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M/G/1 queue

« Jobs arrive according to a Poisson process
— |ID inter-arrival times

— exponential inter-arrival time distribution with mean 1/A
« Jobs are served by a single server

— 1ID service times

— general service time distribution with mean E[S] = 1/pu
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Service discipline

« Service discipline determines the way the service
capacity is shared among the jobs in the system

« Service discipline is also known as
— queueing discipline,
— scheduling discipline, or
— scheduling policy

« Service discipline is work-conserving
If jobs are served whenever the system is non-empty
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Some work-conserving disciplines

« First In First Out (FIFO)
— service in the arrival order (“ordinary queue”)
— also known as First Come First Served (FCFS)

* Processor Sharing (PS)
— the service capacity is shared evenly among all jobs (“fair queue”)
— 1deal version of the Round Robin (RR) service discipline
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Stability condition

* Any work-conserving discipline is stable if and only if

A
=2 <1
P=u
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Optimal scheduling problem*

« Service capacity is shared among the jobs so that ...

e ...the mean delay E[T] is minimized ...

e ... within the family of disciplines considered

* ... in this presentation
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Example: M/M/1

* For any work-conserving discipline,
ES
erm]= S = Ersjlt+ 2

» Conclusion: Any work-conserving discipline is optimal
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Example: M/D/1

* For FIFO (by Pollaczek-Khinchin),

Em1=Eslfe 2 )

« For PS (by insensitivity),

)= S = Epsi+ 2 )> EIST+ 2

« Conclusion: FIFO better than PS
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Example: M/G/1

* For FIFO (by Pollaczek-Khinchin),

_ AE[S°]
E[T]=E[S]+ 5

« For PS (by insensitivity),

2
el = £ = Efs+ “EE°]

- Conclusion: FIFO better than PS if and only if C2[S] <
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Service time distribution

. Coefficient of variation C2[S]:

CZ[S]_DZ'S' E[SZ] 1
E[S]° E[S]°

 Note that

2
c?[s]<1 « "B <E[s)?
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Part 1
Fundamental scheduling results
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Outline of Part 1

« Service disciplines

« Service time distributions
 Gittins index approach

« Optimality results

e Summary
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Service discipline categories

«  Definition: Service discipline is work-conserving
If jobs are served whenever the system is non-empty

« Definition: Service discipline is non-sharing
If jobs are served one-by-one

« Definition: Service discipline is non-preemptive
If jobs are served one-by-one until completion

«  Definition: Service discipline is non-anticipating
If the remaining service times are not utilized
(while the attained service times may be utilized)
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Service disciplines (1)

« First In First Out (FIFO)

— when the server becomes free,
the earliest arrived job is taken into service (“ordinary queue™)

— non-preemptive and non-anticipating
— also known as First Come First Served (FCFS)

* Most Attained Service (MAS)

— when the server becomes free,
a job is taken into service in any non-anticipating way

— non-preemptive and non-anticipating
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Service disciplines (2)

 Processor Sharing (PS)

— the service capacity is shared evenly
among all jobs (“fair queue”)

— sharing and non-anticipating
— ideal version of the Round Robin (RR) service discipline

« Least Attained Service (LAS)

— the service capacity is shared evenly
among the jobs with the least amount of attained service

— sharing and non-anticipating
— also known as Foreground Background (FB)
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Service disciplines (3)

« Shortest Processing Time (SPT)

— when the server becomes free,
the job with the shortest service time is taken into service

— non-preemptive and anticipating

« Shortest Remaining Processing Time (SRPT)
— the job with the shortest remaining service time is served
— non-sharing, preemptive, and anticipating
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Service disciplines (4)

« Shortest Expected Processing Time (SEPT)

— when the server becomes free,
the job with the shortest expected service time is taken into service

— non-preemptive and non-anticipating

« Shortest Expected Remaining Processing Time (SERPT)
— the job with the shortest expected remaining service time Is served
— non-sharing, preemptive, and non-anticipating
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Service discipline families

