

Multicast network model

- Setup:
- Unique service center offers a variety of channels
- Each channel $i \in I$ is delivered by a multicast connection with dynamic membership
- Each multicast connection uses the same multicast tree \Rightarrow fixed routing of these multicast connections
- Symmetric connections belong to the same class $k \in K$
- Service center located at the root node of the multicast tree
- Users $u \in U$ located at the leaf nodes of the multicast tree

Multicast connections with dynamic membership

- $\quad \mathrm{U}=$ new user of channel 'red'
- A = connection point for user U
- $\mathrm{SC}=$ (unique) service centre

Link states

- Consider first a network with infinite link capacities
- Let

$$
Y_{j i}=1\{\text { connection } i \text { active on link } j\}
$$

- Detailed link state (for any link $j \in J$)

$$
\mathbf{Y}_{j}=\left(Y_{j i} ; i \in I\right) \in S:=\{0,1\}^{I}
$$

- Classwise link state (for any link $j \in J$)

$$
\mathbf{N}_{j}=\left(\sum_{i \in I_{k}} Y_{j i} ; k \in K\right) \in S:=\left\{0,1, \ldots, I_{1}\right\} \times \ldots \times\left\{0,1, \ldots, I_{K}\right\}
$$

- Link state (for any link $j \in J$)

$$
\begin{equation*}
N_{j}=\sum_{i \in I} Y_{j i} \in\{0,1, \ldots, I\} \tag{4}
\end{equation*}
$$

Stationary state probabilities in a network with infinite link capacities

- Assume that the probabilities of the detailed leaf link states (which depend on the user population model adopted) are known, and denote them by

$$
\pi_{u}(\mathbf{y}):=P\left\{\mathbf{Y}_{u}=\mathbf{y}\right\}
$$

- where $\mathbf{y} \in\{0,1\}^{I}$
- Due to infinite link capacities and independent behaviour of the user populations, it follows that the probabilities of the detailed network states are also known:

$$
\pi(\mathbf{x}):=P\{\mathbf{X}=\mathbf{x}\}=\prod_{u \in U} P\left\{\mathbf{Y}_{u}=\mathbf{y}_{u}\right\}=\prod_{u \in U} \pi_{u}\left(\mathbf{y}_{u}\right)
$$

- where $\mathbf{x}=\left(\mathbf{y}_{u} ; u \in U\right) \in\{0,1\}^{U \times I}=: \Omega$

Stationary state probabilities in a network with finite link capacities

- If the Truncation Principle applies (which depends on the user population model adopted), then

$$
\tilde{\pi}(\mathbf{x})=\frac{\pi(\mathbf{x})}{\sum_{\mathbf{x} \in \widetilde{\Omega}} \pi(\mathbf{x})}
$$

- where $\mathbf{x}=\left(\mathbf{y}_{u} ; u \in U\right) \in \widetilde{\Omega}$ and

$$
\widetilde{\Omega}=\text { set of allowed network states }
$$

Blocking probability

- $B_{u i}^{t}=$ time blocking for user population u and connection i = stationary probability of such network states in which a new request originating from user population u to join connection i would be rejected due to lack of link capacity
- How to calculate $B_{u i}^{t}$?

Calculation of blocking probabilities (1)

- 1st possibility: closed form expression

$$
B_{u i}^{t}:=1-\sum_{\mathbf{x} \in \widetilde{\Omega}_{u i}} \tilde{\pi}(\mathbf{x})=1-\frac{\sum_{\mathbf{x} \in \widetilde{\Omega}_{u i}} \pi(\mathbf{x})}{\sum_{\mathbf{x} \in \widetilde{\Omega}} \pi(\mathbf{x})}
$$

- where
$\widetilde{\Omega}_{u i}=$ set of nonblocking network states for (u, i)
$\widetilde{\Omega}=$ set of allowed network states
- Problem: computationally extremely complex
- exponential growth both in U and I

Calculation of blocking probabilities (2)

- 2nd possibility: recursive algorithm exact

$$
B_{u i}^{t}=1-\frac{\sum_{\mathbf{y} \in S} Q_{J}^{u i}(\mathbf{y})}{\sum_{\mathbf{y} \in S} Q_{J}(\mathbf{y})}
$$

- where probabilities $Q_{j}{ }^{u i}(\mathbf{y})$ and $Q_{j}(\mathbf{y})$ can be calculated recursively (from the common link J back to leaf links u)
- Problem: computationally complex
- linear growth in U but (still) exponential growth in I

Calculation of blocking probabilities (3)

- 3rd possibility: new recursive algorithm combi

$$
B_{u i}^{t}=1-\frac{\sum_{\mathbf{n} \in S} Q_{J}^{u i}(\mathbf{n})}{\sum Q_{J}(\mathbf{n})}
$$

