

P2P VoD Systems: Modelling and Performance

Samuli Aalto, Aalto University, Finland Pasi Lassila, Aalto University, Finland Niklas Raatikainen, HIIT, Finland Petri Savolainen, HIIT, Finland Sasu Tarkoma, HIIT, Finland

UCB-IEOR Seminar

13 September 2010 UC Berkeley

- Peer-to-peer systems
- File sharing: fluid model
- File sharing: steady-state analysis
- File sharing: conclusions
- Video-on-demand: fluid model
- Video-on-demand: steady-state analysis
- Video-on-demand: steady-state synthesis
- Video-on-demand: conclusions

Fundamental principle

Client/Server (CS) paradigm

- Clients download content from servers
- Clear distinction between the two roles
- Service capacity remains the same, while load increases
- When too many clients, transfer times explode
- Offered load bounded by this stability limit (for sure!)
- Peer-to-peer (P2P) systems
 - Peers download pieces of content from other peers/seeds and simultaneously upload downloaded pieces to other peers
 - Blurring of roles: peers not only act as clients (when downloading) but also serve other peers (when uploading)
 - Service capacity scales with the offered load
 - No stability limit (for sure?)

Applications

- P2P used commonly for file sharing (e.g. BitTorrent) and live streaming
- P2P video-ondemand (VoD):
 - Alternative to client-server approaches (YouTube)?
 - Under what conditions?

Quality of Service

• P2P file sharing

- Retrieve the whole file as soon as possible
- Retrieve pieces in any order
- Minimize the file transfer time

• P2P streaming

- Retrieve pieces at least at playback rate and in almost sequential order
- Minimize the startup delay (needed to fill the playout buffer)
- P2P video-on-demand
 - Retrieve the whole file
 - Retrieve pieces at least at playback rate and in almost sequential order
 - Minimize the startup delay (needed to fill the playout buffer)

Why performance modelling?

- Scalability
 - Is the system really scalable?
- Stability
 - If not, where is the stability limit for the load?

• Performance

- When stable, is the performance sufficient?

Modelling aspects

- Dynamic population model
 - describing the evolution of the peer population in the P2P system
- Peer arrival process
 - steady arrival rate, smoothly attenuating arrival rate, or flash crowd?
- Efficiency of resource sharing
 - utilization of a peer's upload capacity
 - effect of the piece/peer selection policy
 - number of parallel connections
- Selfishness / altruism
 - part of peers are free-riders that do not want to share upload capacity
- Download and upload rates
 - homogeneous or heterogeneous peer population?
- Number of permanent seeds
 - correspond to servers in the client-server architecture

- Peer-to-peer systems
- File sharing: fluid model
- File sharing: steady-state analysis
- File sharing: conclusions
- Video-on-demand: fluid model
- Video-on-demand: steady-state analysis
- Video-on-demand: steady-state synthesis
- Video-on-demand: conclusions

Model for P2P file sharing

- Life span of a peer consists of two sequential phases:
 - file transfer phase, during which the peers are called leechers
 - sharing phase, during which the peers are called seeds
- Altruistic peers have a longer sharing phase than selfish peers
- Model by Qiu and Srikant (2004):
 - deterministic fluid model (= system of differential equations)
 - describing the system dynamics related to sharing of a single file
 - x(t) = (average) number of leechers at time t
 - y(t) = (average) number of non-permanent seeds at time t

Assumptions

- Steady arrival process described by
 - arrival rate λ to transfer phase (arrivals per time unit)
- Efficiency described by
 - upload utilization ratio η (belonging to (0,1])
- Selfishness described by
 - departure rate γ from service phase (departures per time unit)
- Homogeneous peer population with
 - download rate c (file transfers per time unit) and
 - upload rate μ (file transfers per time unit)
- No permanent seeds

Fluid model

• Switched nonlinear system:

$$\begin{cases} x'(t) = \lambda - \phi(t), \\ y'(t) = \phi(t) - \gamma y(t), \end{cases}$$
(1)

• Aggregate service rate:

$$\phi(t) = \min\{cx(t), \mu(\eta x(t) + y(t))\}.$$
(2)

- Peer-to-peer systems
- File sharing: fluid model
- File sharing: steady-state analysis
- File sharing: conclusions
- Video-on-demand: fluid model
- Video-on-demand: steady-state analysis
- Video-on-demand: steady-state synthesis
- Video-on-demand: conclusions

