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Introduction

• Downlink data transmission in a 
cellular system

• Traffic consists of elastic flows

– file transfers using TCP

• Base station transmits to a single 
user in a time slot

– decided by the scheduler

– time scale of milliseconds

• Dynamic traffic setting

– random arrivals and departures 
of users (= flows)

– time scale of seconds

• Flow-level stability and perform-
ance of various schedulers?
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Schedulers

• Non-channel-aware schedulers

– Scheduling based on 

average rate information

– Example: Round Robin (RR)

scheduler

• Channel-aware schedulers

– Scheduling based on 

instantaneous rate information

– Examples: Maximum Rate

(MR) scheduler, Relative Best 

(RB) scheduler, Proportional

Fair (PF) scheduler
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User model

• K user classes

• Class-k users have stationary IID rate processes Ri(t)

– Mean rate rk (bps)

– Maximum rate rk* (bps)

• If user i scheduled at time slot t, the corresponding flow

is served with rate Ri(t)
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Channel-aware scheduling

• Base station 

– knows the instantaneous rates Ri(t) of all active users i

– can favor those users having instantaneously good channel

• Static setting

– Queue length-based policies shown to have many desirable 

properties [Mandelbaum and Stolyar (2004), Stolyar (2005)]

• Not much work on dynamic setting

– Seminal work on stability by [Borst (2005), Borst and 

Jonckheere (2006)]

– Minimizing mean delay very difficult and hardly anything is 

known
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Utility-based schedulers

• Base station knows 

– instantaneous rates Ri(t) of all active users i

– throughputs Ti(t) of all active users i

• Definition: Scheduling based on 

– utility function U(q)

– time slot t allocated to user i* such that

• i* = arg maxi Ri(t) U(Ti(t))

• Examples:

– Alpha-fair schedulers

– Proportional Fair (PF) scheduler
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Alpha-fair schedulers

• Definition: Utility-based scheduler with utility function 

– U (q; a) = (1 - a)-1 q1 - a (a  1)

– U (q; 1) = log q (a = 1)

– originally defined in [Mo and Walrand (2000)]

• Example: Proportional Fair (PF) scheduler

– alpha-fair scheduler with a = 1

– time slot t allocated to user i* such that

• i* = arg maxi Ri(t)/Ti(t)

– implemented in the HDR system [Viswanath et al. (2002)]
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Dynamic traffic setting

• Class-k users (= flows) arrive

– according to an independent Poisson process

– with rate lk (flows per second)

• Flow sizes Xi IID 

– with mean x (bits)

• Flow i departs

– as soon as all Xi bits of the flow have been transmitted
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Traffic load

• Class-k bit arrival rate lk x (bps)

• Traffic load rk* = lk x/rk* (w.r.t. the maximum rate)

• Traffic load rk = lk x/rk (w.r.t. the mean rate)

• Note: rk* < rk
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Known stability results

• Definition: Flow-level stability

– The total number of flows does not explode!

• Necessary stability condition for non-channel-aware

schedulers: 

– r1 + … + rK  1 [classic queueing theory]

• Necessary stability condition for channel-aware

schedulers: 

– r1* + … + rK*  1 [Borst and Jonckheere (2006)]

• Sufficient stability condition for alpha-fair schedulers:

– r1* + … + rK* < 1 [Borst and Jonckheere (2006)]
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Overview

• We study priority-based channel-aware schedulers

– Priority can be any strictly increasing function of instantaneous rate

– Includes as special cases many known channel-aware schedulers

• Stability

– Achieving maximum stability region is a robustness property

– We give a general condition when the necessary condition is also 

sufficient

– When the necessary condition is not sufficient, we give a sufficient 

condition for some special cases

• Performance

– We have also made simulation studies to gain insight on actual 

performance (including comparisons against alpha-fair policies)
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Rate-based priority schedulers

• Base station knows 

– instantaneous rates Ri(t) of all active users i

• Definition: Scheduling based on 

– class-specific increasing priority function hk(r)

– determines the instantaneous priority Pi(t) = hk(i)(Ri(t)) of user i

– time slot t allocated to user i* such that

• i* = arg maxi Pi(t) = arg maxi hk(i)(Ri(t))

• Examples:

– Weight-based priority schedulers [Borst (2005)]

– CDF-based priority schedulers [Park et al. (2005)]
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Weight-based priority schedulers (1)

• Definition: Rate-based priority scheduler with 

– linear priority functions hk(r) = wk r

• Examples:

– Absolute rate priority schedulers (e.g. MR)

– Relative rate priority schedulers (e.g. RB)

