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Teletraffic application: scheduling elastic flows

Consider a bottleneck link in an IP network
- loaded with elastic flows, such as file transfers using TCP

- if RTTs are of the same magnitude, then approximately fair
bandwidth sharing among the flows

Internet measurements propose that

- a small number of large TCP flows responsible for the largest
amount of data transferred (elephants)

- most of the TCP flows made of few packets (mice)
Intuition says that

- favouring short flows reduces the total number of flows, and,
thus, also the mean file transfer time

How to schedule flows and how to analyse?

- Guo and Matta (2002), Feng and Misra (2003), Avrachenkov et
al. (2004), Aalto et al. (2004a,2004b)




Own references

K. Avrachenkov, U. Ayesta, P. Brown and E. Nyberg:

- "Differentiation between Short and Long TCP Flows:
Predictability of the Response Time"

- IEEE INFOCOM 2004

S. Aalto, U. Ayesta and E. Nyberg-Oksanen:

- "Two-level processor-sharing scheduling disciplines: mean delay
analysis”

- ACM SIGMETRICS - PERFORMANCE 2004

S. Aalto, U. Ayesta and E. Nyberg-Oksanen:
- "M/6/1/MLPS compared to M/G/1/PS"
- INRIA Research Report RR-5219, June 2004
- To appear in Operations Research Letters




Queueing model

Assume that
- flows arrive according to a Poisson process with rate A

- each flow has a random service requirement with distribution
function F(x), density function f(x) and hazard rate A(x)

- service time distribution is of type DHR (decreasing hazard
rate) such as hyperexponential or Pareto

So, we have an M/G/1 queue at the flow level
- customers in this queue are flows (and not packets)
- service time = file size = the total humber of packets to be sent
- attained service time = the number of packets sent
- remaining service time = the number of packets lef+t

Reference model: M/G/1/PS




Scheduling disciplines at flow level

PS = Processor Sharing

- Without any specific scheduling policy at packet level, the
elastic flows are assumed to divide the bottleneck link
bandwidth evenly

SRPT = Shortest Remaining Processing Time
- Choose a packet from the flow with least packets left

FB = Foreground-Background = LAS = Least Attained Service
- Choose a packet from the flow with least packets sent

MLPS = Multilevel Processor Sharing

- Choose a packet of a flow with less packets sent than a given
threshold




MLPS scheduling disciplines

Definition: MLPS scheduling discipline
- introduced in Kleinrock (1976)
- based on the attained service times

- N+l levels defined by N thresholds 0 <a; <... <ay<®

- between the levels, a strict priority is applied
- within a level, FB, PS, or FCFS is applied

Examples: Two levels with threshold a
- FB+FB=FB=LAS
- FB+PS = FLIPS
- Feng and Misra (2003)
- PS+PS = ML-PRIO
* Guo and Matta (2002), Avrachenkov et al. (2004)




Optimality results for M/G/1

Schrage (1968)

- If the remaining service time is known, then
SRPT optimal minimizing the mean delay E[T]

Yashkov (1978, 1987)

- If only the attained service time is known, then
DHR implies that FB optimal minimizing the mean delay E[T]

Remark: in this study we consider work-conserving (WC) and non-
anticipating (NA) service disciplines such as FB, MLPS and PS
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Earlier results: comparison to PS

Aalto et al. (2004q):
- Two levels with FB and PS allowed as internal disciplines

DHR = E[TTB1<E[TFB+PS< grrPS+PS < Py

Aalto et al. (2004b):

- Any number of levels with FB and PS allowed as internal
disciplines

DHR = E[TTB1< E[TMLPS) < gr7P5)
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Idea of the proof

Key variable: U, = unfinished truncated work with threshold x

- sum of remaining truncated service times min{Sx} of those
customers who have attained service less than x

Steps in the proof:
- First step: prove that for any rand 7’

DHR & WC & NA & E[UF]<E[UF]Vx = E[T*]<E[T”]
- Second step: prove that for any x (and ¢)

UEB() <UBPS 1 <uPSPS () & E[UPSTPS1< glUPS

- Third step: prove that for any x (and ¢)
Ut suy™0 & BUYP<BU
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First step

WC & NA implies that

E[T"]= 7 [(E[UT]) h(x)dx
0

DHR & WC & NA implies that
E[UF1<EUT ] VYx = E[T*]<E[T”]

Proof:
- Follows from above

- Inparticular, if the hazard rate is differentiable, then by
partial integration (note: Uy = 0 and E[U "] independent of )

E[T"1-E[T" = j (E[UF - E[UF Dh'(x)dx
O
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Second step (1)

Key problem: splitting the PS level
- 1 =PS+PS(a)
- 7n'=PS
Solution steps:
- By Prop. 10 in Aalto & al. (2004b), for any x < a (and ?)