Non-preemptive non-anticipating disciplines TTNPE-NA
— e.g. FIFO, MAS, SEPT

Non-preemptive disciplines TTNPE
— e.g. FIFO, MAS, SEPT + SPT

Non-anticipating disciplines TN
— e.g. FIFO, MAS, SEPT + PS, LAS, SERPT

All disciplines I1
— e.g. all above + SRPT
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Outline of Part 1

« Service disciplines

» Service time distributions
 Gittins index approach

« Optimality results

e Summary
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Service time distribution

« Hazard rate (HR) function A(x)

L . f(¥)
F(X) — j f (Y)dy, h(X) o 1—F(X)
0

* Mean residual lifetime (MRL) function M(x)

. (1-F(y))d
M (X) = E[S —X|S > x] = <1_Fg)» Y
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Service time distribution classes (1)

« Definition: Service times are IHR [DHR]
If h(x) is increasing [decreasing]

« Definition: Service times are DMRL [IMRL]
If M(x) is decreasing [increasing]

« Definition: Service times are NBUE [NWUE]
if M(0)>[<] M(x) forany x
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Service time distribution classes (2)

* |IHR = Increasing Hazard Rate DHR = Decreasing Hazard Rate

« DMRL = Decreasing Mean IMRL = Increasing Mean
Residual Lifetime Residual Lifetime

* NBUE = New Better than Used NWUE = New Worse than Used
iIn Expectation in Expectation

C2[S]< 1 C2[S] > 1
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Outline of Part 1

e Service disciplines

« Service time distributions
« Gittins Index approach

« Optimality results

e Summary

,, Aalto Umversuy
Sc hool fEI ctrical
Engineerin 27



Hazard rate

 Remaining service time distribution:

F(X+Yy)—F(x)
1-F(x)

P{S—-x<y|S>x}=

« Hazard rate (HR) function A(x):

h(x) 2 limy 0 LP{S ~x < A|S > x}= ()X)
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Inverse MRL

« Mean residual lifetime (MRL) function M(x):

. (1-F(y))d
M (X) = E[S —X|S > x] = <1_Fg)>> Y

* |nverse MRL function H(x):

H (x) =

1 1-F(x)
E[S—x|S>X] [P@-F(y)dy
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Gittins index (1)

« Consider a job with

— attained service (age) a

— served continuously during an interval of length (at most) A
* Probability that the service is completed

f (y)d
P{S—a<A|S>a}= F(altAF)(a?(a) _h 1—ng y

« Mean time until the end of service or interval

a+4 (1-F (y))dy
- 1-F(a)

E[mIin{S —a,A}|S >a]=
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Gittins index (2)

« Efficiency function for age a and service quota A:

P{S—a<A|S>a} 2 f(y)dy

J(a,A) = _ —
@4) E[min{S —a,A}|S > a] j:+A(1—F(y))dy

 Limiting values:

J(a,0)=h(a), J(a,0)=H(a)
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Gittins index (3)

« Definition: Gittins index G(a) for a job with age a is
G(a) =supa>pJ(a,A)
« Optimal service quota for a job with age a:

A (@) = sup{A>0|J(a,A) = G(a)}
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Gittins index discipline

 Gittins index discipline (Gl)
— job 1™ with the highest Gittins index ((a;+) is served
— non-anticipating

* Ordinary M/G/1 queue (with a single job class):
G(a*) = max; G(&)

« Multiclass M/G/1 queue (with multiple job classes):

... (8jx) = max; Gy. (a;)
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Optimality of the Gl discipline

e Gittins (1989)
* Theorem: For any M/G/1 queue with p < 1,

the Gl discipline is optimal
among all non-anticipating disciplines,

E[T S = min{E[T ]| x e T}

« See also Sevcik (1974), Klimov (1974, 1978)
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Outline of Part 1

« Service disciplines

« Service time distributions
 Gittins index approach

« Optimality results

e Summary
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Service discipline families

Non-preemptive non-anticipating disciplines TTNPE-NA
— e.g. FIFO, MAS, SEPT

Non-preemptive disciplines TTNPE
— e.g. FIFO, MAS, SEPT + SPT

Non-anticipating disciplines TN
— e.g. FIFO, MAS, SEPT + PS, LAS, SERPT

All disciplines I1
— e.g. all above + SRPT
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Optimality of the SEPT discipline

