gebrehiwot & al. (2014) 

• M/G/1-FIFO 

– Setup delay D generally 

distributed with mean 1/g 

 

• Control parameters: 

– Delayed switch-off for a gen. 

distributed time with mean 1/a 

– Server switched on after k new 

job arrivals 

 

• Objective function: Gen. form 

 

 

• Policies: 

– NEVEROFF: a  0 

– DELAYEDOFF: 0  a   

– INSTANTOFF: a   

 

• Theorem: 

For gen. objective function  

optimal policy is either 

NEVEROFF or INSTANTOFF 

 

– NEVEROFF is better if  

Pidle is sufficiently small 

compared to Psetup  
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Part II 

Multi-server queue with setup delays 
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Part II 
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Analysis of server farms with setup delays 
Gandhi & al. (2010a) 

• M/M/n 

– Setup delay D exponentially 

distributed 

 

• Objective function:  

Separately E[T] and E[P] 

 

• Policies: 

– ON/IDLE = NEVEROFF 

– ON/OFF = INSTANTOFF 

– ON/OFF/STAG = INSTANTOFF 

with ”staggered bootup” 

 

• Mixed policy: 

– ON/IDLE(t) 

switching idle server off only if  

nr of busy and idle servers > t 

 

• Conclusions: 

– “Under high loads, turning 

servers off can result in higher 

power consumption and far 

higher response times.” 

– “As the size of the server farm 

is increased, the advantages of 

turning servers off increase.” 
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Analysis of server farms with setup delays 
Gandhi & al. (2010a) 
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Optimization of server farms with setup delay 
Gandhi & al. (2010b) 

• M/M/n 

– Setup delay deterministic 

– Additional sleep states S with  

  
 

and deterministic  

(setup) delays 

 

 

 

• Objective function: ERP 

 

 

 

 

• Policies: 

– NEVEROFF 

– INSTANTOFF 

– SLEEP(S) 

– Probabilistic and other 

• Theorem:  

For n = 1, optimal static control 

is either NEVEROFF, 

INSTANTOFF or SLEEP(S) 

• Robust policy:  
– DELAYEDOFF with MRB  

(Most Recent Busy) 
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Optimization of server farms with setup delay 
Gandhi & al. (2010b) 
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Part III 

Parallel queues with setup delays 
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Dispatching problem 

• Dispatching  

= Task assignment = Routing 

– Random job arrivals with 

random service requirements 

– Dispatching decision made 

upon the arrival 

 

• Our setting: M/G/. 

– Poisson arrivals 

– generally distributed job sizes 

– heterogeneous servers with 

FIFO queueing discipline 

(NEVEROFF or INSTANTOFF) 
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Static dispatching policies 

• RND =  

Bernoulli splitting 

– choose the queue pure 

randomly 

– no size nor state information 

needed 

• SITA =  

Size Interval Task Assignment 

– choose the queue with similar 

jobs 

– based on the size of  

the arriving job, but  

no state information needed 

– Harchol-Balter et al. (1999) 
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MDP approach 

• Any static policy (RND, SITA) 

results in parallel M/G/1 queues 

 

• Fix the static policy and 

determine relative values for  

all these parallel M/G/1 queues 

 

• Dispatch the arriving job to  

the queue that minimizes  

the mean additional costs 

• As the result, you get a better 

dynamic dispatching policy  

 

• This is called  

First Policy Iteration (FPI)  

in the MDP theory 

 

• Applicable for the  

ERWS objective function 
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Relative values 

• Definition:  

For a fixed policy  

resulting in a stable system,  

the value function v(x)  

gives the expected difference  

in the infinite horizon 

cumulative costs between 

– the system initially  

in state x, and 

– the system initially  

in equilibrium 

• Definition:  

For a fixed policy  

resulting in a stable system,  

the relative value v(x) - v(0) 

gives the expected difference  

in the infinite horizon  

cumulative costs between 

– the system initially  

in state x, and 

– the system initially  

in state 0 
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Size-aware M/G/1 queue without setup delays 
Hyytiä et al. (2012) 

• State description: 

 

 

– Di = remaining service time  

of job i 

– u = backlog = unfinished work 

 

• Mean values: 

 

 

 

 

• Result: 

Size-aware relative values 
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Size-aware M/G/1 queue with setup delays 
Hyytiä et al. (2014a) 

• State description: 

 

 

– Di = remaining service time  

of job i 

– D0 = remaining setup delay 

– u = virtual backlog 

 

• Assume:  

Deterministic setup delay d and 

• Mean values: 

 

 

 

 

• Result: 

Size-aware relative values 
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FPI policy 
Hyytiä et al. (2012, 2014a) 

• For NEVEROFF servers:  

 

Dispatch the job with service  

time x to queue i minimizing  

the mean additional costs:  

• For INSTANTOFF servers:  

 

Dispatch the job with service  

time x to queue i minimizing  

the mean additional costs: 
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Numerical results 
Hyytiä et al. (2014a) 
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Numerical results 
Hyytiä et al. (2014a) 
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Numerical results 
Hyytiä et al. (2014a) 
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Other queueing disciplines 
Hyytiä et al. (2014b) 

• LIFO in the M/G/. setting with 

setup delays 

• PS in the M/D/. setting with 

setup delays 

 

• But it is another story … 

26 

Part III 
Parallel queues 
 



References 

• Harchol-Balter, Crovella & Murta (1999) 
On Choosing a Task Assignment Policy for a Distributed Server System, JPDC 

• Wierman, Andrew & Tang (2009)  
Power-aware speed scaling in processor sharing systems, in IEEE INFOCOM 

• Gandhi, Harchol-Balter & Adan (2010a)  
Server farms with setup costs, PEVA 

• Gandhi, Gupta, Harchol-Balter & Kozuch (2010b)  
Optimality analysis of energy-performance trade-off for server farm management, PEVA 

• Hyytiä, Penttinen & Aalto (2012) 
Size- and state-aware dispatching problem with queue-specific job sizes, EJOR 

• Maccio & Down (2013) 
On optimal policies for energy-aware servers, in MASCOTS 

• Hyytiä, Righter & Aalto (2014a) 
Task assignment in a heterogeneous server farm with switching delays and general 
energy-aware cost structure, to appear in PEVA 

• Hyytiä, Righter & Aalto (2014b) 
Energy-aware job assignment in server farms with setup delays under LCFS and PS, 
accepted to ITC 

• Gebrehiwot, Lassila & Aalto (2014) 
Energy-aware queueing models and controls for server farms, ongoing work 

27 

References 



The End 

28 


