
required.ppt

Fourth Informs Telecommunications Conference, 8-11 March 1998, Boca Raton

Required work in the M/M/1 queue

Samuli Aalto
Helsinki University of Technology

Finland



Helsinki University of Technology

Samuli Aalto: Required work in the M/M/1 queue

Contents

• Motivation: Required work. Where do we need it?
• Main result: Equilibrium distribution.
• Proof: Reversibility revisited.



Helsinki University of Technology

Samuli Aalto: Required work in the M/M/1 queue

Definitions (the FIFO case)

• Unfinished work , U (in time units)

– service times of the waiting customers plus
– residual service time of the served customer

• Finished work , V (in time units)

– elapsed service time of the served customer

• Required work , Z = U + V (in time units)

– service times of all the cusomers in the system
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Motivating problem

• How to allocate (and release) memory for variable
length packets e.g. in the output buffer of a IP
router?

• The following three allocation schemes are
considered:
– static
– fully dynamic
– dynamic
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Static allocation scheme

• allocate a memory block of maximum (i.e. fixed)
length for a packet when it arrives

• release the block as a whole as soon as the packet
has been transmitted (totally)

• light processing but wasteful memory usage
• in queueing terms, the interesing variable is

– the number of customers in the system, N
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Fully dynamic allocation scheme

• allocate a memory block of actual (i.e. variable)
length for a packet when it arrives

• release the block gradually as the transmission of
the packet proceeds

• efficient memory usage but heavy processing
• in queueing terms, the interesting variable is

– the amount of unfinished work, U
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Dynamic allocation scheme

• allocate a memory block of actual (i.e. variable)
length for a packet when it arrives

• release the block as a whole as soon as the packet
has been transmitted (totally)

• a compromise between the former two:
not so heavy processing and still reasonably efficient
memory usage

• in queueing terms, the interesting variable is

– the sum of the unfinished and finished work, U+V

• this is called the required work , Z
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Three memory allocation principles

packet
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M/M/1 basics

• Assume
– stable M/M/1 queue with FIFO queueing discipline

• Unfinished work, U

• Finished work, V
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Main result (1)

• Required work, Z = U + V

• Note that U and V are not independent
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Main result (2)
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Interpretation

• Here α1 + α2 = 1. Thus

where I, J, ζ0, ζ1, ζ2 are independent with

• In addition, θ1θ2 = 1 and α1/θ1 + α2 /θ2 = 1.
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Corollary
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Expectation
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Coefficient of variation
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Proof (1)

• Essential difficulty in deriving the distribution of Z:

– dependence between N and V
• Let

F v P N n V vn( ) { , }= = ≤
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Proof (2)

• Given N and V, the required work Z is the sum of the
following conditionally independent components

– N-1 service times of the waiting customers

– residual service time of the served customer

– elapsed service time V of the served customer

• Thus,
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Proof (3)

• (N(t), V(t)) constitutes a Markov process
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Proof (4)

• Balance equations

• Boundary values

• Solution

• Apply this to (2) to get the Laplace transform (1).
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Conditional distribution

• It follows that

• Thus,

where all Xi ~ Exp(µ) and Y ~ Exp(λ) are
independent

• This can be explained by a reversibility argument
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Reversibility argument

• The elapsed service time in the original process
corresponds to the time until

– a new customer arrives (Y) or

– the queue becomes empty (X1+…+XN)

(whichever occurs first) in the reversed process
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Summary

• The M/M/1 queue with the FIFO queueing discipline
was considered.

• Introduction of a new variable, the required work, was
motivated by a dynamic memory allocation scheme.

• Equilibrium distribution of the required work was
derived.

• Reversibility argument was utilized.



Helsinki University of Technology

Samuli Aalto: Required work in the M/M/1 queue

LOPPU


