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Teletraffic application

Consider a bottleneck link in an IP network loaded with elastic
flows

- such as file transfers using TCP

- if RTTs are of the same magnitude, then approximately even
bandwidth sharing among the flows

Internet measurements propose that

- a small number of large TCP flows responsible for the largest
amount of data transferred (elephants)

- most of the TCP flows made of few packets (mice)
Intuition says that

- favouring short flows reduces the total humber of flows, and,
thus, also the mean file transfer time
How to schedule flows and how to analyse?

- Guo and Matta (2002), Feng and Misra (2003), Avrachenkov et
al. (2004)




Queueing model

Assume that
- flows arrive according to a Poisson process with rate A

- each flow has a random service requirement with distribution
function F(x), density function f(x) and hazard rate A(x)

- service time distribution is of type DHR (decreasing hazard
rate)

So, we have an M/6/1 queue at the flow level
- customers in this queue are flows (and not packets)
- service time = file size = the total humber of packets to be sent
- attained service time = the number of packets sent
- remaining service time = the number of packets lef+t

Reference model M/6/1/PS (without any specific scheduling policy)




Service disciplines

PS = Processor Sharing

- Without any specific scheduling policy, the elastic flows are
assumed to divide the bottleneck link bandwidth evenly

SRPT = Shortest Remaining Processing Time
- Choose a packet from the flow with least packets left

FB = Foreground-Background = LAS = Least Attained Service
- Choose a packet from the flow with least packets sent

MLPS = Multilevel Processor Sharing

- Choose a packet of a flow with less packets sent than a given
threshold




Optimality results for M/G/1

Schrage (1968)

- If the remaining service time is known, then
SRPT optimal minimizing the mean delay E[T]

Yashkov (1978, 1987)

- If only the attained service time is known, then
DHR implies that FB optimal minimizing the mean delay E[ 7]

Righter et al. (1990)

- If only the attained service time is known, then
IMRL implies that FB optimal minimizing the mean delay E[7]

Remark: in this study we consider work-conserving (WC) and non-
anticipating (NA) service disciplines such as FB, MLPS and PS




MLPS service disciplines (1)

Definition: MLPS service discipline
- introduced by L. Kleinrock in 70's
- based on the attained service times

- N+l levels defined by N thresholds 0 <a; <... <ay<®
- between the levels, a strict priority is applied
- within a level, either FB or PS is applied (we rule out FCFS)

Examples: Two levels with threshold a
- FB+FB=FB=LAS
- FB+PS = FLIPS
- Feng and Misra (2003)
- PS+PS = ML-PRIO
* Guo and Matta (2002), Avrachenkov et al. (2004)




MLPS service disciplines (2)

Conditional mean delay for M/G/1/PS+PS [Kleinrock (1976)]:
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Conditional mean delay E[T(x)]

bounded Pareto service time distribution
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Mean delay E[T]

bounded Pareto service time distribution
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New results

Theorem 1 [Aalto et al. (2004q)]:
- DHR implies that

Theorem 2 [Aalto et al. (2004b)]:
- DHR implies that

E[TFB] < E[TMLPS] < E[TPS]

10




Idea of the proof

Key variable: U, = unfinished truncated work with threshold x

- sum of remaining truncated service times min{Sx} of those
customers who have attained service less than x

Steps in the proof:
- First step: prove that for any wand 7’

DHR & WC & NA & E[UF]<E[UF]Vx = E[T*]<E[T”]
- Second step: prove that for any x

E[ULP]< EUY B8 1< EUyS P31 < ElU ST

- Third step: prove that for any x
E[U; 1< E[UMPS1 < E[ULS)
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First step (1)

Proposition 1.1:
- WC & NA implies that

E[T"]= 7 [(E[UT]) h(x)dx
0

Proof:

- Follows straightforwardly from the following result taken from
Kleinrock (1976):

E[Uy]= ﬁE[T” (D]~ F (1))t
0
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First step (2)

Proposition 1.2:
- DHR & WC & NA implies that

E[UF1<E[UF]Vx = E[T*]<E[T”"]

Proof:
- Follows from Proposition 1.1

- Inparticular, if the hazard rate is differentiable, then by
partial integration (note: Uy = 0 and E[U "] independent of )

E[T™1-E[T™ |=1 [(EUF1- E[UF 1) h(x)dx
0

o0

=~ [(EWUT1- E[UT DA (x)dx
0
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Second step (1): definitions

Definition:
- Unfinished truncated work with threshold x at time #:

5
UZ (1) = XA min{(S;,x} — [oF (u)du
0

- A(?) = the number of customers arrived until time ¢
- S, = service time of customer i
- 0,(?) = total service rate of the customers with attained
service time less than x at time ¢
ocZ(t)=0, if NJ(#)=0
o<1, ifNZ()>0

- N_/X(t) = the number of customers with attained service time
less than x at time ¢
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Second step (2): definitions

Definition:
- Set I of disciplines:
rell, o oZ@) =1, if N (t)>0

Observations:
- Forall a>zx,

FB, FB + PS(a), PS + PS(x) e [T,

- By definition, for any x, any 7* Hx* and any ¢,

UF (1) =min, U (1)
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Second step (3): sample path arguments

Proposition 2.1:
- Foranya, x, ¢,

Proof:
- Clearly, forall a > x,

- On the other hand, for all a < x,

SFBPS(@) () = PS+PS(a) ;)
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Second step (4): sample path arguments

*  We have an example of a, x and ¢ such that

But it is another story ...
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Second step (5): mean value arguments

Proposition 2.2:
%E[TPSH’S(G) (x)] < %E[TPS (x)] forx <a

%E[TPSH’S(G) (x)] = %E[TPS (x)] for x > a

Proof:
- Based on Kleinrock's conditional mean delay formula

Proposition 2.3:
- For any a and x,
EUy> 1< EU®)

Proof:
- Follows from WC and Proposition 2.2

18




Mean unfinished truncated work E[U,"]

bounded Pareto file size distribution
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Third step (1): definitions

Definition: (N+1)PS service discipline
- MLPS discipline with N+1 levels
- PS applied in all levels

Examples:
- 2PS =PS+PS
- 3PS =PS+PS+PS
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Third step (2): sample path arguments

Proposition 3.1:

- Let € (N+1)PS with thresholds {ay, ... ay} and 7’ € NPS with
ThP@ShOldS {Cll, aN—l}

- Then, for all x < ay and ¢,
U7 (t)<U7 (¢)

Proof:

- Tedious but not so hard comparison of individual customers
based on formula

Uy ()= X e N7 1y (min{S;, x} = X[ (1))

- N_(t) = the set of customers with attained service time less
than x at time ¢

- X/X(t) = attained service time of customer i at time ¢
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Third step (3): mean value arguments

Proposition 3.2:
- Let m € (N+1)PS with thresholds {ay, ... ay}.
- Then, for all x > ay,

4 BT (012 4TS ()

Proof:
- Similar to the proof of Proposition 2.2

Proposition 3.3:
- Let 7 € (N+1)PS. Then, for all x,

E[UT 1< E[UY®

Proof:
- Follows, by induction, from Propositions 2.3, 3.1 and 3.2
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