
Flow-level stability and

performance of channel-aware

priority-based schedulers

Samuli Aalto

Pasi Lassila

2-4 June 2010

Paris, France

NGI 2010

• Problem formulation

• Channel-aware priority-based schedulers

• Stability results

• Numerical study

• Conclusions

Outline

2

Introduction

• Downlink data transmission in a
cellular system

• Traffic consists of elastic flows

– file transfers using TCP

• Base station transmits to a single
user in a time slot

– decided by the scheduler

– time scale of milliseconds

• Dynamic traffic setting

– random arrivals and departures
of users (= flows)

– time scale of seconds

• Flow-level stability and perform-
ance of various schedulers?

3

Schedulers

• Non-channel-aware schedulers

– Scheduling based on

average rate information

– Example: Round Robin (RR)

scheduler

• Channel-aware schedulers

– Scheduling based on

instantaneous rate information

– Examples: Maximum Rate

(MR) scheduler, Relative Best

(RB) scheduler, Proportional

Fair (PF) scheduler

4

User model

• K user classes

• Class-k users have stationary IID rate processes Ri(t)

– Mean rate rk (bps)

– Maximum rate rk* (bps)

• If user i scheduled at time slot t, the corresponding flow

is served with rate Ri(t)

5

Channel-aware scheduling

• Base station

– knows the instantaneous rates Ri(t) of all active users i

– can favor those users having instantaneously good channel

• Static setting

– Queue length-based policies shown to have many desirable

properties [Mandelbaum and Stolyar (2004), Stolyar (2005)]

• Not much work on dynamic setting

– Seminal work on stability by [Borst (2005), Borst and

Jonckheere (2006)]

– Minimizing mean delay very difficult and hardly anything is

known

6

Utility-based schedulers

• Base station knows

– instantaneous rates Ri(t) of all active users i

– throughputs Ti(t) of all active users i

• Definition: Scheduling based on

– utility function U(q)

– time slot t allocated to user i* such that

• i* = arg maxi Ri(t) U(Ti(t))

• Examples:

– Alpha-fair schedulers

– Proportional Fair (PF) scheduler

7

Alpha-fair schedulers

• Definition: Utility-based scheduler with utility function

– U (q; a) = (1 - a)-1 q1 - a (a  1)

– U (q; 1) = log q (a = 1)

– originally defined in [Mo and Walrand (2000)]

• Example: Proportional Fair (PF) scheduler

– alpha-fair scheduler with a = 1

– time slot t allocated to user i* such that

• i* = arg maxi Ri(t)/Ti(t)

– implemented in the HDR system [Viswanath et al. (2002)]

8

Dynamic traffic setting

• Class-k users (= flows) arrive

– according to an independent Poisson process

– with rate lk (flows per second)

• Flow sizes Xi IID

– with mean x (bits)

• Flow i departs

– as soon as all Xi bits of the flow have been transmitted

9

Traffic load

• Class-k bit arrival rate lk x (bps)

• Traffic load rk* = lk x/rk* (w.r.t. the maximum rate)

• Traffic load rk = lk x/rk (w.r.t. the mean rate)

• Note: rk* < rk

10

Known stability results

• Definition: Flow-level stability

– The total number of flows does not explode!

• Necessary stability condition for non-channel-aware

schedulers:

– r1 + … + rK  1 [classic queueing theory]

• Necessary stability condition for channel-aware

schedulers:

– r1* + … + rK*  1 [Borst and Jonckheere (2006)]

• Sufficient stability condition for alpha-fair schedulers:

– r1* + … + rK* < 1 [Borst and Jonckheere (2006)]

11

Overview

• We study priority-based channel-aware schedulers

– Priority can be any strictly increasing function of instantaneous rate

– Includes as special cases many known channel-aware schedulers

• Stability

– Achieving maximum stability region is a robustness property

– We give a general condition when the necessary condition is also

sufficient

– When the necessary condition is not sufficient, we give a sufficient

condition for some special cases

• Performance

– We have also made simulation studies to gain insight on actual

performance (including comparisons against alpha-fair policies)

12

• Problem formulation

• Channel-aware priority-based schedulers

• Stability results

• Numerical study

• Conclusions

Outline

13

Rate-based priority schedulers

• Base station knows

– instantaneous rates Ri(t) of all active users i

• Definition: Scheduling based on

– class-specific increasing priority function hk(r)

– determines the instantaneous priority Pi(t) = hk(i)(Ri(t)) of user i

– time slot t allocated to user i* such that

• i* = arg maxi Pi(t) = arg maxi hk(i)(Ri(t))

• Examples:

– Weight-based priority schedulers [Borst (2005)]

– CDF-based priority schedulers [Park et al. (2005)]

14

Weight-based priority schedulers (1)

• Definition: Rate-based priority scheduler with

– linear priority functions hk(r) = wk r

• Examples:

– Absolute rate priority schedulers (e.g. MR)

– Relative rate priority schedulers (e.g. RB)

– Proportional rate priority schedulers (e.g. PB)

– MR, RB, and PB break ties within any priority class at random

15

Weight-based priority schedulers (2)

