EURO XVI, 16th European Conference on Operational Research, Brussels, Belgium, July 12-15, 1998

Optimal Control of Finite Capacity Batch Service Queues with General Holding Costs

Samuli Aalto Helsinki University of Technology Finland

euroxvi.ppt

Background

- Ph.D. Thesis (University of Helsinki)
 - S. Aalto (1998) "Studies in Queueing Theory"
- The part concerning the optimal control of batch service queueing systems based on two papers:
 - S. Aalto (1997) Reports of the Department of Mathematics 166, University of Helsinki
 - Poisson arrivals
 - S. Aalto (1998) to appear in Math Meth Oper Res
 - compound Poisson arrivals

- Batch service queue
- Control problem
- Known results
- New results
- Open questions

Helsinki University of Technology

Queueing models considered

- M/G(Q)/1
 - Poisson arrivals
 - generally distributed IID service times
 - single server with service capacity Q
- M^X/G(Q)/1
 - compound Poisson arrivals
 - generally distributed IID service times
 - single server with service capacity Q

Samuli Aalto: Optimal Control of Batch Service Queues

Helsinki University of Technology

- Batch service queue
- Control problem
- Known results
- New results
- Open questions

- should be admissible

- Holding costs: Z(t)
 - described by the cost rate process Z(t)
 - cost rate depends on the number of waiting customers and the times they have been waiting
 - called linear if

Z(t) = h(X(t))

- Serving costs: K + cB_n
 - K per each service batch
 - c per each customer served

Objective function

- Minimize
 - the long run average cost ϕ^{π} or
 - the discounted cost $V_{\alpha}^{\ \pi}$
- Among all the admissible operating policies π

- Batch service queue
- Control problem
- Known results
- New results
- Open questions

Known results

	Infinite service capacity Q = ∞	Finite service capacity Q < ∞
Linear holding costs z = h(x)	Case A : - Deb & Serfozo (1973) - Deb (1984)	Case B: - Deb & Serfozo (1973)
General holding costs z = h(x,w)	Case C : - Weiss (1979) - Weiss & Pliska (1982)	Case D

Helsinki University of Technology

Case A: linear holding costs & infinite service capacity

- Deb & Serfozo (1973) Adv Appl Prob
 - Poisson arrivals
 - average cost & discounted cost cases
- Deb (1984) Opsearch
 - compound Poisson arrivals
 - discounted cost case only
- Result:
 - h(x) is "uniformly increasing"

=> a queue length threshold policy is optimal

Case B: linear holding costs & finite service capacity

- Deb & Serfozo (1973) Adv Appl Prob
 - Poisson arrivals
 - average cost & discounted cost cases
- Result:
 - h(x) is "uniformly increasing"
 - => a queue length threshold Q-policy is optimal

Case C: general holding costs & infinite service capacity

- Weiss (1979) Modeling and Simulation, Weiss & Pliska (1982) Opsearch
 - compound Poisson arrivals
 - average cost case only
- Result:
 - Z(t) is increasing (without limits when service is postponed forever)

=> a cost rate threshold policy is optimal

Declaration for case C

- Infinite capacity
 => queue can be emptied at every service epoch
 => no reason to watch over the queue length X(t)
- Cost rate Z(t) increasing (until the next service)
 => cost rate threshold policies are optimal
- Semi-Markov decision technique cannot be applied:
 system needs to be reviewed continuously
- Each service starts a new regeneration cycle (as regards the **stationary** policies)
- Sufficient to watch over the cost rate process Z(t)

- Batch service queue
- Control problem
- Known results
- New results
- Open questions

New results

	Infinite service capacity Q = ∞	Finite service capacity Q < ∞
Linear	Case A :	Case B :
holding costs	- Deb & Serfozo (1973)	- Deb & Serfozo (1973)
z = h(x)	- Deb (1984)	- Deb (1984)
General	Case C :	Case D :
holding costs	- Weiss (1979)	- Aalto (1997)
z = h(x,w)	- Weiss & Pliska (1982)	- Aalto (1998)

Case D: General holding costs & finite service capacity (1)

- Aalto (1997) Univ of Helsinki
 - Poisson arrivals
 - average cost & discounted cost cases
- Result:
 - FIFO queueing discipline
 - consistent holding costs and
 - no serving costs included (K = c = 0)
 - => a cost rate threshold Q-policy is optimal

• Examples:
$$h(x,w) = x$$
, $h(x,w) = w_1 + ... + w_x$

Helsinki University of Technology

- Let ϕ^{π} denote the aver. cost of a stationary policy π
- Then the cost rate threshold Q-policy $\pi_Q(\phi^{\pi})$ with threshold ϕ^{π} is better in the average cost sense
- Let $V_{\alpha}^{\ \pi}$ denote the disc. cost of a stationary policy π
- Then the cost rate threshold Q-policy $\pi_Q(\alpha V_{\alpha}^{\pi})$ with threshold αV_{α}^{π} is better in the discounted cost sense

Case D: General holding costs & finite service capacity (2)

- Aalto (1998) Math Meth Oper Res
 - compound Poisson arrivals
 - discounted cost case only
- Result:
 - FIFO queueing discipline
 - consistent holding costs,
 - no serving costs included (K = c = 0) and
 - bounded arrival batches
 - => a general threshold Q-policy is optimal

finite capacity => min{X(t),Q}

Samuli Aalto: Optimal Control of Batch Service Queues

Helsinki University of Technology

- Batch service queue
- Control problem
- Known results
- New results
- Open questions

Case D: General holding costs & finite service capacity

- How to get rid of the boundedness assumption concerning the arrival batches?
- If no serving costs are included (K = 0, c = 0),
 - Is it true that similar results are valid in the average cost case as in the discounted cost case?
- If serving costs are included (K > 0, c > 0),
 - What is the optimal policy in the average cost or discounted cost sense?

Samuli Aalto: Optimal Control of Batch Service Queues

Helsinki University of Technology