Steady-state analysis

• Solve the equilibrium of the system by setting x'(t) = y'(t) = 0 in (1):

$$ar{\phi} = \lambda, \ ar{y} = rac{\lambda}{\gamma},$$

- Two cases considered separately:
 - download-constrained system in equilibrium
 - upload-constrained system in equilibrium
- Parameter space divided nicely in two complementary parts each of which has a unique equilibrium solution
 - that are even globally stable by Qiu and Sang (2008)

(3)

Download-constrained system

If

$$c\bar{x} \le \mu(\eta\bar{x} + \bar{y}),\tag{4}$$

then the system is *download-constrained*, and

$$c\bar{x} = \bar{\phi} = \lambda,\tag{5}$$

implying that

$$\begin{cases} \bar{x}_d = \frac{\lambda}{c}, \\ \bar{y}_d = \frac{\lambda}{\gamma}. \end{cases}$$
(6)

The resulting condition for a download-constrained system:

$$\frac{1}{\mu} \le \frac{\eta}{c} + \frac{1}{\gamma}.\tag{7}$$

Upload-constrained system

If

$$c\bar{x} > \mu(\eta\bar{x} + \bar{y}),\tag{8}$$

then the system is *upload-constrained*, and

$$\mu(\eta \bar{x} + \bar{y}) = \bar{\phi} = \lambda, \tag{9}$$

implying that

$$\begin{cases} \bar{x}_u = \frac{\lambda}{\eta} \left(\frac{1}{\mu} - \frac{1}{\gamma} \right), \\ \bar{y}_u = \frac{\lambda}{\gamma}. \end{cases}$$
(10)

The resulting condition for a upload-constrained system:

$$\frac{1}{\mu} > \frac{\eta}{c} + \frac{1}{\gamma}.\tag{11}$$

Deterministic model vs. stochastic simulations

Figure 1: Experiment 1 : The evolution of the number of seeds as a function of time

Figure 2: Experiment 1 : The evolution of the number of downloaders as a function of time

Source: Qiu and Srikant (2004)

- Peer-to-peer systems
- File sharing: fluid model
- File sharing: steady-state analysis
- File sharing: conclusions
- Video-on-demand: fluid model
- Video-on-demand: steady-state analysis
- Video-on-demand: steady-state synthesis
- Video-on-demand: conclusions

Conclusions from the P2P file sharing model

- Scalability
 - System scalable in the whole parameter space by (6) and (10), in particular for any $\eta > 0$
- Stability
 - Consequently, system stable for any $\lambda > 0$
- Performance
 - By Little's formula, the mean file transfer time is

$$T = \frac{\bar{x}}{\lambda} = \max\{\frac{1}{c}, \frac{1}{\eta}\left(\frac{1}{\mu} - \frac{1}{\gamma}\right)\} \le \max\{\frac{1}{c}, \frac{1}{\eta\mu}\} \approx \max\{\frac{1}{c}, \frac{1}{\mu}\}.$$
 (12)

- Thus, no real problems in performance if reasonable download and upload rates with respect to the mean file size
- The last approximation justified for the file sharing application (mainly due to the free retrieving order of pieces)

- Peer-to-peer systems
- File sharing: fluid model
- File sharing: steady-state analysis
- File sharing: conclusions
- Video-on-demand: fluid model
- Video-on-demand: steady-state analysis
- Video-on-demand: steady-state synthesis
- Video-on-demand: conclusions

Model for P2P VoD

- Life span of a peer consists of two overlapping phases:
 - file transfer phase, during which the peers are called leechers
 - watching phase, starting immediately after the initial buffering delay
- Altruistic peers become seeds after the file transfer phase if the watching phase still continues
- Model by Aalto et al. (2010):
 - deterministic fluid model (= system of differential equations)
 - describing the system dynamics related to sharing of a single video file
 - x(t) = (average) number of leechers at time t
 - y(t) = (average) number of non-permanent seeds at time t

Assumptions (1)

- Steady arrival process described by
 - arrival rate λ (arrivals per time unit)
- Efficiency described by
 - upload utilization ratio η (belonging to (0,1])
- Altruism described by
 - probability ζ (for a peer to become a seed)
- Homogeneous peer population with
 - download rate c (file transfers per time unit) and
 - upload rate μ (file transfers per time unit)
- Number of permanent seeds = k (belonging to {0,1,2,...})