– Proportional rate priority schedulers (e.g. PB)

– MR, RB, and PB break ties within any priority class at random
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Weight-based priority schedulers (2)

• Definition: Absolute rate priority scheduler (wk = 1): 

– time slot t allocated to user i* such that

• i* = arg maxi Ri(t) 

• Definition: Relative rate priority scheduler (wk = 1/rk):  

– time slot t allocated to user i* such that

• i* = arg maxi Ri(t)/rk(i)

• Def: Proportional rate priority scheduler (wk = 1/rk*): 

– time slot t allocated to user i* such that

• i* = arg maxi Ri(t)/rk(i)*

16



CDF-based priority schedulers

• Definition: Rate-based priority scheduler with 

– non-linear priority functions hk(r) = Fk(r)

– where Fk(r) = P{Rk  r}is the stationary CDF of the 

corresponding rate process

• Example: CS breaks ties within any priority class at 

random
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Rate model (1)

• Assumption: a finite number of possible rate values

• Class-k users

– Maximum rate rk*

– Second highest rate rk**

– Maximum priority pk* = hk(rk*)

– Second highest priority pk** = hk(rk**)

• Note:

– Proportional rate priority scheduler: pk* = 1 for all k

– CDF-based priority scheduler: pk* = 1 for all k
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Rate model (2)

• Example: Possible rate values for the HDR system
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Main result

• Consider a rate-based priority scheduler p

• Result 1: If pk* > pl** for all k  l, then

scheduler p is stable under condition

– r1* + … + rK* < 1

– i.e. the same condition as for the alpha-fair

schedulers

• Intuitive proof:

– Since pk* > pl** for all k  l, all classes k will be served with

their own maximum rate rk* at the stability limit
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Corollaries (1)

• If rk* = rl* for all k = l, then

any absolute rate priority scheduler is 

stable under the given condition

• If rk*/rk > rl**/rl for all k  l, then

any relative rate priority scheduler is 

stable under the given condition
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Corollaries (2)

• Any proportional rate priority scheduler is 

stable under the given condition

• Any CDF-based priority scheduler is 

stable under the given condition
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Another result

• Consider a rate-based priority scheduler p that breaks

ties within any priority class at random

• Result 2: If pk*  pl** for all k  l, then

scheduler p is stable under condition

– r1* + … + rK* < 1

• Intuitive proof:

– If pk* = pl** for some k  l, the tie-breaking rule guarantees that

class k will take over class l at the stability limit, and, thus, will

be served with its own maximum rate rk*
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Further stability conditions for K = 2

• Assumption: K = 2

• Consider a rate-based priority scheduler p that breaks

ties within any priority class at random

• Result 3: If p2* < p1**, then

scheduler p is stable under condition

– P{h1(M1) > p2*} + r2* < 1

• Note: The condition above is more stringent than

– r1* + r2* < 1
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Numerical example
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Impact of a continuous rate distribution

• Consider the case where the rate distribution is 

continuous, however, with a bounded support

• Is the natural condition below sufficient for stability?

– r1* + … + rK* < 1

• Proportional rate and CDF-based priority schedulers are 

still stable under the given condition 

• Absolute rate priority scheduler is stable if the class-

specific rate distributions have the same support

• Relative rate priority scheduler needs a more stringent 

condition for stability
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Numerical study

• Schedulers
– Priority-based: MR, RB, PB and CS with random tie-breaking

– Utility-based: PF (a = 1) and PD (a = 2)

– Also, investigate impact of using SRPT-like tie-breaking rules

• Parameters

– 2 user classes with flow arrival rates l1 = l2 = 1/2
– HDR transmission rates, i.e., 11 possible rate values

• Class 1 flows can achieve 7 lowest rates

• Class 2 flows can achieve all 11 rates

– Truncated geometric rate distributions with parameters 

q1 = 1, q2 = 1/2
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Overall performance (mean delay)
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Fairness (mean delay ratio)
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Other performance comparisons
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Conclusions

• Stability
– Proportional rate and CDF-based priority schedulers do have the 

maximum stability region

– Absolute rate priority schedulers don’t necessarily have
– Relative rate priority schedulers don’t usually have

• Performance
– MR and RB offer quite good performance but may become 

unstable 
– PB and CS policies are stable but very unfair
– PF performs very well over a large region of loads (good overall)

– PD can outperform PF at very high loads
– SRPT-like tie-breaking heuristics do not work at the time-slot level
– To minimize the mean delay, flow-level information can be used to 

tune the packet level schedulers
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The End
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