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Multicast network model

• Setup (consider e.g. distribution of TV or radio channels):
– Unique service center offers a variety of channels

– Each channel i ∈ I is delivered by
a multicast connection with dynamic membership

– Each multicast connection uses the same multicast tree
consisting of links j ∈ J (⇒ fixed routing)

– Service center located at the root node of the multicast tree

– Users u ∈ U located at the leaf nodes of the multicast tree
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Multicast connections with dynamic membership

• U = new user of channel ‘red’
• A = connection point for user U
• SC = (unique) service centre
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Link states

• Consider first a network with infinite link capacities
• Let

• Detailed link state (for any link j ∈ J)

• Link state (for any link j ∈ J)
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Stationary state probabilities in a network
with infinite link capacities

• Assume that the probabilities of the detailed leaf link states
(which depend on the user population model adopted) are
known, and denote them by

– where y ∈ SY = {0,1} I

• Due to infinite link capacities and independent behaviour of the
user populations, it follows that the probabilities of the detailed
network states are also known:

– where x = (yu; u ∈ U) ∈ Ω := {0,1} U×I
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Stationary state probabilities in a network
with finite link capacities

• If the Truncation Principle applies (which depends on the user
population model adopted), then

– where x = (yu; u ∈ U) ∈ and
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Blocking probability

• Bt
ui = time blocking for user population u and connection i

= stationary probability of such network states in which
a new request originating from user population u to join
connection i would be rejected due to lack of link capacity

• How to calculate Bt
ui?
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Calculation of blocking probabilities (1)

• 1st possibility: closed form expression

– where

• Problem : computationally extremely complex
– exponential growth both in U and I
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Calculation of blocking probabilities (2)

• 2nd possibility: recursive algorithm exact (see [4,5])

– where probabilities Qj
ui(y) and Qj (y) can be calculated recursively

(from the common link J back to leaf links u)

• Problem : computationally complex
– linear growth in U but (still) exponential growth in I
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Calculation of blocking probabilities (3)

• 3rd possibility: new recursive algorithm combi

– where probabilities Qj
ui(n) and Qj (n) can be calculated recursively

(from the common link J back to leaf links u)

• Problem : computationally resonable but …
… restrictive assumptions have to be made!
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Restrictive assumptions

• (i) All receivers have a uniform preference distribution when
making a choice (to join) between the multicast connections

• (ii) The mean holding time for any receiver to be joined to any
connection is the same

• (iii) The capacity needed to carry any multicast connection in
any link is the same

– Make connections symmetric!

– Users and network may still be “unsymmetrical”
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Basic results (1)

• Connections symmetric ⇒
– Whenever there are n connections active on any leaf link u ∈ U,

each possible index combination { i1,…,in} is equally probable

• This and the independence of the user populations ⇒
– Whenever there are n connections active on any link j ∈ J,

each possible index combination { i1,…,in} is equally probable

• Consequence:
– Combinatorics can be utilized
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Basic results (2)

• If link j has two downstream neighbouring links (s,t), then

• Assume (here) that Ns = k ≥ l = Nt. Then
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Algorithm (1)

• Define (for all j ∈ J):

• Then time blocking probability for class (u,i) is
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Algorithm (2)

• Recursion 1 to calculate the denominator Qj (n):

– where probabilities πj(n) = P{ Nj = n} depend on the chosen user
population model

• Truncation operator 1:

– Let f be any real-valued function defined on S= {0,1,…,I} .

– Then define
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Algorithm (3)

• Definition of operator ⊗:
– Let f and g be any real-valued function defined on S= {0,1,…,I} .

– Then define

• where
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Algorithm (4)

• Key result:
– If link j has two downstream neighbouring links (s,t), then

– In other words,

– Proved by a “sampling without replacement” argument!

∑ ∑
= −=

====
n

k

n

knl
tsj lNPkNPlknsnNP

0
}{}{),|(}{

)]([)( nn tsj πππ ⊗=

j
s

t



18

( )






∈⋅
=

= ⊗
∈

}{\),]([

),]([

\
)(

)(

uRjnQQT

ujnT
nQ

uk
RNk

ui
jDj

i
uu

ui
j

uj
u

�

� π

Algorithm (5)

• Recursion 2 to calculate the numerator QJ
ui(n) :

– where probabilities πu
(i)(n) = P{ Nu

(i) = n} depend on the chosen
user population model

• Truncation operator 2:

– Let f be any real-valued defined on S= {0,1,…,I} .

– Then define
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Algorithm (6)

• Definition of operator ⋅ :

– Let f and g be any real-valued function defined on S= {0,1,…,I} .

– Then define

• where
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Algorithm (7)

• Key result:
– If link j has two downstream neighbouring links (s,t), and

link s belongs to the interesting route, i.e. s = Du(j), then

– In other words,

– Proved by another “sampling without replacement” argument!
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Calculation of call blocking probabilities

• In the paper, a similar algorithm is derived for calculating call
blocking probabilities

• Dependence on the user population model has to be taken
carefully into account

– Infinite user population model:

• call blocking Bc
ui equals time blocking Bt

ui
– Single user model:

• call blocking Bc
ui equals time blocking in a modified network

where user u is removed
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Example network 1 (figure 2 in [4])
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Processing time T vs. nr of multicast connections I
(normal scale)
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Example network 2 (figure 5 in [5])
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THE END