UZ (1) <UT ()
- Known result for WC disciplines:
E[UZ]=E[UZ

- Based on the known integral equation for the derivative of the
conditional mean delay, for any x > a

SETT (012 LET" (=11,
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Second step (2)

Known integral equation

@'(x) =75 [ (1= Fla+x=y))dy

+1_i)a b a=F(a+x+y)dy+c(x)+1

Lemma needed:
ElUFI<EUT] & EUTISEUT] &

4 BIr™(x)) > %E[T”'(x)] Vx € (a,b)
— E[UF]<E[UF] Vxela,b]

- Based on the known expression:

E[Ux 1= E[Ug 1+ A JE[T" ()]~ F(y))dy

a
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Conditional mean delay E[T(x)]

bounded Pareto file size distribution
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Mean unfinished truncated work E[U,]

bounded Pareto file size distribution
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Mean delay E[T]

bounded Pareto service time distribution
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New results: comparison among MLPS disciplines

Theorem 1 (not really a new one):
- Any number of levels with all original internal disciplines allowed

DHR = E[T'B1< E[TMMPS< grrFCrs;

Theorem 2:
- Any number of levels with all original internal disciplines allowed

- MLPS is derived from MLPS' by splitting a level and copying the
internal discipline

DHR = E[TMPS < grMLPS]

Theorem 3:
- Any number of levels with all original internal disciplines allowed

- MLPS is derived from MLPS' by changing an internal discipline
from PS to FB (or from FCFS to PS)

DHR = E[TMPS < grMLPSY

1Y




Theorem 2: Splitting a PS level (1)

Proof based both on sample path and mean value arguments
Prove that for all x,

LPS'
EUy" < Euyt ]

- The tough nut!
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Theorem 2: Splitting a PS level (2)

Key problem: splitting the highest level. For example,
- MLPS = PS+P5+PS(ay, a)
- MLPS' = PS+P5(ay)
Solution steps:
- By Prop. 6 in Aalto & al. (2004b), for any x < a, and ¢

MLP MLPS'
U (0 < (o)

- Known result for WC disciplines:
MLPS MLPS'
E[Uq |=ElUqy |
- Tough new result based on the known integral equation for the
derivative of the conditional mean delay: for any x > a,

B o)z &AM ()

- Apply Lemma of Slide 14
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Theorem 2: Splitting a PS level (3)

Additional problem: splitting another level. For example,
- MLPS = PS+P5+PS(a, a,)
- MLPS' = PS+PS(a,)

Solution:
- Easily, for any x > a, and ¢

MLP MLPS'
UMEPS () =y MLPS ()

- Truncate service times and prove by the “splitting the highest
level” result that for any x < a, (and 7)

E[UMEPS(§ A ay)] < ETUMIPS (S A ay)]
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Theorem 2: Splitting an FCFS level (1)

Proof based both on sample path and mean value arguments
Prove that for all x,

LPS'
EUy" < Euyt ]

- An easy exercise
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Theorem 2: Splitting an FCFS level (2)

Problem: splitting any level. For example,
- MLPS = FCFS+FCFS+FCFS(ay, a,)
- MLPS' = FCFS+FCFS(a,)

Solution steps:
- By definition, for any ¢

MBS (1) _ /MLPS' ¢y _ g

- Easily, forany x > a, and ¢
UMLPS () - yMLPS'

- Easy result based on the known expression for the conditional
mean delay: for any x < a,

% E[TMLPS (11> % E[TMLPS' (1))

- Apply Lemma of Slide 14
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Theorem 3: Changing an internal discipline

Proof based on sample path arguments
Prove that for all x and ¢,

Uy 0 <y o)

- Tedious but straightforward
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Mean unfinished truncated work E[U,]

mean unfinished truncated work

hyperexponential file size distribution
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Mean delay E[T]

mean delay

45

10

hyperexponential file size distribution

T
— FCFS

—-©—- 2FCFS

threshold

27




Mean delay E[T]

mean delay

Pareto file size distribution
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Mean delay E[T]

Pareto file size distribution
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Mean delay E[T]

Pareto file size distribution
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The End
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