• Definition: Absolute rate priority scheduler (wk = 1):

– time slot t allocated to user i* such that

• i* = arg maxi Ri(t)

• Definition: Relative rate priority scheduler (wk = 1/rk):

– time slot t allocated to user i* such that

• i* = arg maxi Ri(t)/rk(i)

• Def: Proportional rate priority scheduler (wk = 1/rk*):

– time slot t allocated to user i* such that

• i* = arg maxi Ri(t)/rk(i)*

16

CDF-based priority schedulers

• Definition: Rate-based priority scheduler with

– non-linear priority functions hk(r) = Fk(r)

– where Fk(r) = P{Rk  r}is the stationary CDF of the

corresponding rate process

• Example: CS breaks ties within any priority class at

random

17

• Problem formulation

• Channel-aware priority-based schedulers

• Stability results

• Numerical study

• Conclusions

Outline

18

Rate model (1)

• Assumption: a finite number of possible rate values

• Class-k users

– Maximum rate rk*

– Second highest rate rk**

– Maximum priority pk* = hk(rk*)

– Second highest priority pk** = hk(rk**)

• Note:

– Proportional rate priority scheduler: pk* = 1 for all k

– CDF-based priority scheduler: pk* = 1 for all k

19

Rate model (2)

• Example: Possible rate values for the HDR system

20

Main result

• Consider a rate-based priority scheduler p

• Result 1: If pk* > pl** for all k  l, then

scheduler p is stable under condition

– r1* + … + rK* < 1

– i.e. the same condition as for the alpha-fair

schedulers

• Intuitive proof:

– Since pk* > pl** for all k  l, all classes k will be served with

their own maximum rate rk* at the stability limit

21

p1*

p2*

p1**

p2**

Corollaries (1)

• If rk* = rl* for all k = l, then

any absolute rate priority scheduler is

stable under the given condition

• If rk*/rk > rl**/rl for all k  l, then

any relative rate priority scheduler is

stable under the given condition

22

p1* p2*

p1*

p2*

p1** p2**

p1**

p2**

Corollaries (2)

• Any proportional rate priority scheduler is

stable under the given condition

• Any CDF-based priority scheduler is

stable under the given condition

23

p1* p2*

p1* p2*

p1**

p2**

p1**

p2**

Another result

• Consider a rate-based priority scheduler p that breaks

ties within any priority class at random

• Result 2: If pk*  pl** for all k  l, then

scheduler p is stable under condition

– r1* + … + rK* < 1

• Intuitive proof:

– If pk* = pl** for some k  l, the tie-breaking rule guarantees that

class k will take over class l at the stability limit, and, thus, will

be served with its own maximum rate rk*

24

p1*

p2*p1**

p2**

Further stability conditions for K = 2

• Assumption: K = 2

• Consider a rate-based priority scheduler p that breaks

ties within any priority class at random

• Result 3: If p2* < p1**, then

scheduler p is stable under condition

– P{h1(M1) > p2*} + r2* < 1

• Note: The condition above is more stringent than

– r1* + r2* < 1

25

p1*

p2*

p1**

p2**

Numerical example

26

Impact of a continuous rate distribution

• Consider the case where the rate distribution is

continuous, however, with a bounded support

• Is the natural condition below sufficient for stability?

– r1* + … + rK* < 1

• Proportional rate and CDF-based priority schedulers are

still stable under the given condition

• Absolute rate priority scheduler is stable if the class-

specific rate distributions have the same support

• Relative rate priority scheduler needs a more stringent

condition for stability

27

• Problem formulation

• Channel-aware priority-based schedulers

• Stability results

• Numerical study

• Conclusions

Outline

28

Numerical study

• Schedulers
– Priority-based: MR, RB, PB and CS with random tie-breaking

– Utility-based: PF (a = 1) and PD (a = 2)

– Also, investigate impact of using SRPT-like tie-breaking rules

• Parameters

– 2 user classes with flow arrival rates l1 = l2 = 1/2
– HDR transmission rates, i.e., 11 possible rate values

• Class 1 flows can achieve 7 lowest rates

• Class 2 flows can achieve all 11 rates

– Truncated geometric rate distributions with parameters

q1 = 1, q2 = 1/2

29

Overall performance (mean delay)

30

Fairness (mean delay ratio)

31

Other performance comparisons

32

Impact of SRPT-like tie-breaking Optimizing parameter a

• Problem formulation

• Channel-aware priority-based schedulers

• Stability results

• Numerical study

• Conclusions

Outline

33

Conclusions

• Stability
– Proportional rate and CDF-based priority schedulers do have the

maximum stability region

– Absolute rate priority schedulers don’t necessarily have
– Relative rate priority schedulers don’t usually have

• Performance
– MR and RB offer quite good performance but may become

unstable
– PB and CS policies are stable but very unfair
– PF performs very well over a large region of loads (good overall)

– PD can outperform PF at very high loads
– SRPT-like tie-breaking heuristics do not work at the time-slot level
– To minimize the mean delay, flow-level information can be used to

tune the packet level schedulers

34

The End

35

