On the Optimal Trade-off between
SRPT and Opportunistic Scheduling

Samuli Aalto, Aleksi Penttinen, Pasi Lassila, Prajwal Osti
Aalto University, Finland

SIGMETRICS’11
7—-11 June 2011
San Jose, CA



QOutline

 Introduction

« Optimal scheduling problem
e Solution

 Examples

« Lower and upper bounds

e Summary

,, Aalto Umversuy
Sc hool fEI ctrical
Engineerin 2



Research problem

« Downlink data transmission
In a cellular system
 Traffic = elastic flows
— file transfers using TCP
« Scheduling decisions in each
time slot
— time scale of milliseconds

« Traffic dynamics in a longer
time scale
— time scale of seconds+

« Optimal scheduler for flow-level
performance?
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: Hu et al. (2004)
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Flow-level performance

* Performance is expressed as throughput or flow delay

— Mean flow delay would describe how long file transfers on the
average last

* Importance of the time scale

— Users do not care about delays of individual packets, but only
about the total time to transmit a file of a given size

* Flow-level models try to characterize the system at the
time-scale where users experience the performance
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Schedulers

« Channel-aware schedulers
— Scheduling based on channel information
— Scheduler may prefer users with a good channel
— Opportunistic scheduling
— Examples: MR, PF

« Size-based schedulers
— Scheduling based on flow size information
— Scheduler may prefer users with a short flow
— Example: SRPT
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Fundamental trade-off

e Opportunistic scheduling
— Select the user that has instantaneously good channel

— Aggregate mean service rate increases with the number of
users (opportunistic gain, multiuser diversity gain)

— However, a user with a long remaining service time blocks the
others

« SRPT
— Select the user that has the least remaining service time
— The number of flows is reduced most efficiently

— However, opportunistic gain is lost due to suboptimal channel
(later on also due to a smaller number of flows)
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Combining opportunistic and size-based
scheduling

« Tsybakov (2003)
— Dynamic programming approach (time-slot scale)

 Hu et al. (2004)
— Heuristic approach: TAOS (time-slot scale)

« Lassila and Aalto (2008)
— Another heuristic approach: SRPT-P (time-slot scale)

« Sadiq and de Veciana (2010)

— Time-scale separation (flow scale)

— Transient system

— Optimality result for nested polymatroids

— Cf. optimality of SRPT-FM, Raj et al. (2004)
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Our contribution

« Time-scale separation (flow scale)
— In fact, abstract capacity regions

e Transient system

« Optimality result for compact and symmetric capacity
regions
— Includes nested polymatroids

— requires an implicit condition related to capacity regions
— optimal policy applies the SRPT-FM principle

« Conservative upper bound for the mean delay
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Model

« Service system where the service capacity is
adjustable depending on the current number of jObS

« When there are K jobs with sizes

$12...2 Sk
choose a rate vector

Ck = (Ck1:---1Ckk ) € Ck

and serve job | with rate Cy;
. Capacity regions Ck compact and symmetric
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ransient system

« Assume that there are n jobs in the system at time 0
 What is the optimal way to make the system empty?

* Qur objective: Minimize the mean delay (or flow time)

» Define: Flow time (or total completion time) for policy =

7T n 7T
- Zi:ﬂi
where {; is the completion time of job i
« Define: Operating policies

[T, ={7r =(cq,...,Cp) : Ck € Cy for all k}
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Trivial case: One job

,, Aalto Umversuy
School fEI ctrical
Engineerin 13



Simple case: Two jobs

« If job 2 (i.e., the shorter one) completes first, th;enu

TP =22 4 2 ¢, )1 = %2 2_%+%~
2e, B¢ Ca1) = 01) :

 Otherwise

T7 =21 +(sz—ic22) L= A2y %
C21 o C2 q g
« Let us minimize (a function not depending on sizes!)

C
g(Cc2) =é(2—§), Cr €Cy
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Simple case: Two jobs (cont.)

« (Geometric interpretation
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Simple case: Two jobs (cont.)

o Define:
* * _
Gy =g(Cc2)= min g(cy)
C2€C2
* Result: Now if
x x
G]_ < GZ

then (due to the symmetry property!)