- where probabilities $Q_{j}^{u i}(\mathbf{n})$ and $Q_{j}(\mathbf{n})$ can be calculated recursively (from the common link J back to leaf links u)
- Remark: computationally reasonable if ...
... only few connection classes

Basic results (1)

- Connections symmetric among a class \Rightarrow
- Whenever there are n connections (belonging to class $k \in K$) active on any leaf link $u \in U$, each possible index combination $\left\{i_{1}, \ldots, i_{n}\right\}$ (where $i_{1}, \ldots, i_{n} \in I_{k}$) is equally probable
- This and the independence of the user populations \Rightarrow
- Whenever there are n connections (belonging to class $k \in K$) active on any link $j \in J$, each possible index combination $\left\{i_{1}, \ldots, i_{n}\right\}$ (where $i_{1}, \ldots, i_{n} \in I_{k}$) is equally probable

Basic results (2)

- If link j has two downstream neighbouring links (s, t), then

$$
\max \left\{N_{s}, N_{t}\right\} \leq N_{j} \leq \min \left\{N_{s}+N_{t}, I\right\}
$$

- Assume (here only) that all connections belong to the same class and that $N_{s}=l \geq m=N_{t}$. Then

$$
P\left\{N_{j}=n \mid N_{s}=l, N_{t}=m\right\}=\frac{\binom{l}{m-(n-l)}\binom{I-l}{n-l}}{\binom{I}{m}}
$$

Algorithm(1)

- Define (for all $j \in J$):

$$
\begin{aligned}
& Q_{j}(\mathbf{n})=P\left\{\mathbf{N}_{j}=\mathbf{n} ; N_{j^{\prime}} \leq C_{j^{\prime}}, \forall j^{\prime} \in M_{j}\right\} \\
& Q_{j}^{u i}(\mathbf{n})=P\left\{\mathbf{N}_{j}^{(i)}=\mathbf{n} ; N_{j^{\prime}}^{(i)} \leq C_{j^{\prime}}-1, \forall j^{\prime} \in M_{j} \cap R_{u} ;\right. \\
& \left.\quad N_{j^{\prime}} \leq C_{j^{\prime}}, \quad \forall j^{\prime} \in M_{j} \backslash R_{u}\right\}
\end{aligned}
$$

- Then time blocking probability for pair (u, i) is

$$
B_{u i}^{t}=1-\frac{P\left\{\mathbf{X} \in \widetilde{\Omega}_{u i}\right\}}{P\{\mathbf{X} \in \widetilde{\Omega}\}}=1-\frac{\sum_{n \in S} Q_{J}^{u i}(\mathbf{n})}{\sum_{n \in S} Q_{J}(\mathbf{n})}
$$

Algorithm (2)

- Recursion 1 to calculate $Q_{j}(\mathbf{n})$:

$$
Q_{j}(\mathbf{n})= \begin{cases}T_{j}\left[\pi_{j}\right](\mathbf{n}), & j \in U \\ T_{j}\left[\underset{j^{\prime} \in N_{j}}{\otimes} Q_{j^{\prime}}\right](\mathbf{n}), & j \notin U\end{cases}
$$

- where $\pi_{j}(\mathbf{n})=P\left\{\mathbf{N}_{j}=\mathbf{n}\right\}$ depend on the chosen user population model
- Truncation operator 1 :
- Let f be any real-valued function defined on S
- Then define

$$
T_{j}[f](\mathbf{n})=f(\mathbf{n}) \cdot 1\left\{n_{1}+\ldots+n_{K} \leq C_{j}\right\}
$$

Algorithm (3)

- Definition of operator \otimes :
- Let f and g be any real-valued function defined on S. Then define

$$
\begin{aligned}
{[f \otimes g](\mathbf{n})=} & \sum_{l_{1}=0}^{n_{1}} \sum_{m_{1}=n_{1}-l_{1}}^{n_{1}} s_{1}\left(n_{1} \mid l_{1}, m_{1}\right) \ldots \\
& \sum_{l_{K}=0}^{n_{K}} \sum_{m_{K}=n_{K}-l_{K}}^{n_{K}} s_{K}\left(n_{K} \mid l_{K}, m_{K}\right) \\
& \times f(\mathbf{l}) g(\mathbf{m})
\end{aligned}
$$

- where

$$
s_{k}(n \mid l, m)=\frac{\binom{\max \{l, m\}}{l+m-n}\binom{I_{k}-\max \{l, m\}}{n-\max \{l, m\}}}{\binom{I_{k}}{\min \{l, m\}}}
$$

Algorithm (4)

