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Teletraffic application

• Consider a bottleneck link in an IP network loaded with elastic
flows

– such as file transfers using TCP

– if RTTs are of the same magnitude, then approximately even
bandwidth sharing among the flows

• Internet measurements propose that

– a small number of large TCP flows responsible for the largest 
amount of data transferred (elephants)

– most of the TCP flows made of few packets (mice)

• Intuition says that 

– favouring short flows reduces the total number of flows, and, 
thus, also the mean file transfer time

• How to schedule flows and how to analyse?

– Guo and Matta (2002), Feng and Misra (2003), Avrachenkov et 
al. (2004)
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Queueing model

• Assume that

– flows arrive according to a Poisson process with rate λ

– each flow has a random service requirement with distribution
function F(x), density function f(x) and hazard rate h(x)

– service time distribution is of type DHR (decreasing hazard
rate)

• So, we have an M/G/1 queue at the flow level

– customers in this queue are flows (and not packets)

– service time = file size = the total number of packets to be sent

– attained service time = the number of packets sent

– remaining service time = the number of packets left

• Reference model M/G/1/PS (without any specific scheduling policy)
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Service disciplines

• PS = Processor Sharing

– Without any specific scheduling policy, the elastic flows are
assumed to divide the bottleneck link bandwidth evenly

• SRPT = Shortest Remaining Processing Time

– Choose a packet from the flow with least packets left

• FB = Foreground-Background = LAS = Least Attained Service

– Choose a packet from the flow with least packets sent

• MLPS = Multilevel Processor Sharing

– Choose a packet of a flow with less packets sent than a given 
threshold
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Optimality results for M/G/1

• Schrage (1968)

– If the remaining service time is known, then
SRPT optimal minimizing the mean delay E[T]

• Yashkov (1978, 1987)

– If only the attained service time is known, then 
DHR implies that FB optimal minimizing the mean delay E[T]

• Righter et al. (1990)

– If only the attained service time is known, then 
IMRL implies that FB optimal minimizing the mean delay E[T]

• Remark: in this study we consider work-conserving (WC) and non-
anticipating (NA) service disciplines such as FB, MLPS and PS
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MLPS service disciplines (1)

• Definition: MLPS service discipline

– introduced by L. Kleinrock in 70’s

– based on the attained service times

– N+1 levels defined by N thresholds 0 < a
1
< … < a

N
< ∞

– between the levels, a strict priority is applied

– within a level, either FB or PS is applied (we rule out FCFS)

• Examples: Two levels with threshold a

– FB+FB = FB = LAS

– FB+PS = FLIPS 

• Feng and Misra (2003)

– PS+PS = ML-PRIO 

• Guo and Matta (2002), Avrachenkov et al. (2004)
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MLPS service disciplines (2)

• Conditional mean delay for M/G/1/PS+PS [Kleinrock (1976)]:

– where ρ
a
= λE[min{S, a}] and α’(x) satisfies

– with c(x) ≥ 0
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Conditional mean delay E[T(x)]

bounded Pareto service time distribution
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Mean delay E[T]

bounded Pareto service time distribution
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New results

• Theorem 1 [Aalto et al. (2004a)]: 

– DHR implies that 

• Theorem 2 [Aalto et al. (2004b)]: 

– DHR implies that
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Idea of the proof

• Key variable: U
x
= unfinished truncated work with threshold x

– sum of remaining truncated service times min{S,x} of those 
customers who have attained service less than x

• Steps in the proof:

– First step: prove that for any π and π’

– Second step: prove that for any x

– Third step: prove that for any x
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First step (1)

• Proposition 1.1: 

– WC & NA implies that

• Proof:

– Follows straightforwardly from the following result taken from 
Kleinrock (1976):
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First step (2)

• Proposition 1.2: 

– DHR & WC & NA implies that

• Proof:

– Follows from Proposition 1.1

– In particular, if the hazard rate is differentiable, then by 
partial integration (note: U

0
= 0 and E[U

∞

π] independent of π)
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Second step (1): definitions

• Definition: 

– Unfinished truncated work with threshold x at time t:

– A(t) = the number of customers arrived until time t

– S
i
= service time of customer i

– σ
x

π(t) = total service rate of the customers with attained
service time less than x at time t

– N
x

π(t) = the number of customers with attained service time
less than x at time t
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Second step (2): definitions

• Definition: 

– Set Π
x

* of disciplines: 

• Observations:

– For all a ≥ x,

– By definition, for any x, any π* ∈ Π
x

* and any t,
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Second step (3): sample path arguments

• Proposition 2.1: 

– For any a, x, t,

• Proof:

– Clearly, for all a ≥ x,

– On the other hand, for all a ≤ x,

)()()( )(PSPS)(PSFBFB
tUtUtU

a

x

a

xx

++
≤≤

)()( FB)(PSFB
tt

x

a

x
σσ ≡

+

)()( )(PSPS)(PSFB
tt

a

x

a

x

++
≡σσ



17

-1

-0,5

0

0,5

1

1,5

0 2 4 6 8 10 12 14 16 18

Series1

Series2

Series3

Series4

Second step (4): sample path arguments

• We have an example of a, x and t such that 

• But it is another story … 
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Second step (5): mean value arguments

• Proposition 2.2: 

• Proof:

– Based on Kleinrock’s conditional mean delay formula

• Proposition 2.3: 

– For any a and x, 

• Proof:

– Follows from WC and Proposition 2.2 
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Third step (1): definitions

• Definition: (N+1)PS service discipline

– MLPS discipline with N+1 levels

– PS applied in all levels

• Examples: 

– 2PS = PS+PS

– 3PS = PS+PS+PS
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Third step (2): sample path arguments

• Proposition 3.1:

– Let π ∈ (N+1)PS with thresholds {a
1
, … a

N
} and π’ ∈ NPS with

thresholds {a
1
, … a

N−1
}

– Then, for all x ≤ a
N
and t, 

• Proof:

– Tedious but not so hard comparison of individual customers
based on formula 

– N
x
π(t) = the set of customers with attained service time less

than x at time t

– X
i
π(t) = attained service time of customer i at time t
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Third step (3): mean value arguments

• Proposition 3.2: 

– Let π ∈ (N+1)PS with thresholds {a
1
, … a

N
}. 

– Then, for all x > a
N
, 

• Proof:

– Similar to the proof of Proposition 2.2

• Proposition 3.3: 

– Let π ∈ (N+1)PS. Then, for all x, 

• Proof:

– Follows, by induction, from Propositions 2.3, 3.1 and 3.2
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The End