* ) 7 * * * * * * *
T = min T” =$,G, +5G;, # =(¢1,C5), Co1 <Coo
7Z'€H2
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Simple case: Two jobs (cont.)

T > min{szg (021, C22) +%G1,50 (C22 ’ C21) + SZG].}
> min{s,G, + Gy , G, + 5,6 }
= 32(3; it sle [since Gg > Gf ]

T * * * _ * *
T% =550(C21,C02) +$G [since Cpp = Coq]

x* x*
= 82G2 + S]_Gl
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Simple case: Two jobs (cont.)

* Required additional result:

Te-Hsle-"De
C22 G C21 G

12— ) <cpp2-2) =
G G
* * 031 CZz
(Coo —C21)(2-"5-"5)20<
GG G

C22(Cp —C21)(G2 —G1) 20
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Simple case: Two jobs (cont.)

« Equivalent condition: 20—
* *
G >G5 ©
*
Coq1 +Coo < 2 - ]
- Suffient condition: ,
nested capacity regions
- Note: However, capacity X .
regions are not required to be o o5 10 s

nested
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General case: n jobs

» Define (recursively):

Gy = min g (Ck), gk(Ck)—C (k > K ekiG J
CkECk kk
* Theorem 1: If
Gf<...<G:
then
* ) T n * * * *
T =mnT =Zk:15ka, 7T =(C1,...,Cn)

7Z'€HZ
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General case: n jobs (cont.)

e |n addition,

Cr1 <...<Cy forallk

« Thus, the optimal policy applies the SRPT-FM principle:
— the shortest job is served with the highest rate,
— the second shortest job is served with the second highest rate,
— efc.

* Note also that the optimal rate vector does not depend
on the absolute sizes (only on their order)
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General case: n jobs (cont.)

* Necessary condition:

Gf<...<G; =  Ck1+...+Cyk <k-Cf
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Single-server queue

« Consider capacity regions

Cy ={cy =0: Z‘}zlckj <1}

* Now
G; =K (increasing in k)
* {O, J <Kk ) ...
Ckj = (increasing in |)
1, =
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Infinite-server queue

« Consider capacity regions

Cy ={cy =0: Zijzlckj <K, Ckj <1Vj}

* Now
G; =1 (constant)

c[:j =1 (constant)
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Alpha-balls

« Let o > | and consider capacity regions

Cy ={cy =0: ZJ_]_C <1}

 Now
a—1

Gy = (kal —(k —1)alj " (increasing in k)

* GT -1 _ _ . _
Ckj =| & (Increasing in |)
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Symmetric polymatroids

:5,‘, T

* Let y; <... < )4 and consider capacity region§‘
={cx =0: Ziel Ckij < it | <{1,...,n}}

* Theorem 2: It 1 > =11 > ... > ¥y — -1, then

Gf <...< G: (increasing in k)
Ckj = Yk—j+1— Yk—j (Increasingin J)

« Optimality result of Sadig and de Veciana (2010)
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Optimistic (lower) bound

A!
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“““ (1_2 > .

Symmetric OPS-limited
polytopes

+ Let y; < ... < %, and consider capacity regions for which "\

Ck IS the convex hull of all permutations of rate vectors
0,..070, .71y j=o0,. .k
J J
» Theorem 3:1f G;* < ... <G, %, then

N VoV
Ck — (0,0,—l(,,—l()
Jk J

« SRPT-OPS policy introduced in Sadiq and de Veciana
(2010)
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Conservative (upper) bound
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Summary

« Assumptions:
— Abstract capacity regions (time-scale separation)
— Transient system

* Results:
— Optimality result for compact and symmetric capacity regions

— Optimal rate vectors (that do not depend on absolute sizes of
the flows) for each phase

— Conservative upper bound for the mean delay
* Open questions:
— Is it possible to make the implicit condition explicit?
— Any idea about the truly dynamic system with random arrivals?
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The End
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New results:
Making the implicit condition explicit

« The implicit condition is, indeed, satisfied under the
assumption that the channel conditions for different
users are independent and identically distributed.

 In addition, there is a recursive algorithm for the optimal
flow-level rate vectors that directly utilizes the time slot
level channel model.

 Itis also possible to determine explicitly how to
Implement the optimal rate vectors in the time slot level
opportunistic scheduler.

« But this is another story ...
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