- Key result:
- If link j has two downstream neighbouring links (s, t), then

$$
\begin{aligned}
P\left\{\mathbf{N}_{j}=\mathbf{n}\right\}= & \sum_{l_{1}=0}^{n_{1}} \sum_{m_{1}=n_{1}-l_{1}}^{n_{1}} s_{1}\left(n_{1} \mid l_{1}, m_{1}\right) \ldots \\
& \sum_{l_{K}=0}^{n_{K}} \sum_{m_{K}=n_{K}-l_{K}}^{n_{K}} s_{K}\left(n_{K} \mid l_{K}, m_{K}\right) \\
& \times P\left\{\mathbf{N}_{s}=\mathbf{l}\right\} P\left\{\mathbf{N}_{t}=\mathbf{m}\right\}
\end{aligned}
$$

- In other words,

$$
\pi_{j}(\mathbf{n})=\left[\pi_{s} \otimes \pi_{t}\right](\mathbf{n})
$$

- Proved by a "sampling without replacement" argument!

Algorithm (5)

- Recursion 2 to calculate $Q_{J}{ }^{u i}(\mathbf{n})$:

$$
Q_{j}^{u i}(\mathbf{n})= \begin{cases}T_{u}^{\circ}\left[\pi_{u}^{(i)}\right](\mathbf{n}), & j=u \\ T_{j}^{\circ}\left[Q_{D_{u}(j)}^{u i}{ }_{j^{\prime} \in N_{j} \backslash R_{u}}^{\otimes} Q_{j^{\prime}}\right](\mathbf{n}), & j \in R_{u} \backslash\{u\}\end{cases}
$$

- where $\pi_{u}{ }^{(i)}(\mathbf{n})=P\left\{\mathbf{N}_{u}{ }^{(i)}=\mathbf{n}\right\}$ depend on the chosen user population model
- Truncation operator 2:
- Let f be any real-valued defined on $\{0,1, \ldots, I\}$
- Then define

$$
T_{j}^{\circ}[f](\mathbf{n})=f(\mathbf{n}) \cdot 1\left\{n_{1}+\ldots+n_{K} \leq C_{j}-1\right\}
$$

Algorithm (6)

- Definition of operator \odot :
- Let f and g be any real-valued function defined on S. Then define

$$
\begin{aligned}
{[f \odot g](\mathbf{n})=} & \sum_{l_{1}=0}^{n_{1}} \sum_{m_{1}=n_{1}-l_{1}}^{n_{1}} s_{1}^{(i)}\left(n_{1} \mid l_{1}, m_{1}\right) \ldots \\
& \sum_{l_{K}=0}^{n_{K}} \sum_{m_{K}=n_{K}-l_{K}}^{n_{K}} s_{K}^{(i)}\left(n_{K} \mid l_{K}, m_{K}\right) \\
& \times f(\mathbf{l})\left[\left(1-\frac{m_{k(i)}}{I_{k(i)}}\right) g(\mathbf{m})+\frac{m_{k(i)}+1}{I_{k(i)}} g\left(\mathbf{m}+\mathbf{e}_{k(i)}\right)\right]
\end{aligned}
$$

- where

$$
s_{k}^{(i)}(n \mid l, m)=\frac{\binom{\max \{l, m\}}{l+m-n}\binom{I_{k}^{(i)}-\max \{l, m\}}{n-\max \{l, m\}}}{\binom{I_{k}^{(i)}}{\min \{l, m\}}}
$$

Algorithm(7)

- Key result:
- If link j has two downstream neighbouring links (s, t), and link s belongs to the interesting route, i.e. $s=D_{u}(j)$, then

$$
\begin{aligned}
& P\left\{\mathbf{N}_{j}=\mathbf{n}\right\}=\sum_{l_{1}=0}^{n_{1}} \sum_{m_{1}=n_{1}-l_{1}}^{n_{1}} s_{1}^{(i)}\left(n_{1} \mid l_{1}, m_{1}\right) \ldots \\
& \quad \sum_{l_{K}=0}^{n_{K}} \sum_{m_{K}=n_{K}-l_{K}}^{n_{K}} s_{K}^{(i)}\left(n_{K} \mid l_{K}, m_{K}\right) \\
& \times P\left\{\mathbf{N}_{s}=\mathbf{l}\right\}\left[\left(1-\frac{m_{k(i)}}{I_{k(i)}}\right) P\left\{\mathbf{N}_{t}=\mathbf{m}\right\}+\frac{m_{k(i)}+1}{I_{k(i)}} P\left\{\mathbf{N}_{t}=\mathbf{m}+\mathbf{e}_{k(i)}\right\}\right]
\end{aligned}
$$

- In other words,

$$
\pi_{j}^{(i)}(n)=\left[\pi_{s}^{(i)} \odot \pi_{t}\right](n)
$$

- Proved by a "sampling without replacement" argument!

THE END