Assumptions (2)

- Startup delay negligible (if video sufficiently long)
 - Thus, the transfer phase and the playback phase start essentially at the same time
- Video watched at (fixed) playback rate
 - Total watching time denoted by z
 - Natural requirement: z > 1/c (since transfer rate always bounded by c)
- Playback quality problems if the transfer phase takes longer than z
 - In this case, the playback phase ends as soon as the transfer is completed
- Selfish peers stay in the system until the end of the transfer phase while altruist peers stay until the end of the playback phase
 - but no longer, which is a worst case scenario

Fluid model

• Switched nonlinear system:

$$\begin{cases} x'(t) = \lambda - \phi(t), \\ y'(t) = \zeta \phi(t) - \frac{y(t)}{z - x(t)/\lambda}, \end{cases}$$
(13)

• Aggregate service rate:

$$\phi(t) = \min\{cx(t), \mu(\eta x(t) + y(t) + k)\}.$$
(14)

- Peer-to-peer systems
- File sharing: fluid model
- File sharing: steady-state analysis
- File sharing: conclusions
- Video-on-demand: fluid model
- Video-on-demand: steady-state analysis
- Video-on-demand: steady-state synthesis
- Video-on-demand: conclusions

Steady-state analysis

• Solve the equilibrium of the system by setting x'(t) = y'(t) = 0 in (13):

$$\begin{cases} \bar{\phi} = \lambda, \\ \bar{y} = \zeta \lambda (z - \bar{x}/\lambda), \end{cases}$$
(15)

- Two cases considered separately:
 - download-constrained system in equilibrium
 - upload-constrained system in equilibrium
- Multiple solutions found
- Local stability analysis used to rule out some of them

Download-constrained system

If

$$c\bar{x} \le \mu(\eta\bar{x} + \bar{y} + k),\tag{16}$$

then the system is *download-constrained*, and

$$c\bar{x} = \bar{\phi} = \lambda,\tag{17}$$

implying that

$$\begin{cases} \bar{x}_d = \frac{\lambda}{c}, \\ \bar{y}_d = \zeta \lambda \left(z - \frac{1}{c} \right). \end{cases}$$
(18)

The resulting condition for a download-constrained system:

$$\frac{1}{\mu} \le \frac{\eta}{c} + \zeta \lambda \left(z - \frac{1}{c} \right) + \frac{k}{\lambda}.$$
(19)

Upload-constrained system (1)

If

$$c\bar{x} > \mu(\eta\bar{x} + \bar{y} + k), \tag{20}$$

then the system is *upload-constrained*, and

$$\bar{\phi} = \mu(\eta \bar{x} + \bar{y} + k), \tag{21}$$

implying that

$$\begin{cases} \bar{x}_u = \frac{\lambda}{\eta - \zeta} \left(\frac{1}{\mu} - \zeta z - \frac{k}{\lambda} \right), \\ \bar{y}_u = \frac{\zeta \lambda}{\eta - \zeta} \left(-\frac{1}{\mu} + \eta z + \frac{k}{\lambda} \right). \end{cases}$$
(22)

The resulting conditions for a upload-constrained system: $\eta \neq \zeta$ and

$$\begin{cases} \frac{1}{\mu} > \frac{\eta}{c} + \zeta \left(z - \frac{1}{c} \right) + \frac{k}{\lambda}, & \text{if } \eta > \zeta, \\ \frac{1}{\mu} < \frac{\eta}{c} + \zeta \left(z - \frac{1}{c} \right) + \frac{k}{\lambda}, & \text{if } \eta < \zeta. \end{cases}$$
(23)

Upload-constrained system (2)

Additionally, for the solution to be meaningful, we require that $\bar{x}_{u} > 0$ and $\bar{y}_{u} > 0$. The former one follows from (23), but the latter one leads to the following additional constraints:

$$\begin{cases} \zeta < \frac{1}{z} \left(\frac{1}{\mu} - \frac{k}{\lambda} \right) < \eta, & \text{if } \eta > \zeta, \\ \eta < \frac{1}{z} \left(\frac{1}{\mu} - \frac{k}{\lambda} \right) < \zeta, & \text{if } \eta < \zeta, \end{cases}$$
(24)

which implies that $0 < \frac{1}{\mu} - \frac{k}{\lambda} < z$ is a necessary condition for the existence of a non-negative upload constrained solution.

