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Research problem

• Downlink data transmission 

in a cellular system

• Traffic = elastic flows

– file transfers using TCP

• Scheduling decisions in each 

time slot

– time scale of milliseconds

• Traffic dynamics in a longer 

time scale

– time scale of seconds+

• Optimal scheduler for flow-level 

performance?
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Source: Hu et al. (2004)



Flow-level performance

• Performance is expressed as throughput or flow delay

– Mean flow delay would describe how long file transfers on the 

average last

• Importance of the time scale

– Users do not care about delays of individual packets, but only 

about the total time to transmit a file of a given size

• Flow-level models try to characterize the system at the 

time-scale where users experience the performance
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Schedulers

• Channel-aware schedulers

– Scheduling based on channel information

– Scheduler may prefer users with a good channel

– Opportunistic scheduling

– Examples: MR, PF

• Size-based schedulers

– Scheduling based on flow size information

– Scheduler may prefer users with a short flow

– Example: SRPT
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Fundamental trade-off

• Opportunistic scheduling
– Select the user that has instantaneously good channel

– Aggregate mean service rate increases with the number of 
users (opportunistic gain, multiuser diversity gain)

– However, a user with a long remaining service time blocks the 
others

• SRPT
– Select the user that has the least remaining service time

– The number of flows is reduced most efficiently

– However, opportunistic gain is lost due to suboptimal channel 
(later on also due to a smaller number of flows)
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Combining opportunistic and size-based

scheduling
• Tsybakov (2003)

– Dynamic programming approach (time-slot scale)

• Hu et al. (2004)
– Heuristic approach: TAOS (time-slot scale)

• Lassila and Aalto (2008)
– Another heuristic approach: SRPT-P (time-slot scale)

• Sadiq and de Veciana (2010)
– Time-scale separation (flow scale)

– Transient system

– Optimality result for nested polymatroids

– Cf. optimality of SRPT-FM, Raj et al. (2004)
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Our contribution

• Time-scale separation (flow scale)

– In fact, abstract capacity regions

• Transient system

• Optimality result for compact and symmetric capacity

regions

– includes nested polymatroids

– requires an implicit condition related to capacity regions

– optimal policy applies the SRPT-FM principle

• Conservative upper bound for the mean delay
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Model

• Service system where the service capacity is 

adjustable depending on the current number of jobs

• When there are k jobs with sizes

choose a rate vector

and serve job i with rate cki

• Assume: Capacity regions Ck compact and symmetric
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Transient system

• Assume that there are n jobs in the system at time 0

• What is the optimal way to make the system empty?

• Our objective: Minimize the mean delay (or flow time)

• Define: Flow time (or total completion time) for policy p

where ti is the completion time of job i

• Define: Operating policies
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Trivial case: One job

• Define: 

• Now

13

1
*
1

1*
1

11
*
1

max     , ccG
Ccc 



)(   ,min *
1

**
11

*

1

c


pp

p
GsTT



Simple case: Two jobs

• If job 2 (i.e., the shorter one) completes first, then

• Otherwise

• Let us minimize (a function not depending on sizes!) 
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Simple case: Two jobs (cont.)

• Geometric interpretation
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Simple case: Two jobs (cont.)

• Define: 

• Result: Now if

then (due to the symmetry property!)
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Simple case: Two jobs (cont.)

• Justification: 
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Simple case: Two jobs (cont.)

• Required additional result: 
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Simple case: Two jobs (cont.)

• Equivalent condition:

• Suffient condition: 

nested capacity regions

• Note: However, capacity

regions are not required to be

nested
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General case: n jobs

• Define (recursively):

• Theorem 1: If

then
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General case: n jobs (cont.)

• In addition, 

• Thus, the optimal policy applies the SRPT-FM principle:

– the shortest job is served with the highest rate, 

– the second shortest job is served with the second highest rate, 

– etc.

• Note also that the optimal rate vector does not depend

on the absolute sizes (only on their order)
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General case: n jobs (cont.)

• Necessary condition: 
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Single-server queue

• Consider capacity regions

• Now

24

}1:0{ 1   
k
j kjkk cC c

)in  g(increasin      
   ,1

   ,0

)in  g(increasin                   

*

*

j
kj

kj
c

kkG

kj

k














Infinite-server queue

• Consider capacity regions

• Now
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Alpha-balls

• Let a  1 and consider capacity regions

• Now
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Alpha = 1.0

(single-server queue)
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Alpha = 1.2
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Alpha = 2.0
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Alpha = 5.0
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Alpha = infinite

(infinite-server queue)
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Symmetric polymatroids

• Let g1  …  gn and consider capacity regions

• Theorem 2: If g1  g2  g1  …  gn  gn1, then

• Optimality result of Sadiq and de Veciana (2010)
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Optimistic (lower) bound
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Symmetric OPS-limited

polytopes

• Let g1  …  gn and consider capacity regions for which

Ck is the convex hull of all permutations of rate vectors

• Theorem 3: If G1*  …  Gn*, then

• SRPT-OPS policy introduced in Sadiq and de Veciana

(2010)
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Conservative (upper) bound
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Summary

• Assumptions:

– Abstract capacity regions (time-scale separation)

– Transient system

• Results:

– Optimality result for compact and symmetric capacity regions

– Optimal rate vectors (that do not depend on absolute sizes of 

the flows) for each phase

– Conservative upper bound for the mean delay

• Open questions:

– Is it possible to make the implicit condition explicit?

– Any idea about the truly dynamic system with random arrivals?
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The End
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New results: 

Making the implicit condition explicit

• The implicit condition is, indeed, satisfied under the 

assumption that the channel conditions for different 

users are independent and identically distributed.

• In addition, there is a recursive algorithm for the optimal 

flow-level rate vectors that directly utilizes the time slot 

level channel model.

• It is also possible to determine explicitly how to 

implement the optimal rate vectors in the time slot level 

opportunistic scheduler.

• But this is another story …
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