Fig. 1. Left panel: Download-constrained solution with +/+ expressing that $\bar{x}_d > 0$ and $\bar{y}_d > 0$ in this area. Right panel: Upload-constrained solution with +/+ [+/-] expressing that $\bar{x}_u > 0$ and $\bar{y}_u > 0$ [$\bar{y}_u < 0$] in this area.

Summary of the steady-state analysis (2)

Fig. 2. Solution areas, where DL [UL] refers to a positive download [upload] constrained solution. The horizontal bordering line satisfies $\frac{1}{\mu} = \frac{\eta}{c} + \zeta(z - \frac{1}{c}) + \frac{k}{\lambda}$ and the vertical bordering line satisfies $\eta = \frac{1}{z}(\frac{1}{\mu} - \frac{k}{\lambda})$.

- Peer-to-peer systems
- File sharing: fluid model
- File sharing: steady-state analysis
- File sharing: conclusions
- Video-on-demand: fluid model
- Video-on-demand: steady-state analysis
- Video-on-demand: steady-state synthesis
- Video-on-demand: conclusions

Steady-state synthesis (1)

Fig. 1. Left panel: Solution areas, where DL [UL] refers to a positive download [upload] constrained solution. The horizontal bordering line satisfies $\frac{1}{\mu} = \frac{\eta}{c} + \zeta(z - \frac{1}{c}) + \frac{k}{\lambda}$ and the vertical bordering line satisfies $\eta = \frac{1}{z}(\frac{1}{\mu} - \frac{k}{\lambda})$. Right panel: Steady state synthesis.

Steady-state synthesis (2)

• If $\eta < \frac{1}{z} \left(\frac{1}{\mu} - \frac{k}{\lambda} \right)$ • If $\eta > \frac{1}{z} \left(\frac{1}{\mu} - \frac{k}{\lambda} \right)$

transfer rate < playback rate, i.e. playback quality problems

• Number of leechers and seeds well estimated by (x_0, y_0) :

$$\begin{cases} \bar{x}_0 = x_u|_{\zeta=0} = \frac{\lambda}{\eta}(\frac{1}{\mu} - \frac{k}{\lambda}), \\ \bar{y}_0 = y_u|_{\zeta=0} = 0. \end{cases}$$

transfer rate > playback rate, i.e. sufficient playback quality

• If further

$$\frac{1}{\mu} \leq \frac{\eta}{c} + \zeta \lambda \left(z - \frac{1}{c} \right) + \frac{k}{\lambda}.$$

DL constrained system (x_d, y_d)

• Otherwise UL constrained system (x_u, y_u)

Deterministic model vs. stochastic and BitTorrent simulations

Fig. 4. Comparison of the fluid model (solid smooth line) against the stochastic model (dashed line) and the BitTorrent simulation (solid jagged line) with $\zeta = 0.9$ (upper panel) and $\zeta = 0.3$ (lower panel).

- Peer-to-peer systems
- File sharing: fluid model
- File sharing: steady-state analysis
- File sharing: conclusions
- Video-on-demand: fluid model
- Video-on-demand: steady-state analysis
- Video-on-demand: steady-state synthesis
- Video-on-demand: conclusions

Conclusions from the P2P VoD model

- Scalability
 - System scalable in the whole parameter space by the synthesis, in particular for any $\eta > 0$
- Stability
 - Consequently, system stable for any $\lambda > 0$
- Performance
 - Playback quality problems if the efficiency parameter η is too small
 - On the other hand, performance even "scales" (= good quality for all λ) if the efficiency parameter η is sufficiently large
 - Transfer rates for DL and UL constrained cases:

$$R_d = c$$
$$1/z < R_u < c$$

References

- D. Qiu and R. Srikant, Modeling and performance analysis of BitTorrent like peer-to-peer networks, in ACM SIGCOMM, pp. 367-378, 2004.
- [2] D. Qiu and W. Sang, Global stability of peer-to-peer file sharing systems, Computer Communications, 31, 2, 212-219, 2008.
- [3] S. Aalto, P. Lassila, N. Raatikainen, P. Savolainen, and S. Tarkoma, P2P Video-on-Demand: Steady state and scalability, to appear in *IEEE Globecom*, 2010.