 Cox and Smith (1961)

* Theorem: For any M/G/1 queue with p < 1,
the SEPT discipline is optimal
among all non-preemptive non-anticipating disciplines,

E[-I-SEPT] _ min{E[T”] |77 € HNPR-NA}

« Special case of the optimality of the cpu-rule (with c = 1)
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Interpretation by the Gl approach

« For the ordinary M/G/1 queue, the result is trivial.

e Consider the multi-class M/G/1 queue. Due to the
restriction to the non-preemptive disciplines, the Gittins
Index is only considered for a =0 and A = o;

Gy (0) = Ji (0,00) = Hy (0) =1/ E[S ]
* Thus,
Gki* (0) = MaX; Gki (0)=1/ mini E[Ski ]

Conclusion: SEPT = Gl discipline
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Optimality of the SPT discipline

 Cox and Smith (1961)

* Theorem: For any M/G/1 queue with p < 1,
the SPT discipline is optimal
among all non-preemptive disciplines,

E[T T 1= mindE[T7]| 7 e TTV R}
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Interpretation by the Gl approach

« Define the class of the job based on its known service
requirement s

* Due to the restriction to the non-preemptive disciplines,
the Gittins index is only considered for a = 0 and A = o:

Gs(0) = J<(0,0) =H¢(0)=1/s
* Thus,
Gs.. (0) = max; Gs. (0) =1/ min; s;

Conclusion: SPT = Gl discipline
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Service time distribution classes

* |IHR = Increasing Hazard Rate DHR = Decreasing Hazard Rate

« DMRL = Decreasing Mean IMRL = Increasing Mean
Residual Lifetime Residual Lifetime

* NBUE = New Better than Used NWUE = New Worse than Used
iIn Expectation in Expectation

C2[S]< 1 C2[S] > 1
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Optimality of the MAS discipline

* Righter, Shanthikumar and Yamazaki (1990)

« Theorem: For the ordinary M/G/1 queue
with NBUE service times and p < 1,
any MAS discipline (e.g. FIFO) is optimal
among all non-anticipating disciplines,
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Interpretation by the Gl approach

« Aalto, Ayesta and Righter (2009)

« Lemma: For NBUE service times,
J(0,A) < J(0,00) for all A.

 Lemma implies that
G(0) =5UpA>0 J(0,4) = J(0,0) = H (0)
« On the other hand, due to the NBUE property,
G(a)>H(a)>H(0)=G(0)

Conclusion: MAS = Gl discipline
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Service time distribution classes

* |IHR = Increasing Hazard Rate DHR = Decreasing Hazard Rate

« DMRL = Decreasing Mean IMRL = Increasing Mean
Residual Lifetime Residual Lifetime

* NBUE = New Better than Used NWUE = New Worse than Used
iIn Expectation in Expectation

C2[S]< 1 C2[S] > 1
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Optimality of the LAS discipline

« Yashkov (1987); Righter and Shanthikumar (1989)

« Theorem: For the ordinary M/G/1 queue
with DHR service times and p < 1,
the LAS discipline is optimal
among all non-anticipating disciplines,

DHR = E[T"*°1= min{E[T ]| x e [T}

« See also Aalto and Ayesta (2006)
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Interpretation by the Gl approach

« Aalto, Ayesta and Righter (2009)

« Lemma: For DHR service times,
J(a,A) is decreasing (with respect to A) for all a, A.

 Lemma implies that
G(a) =supa>pJ(a,A)=J(a,0)=h(a)
* On the other hand, due to the DHR property,
G(aj+) = maxj G(aj) = max; h(aj) = h(min; &)

Conclusion: LAS = Gl discipline
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Optimality of the SRPT discipline

« Schrage (1968); Smith (1978)

* Theorem: For any M/G/1 queue with p < 1,
the SRPT discipline is optimal
among all disciplines,

E[T NPT = min{ E[T ]| 7z e IT}
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Interpretation by the Gl approach

« Define the class of the job based on its known service
requirement s

« The Gittins index IS now given by
Gg(a) =supaxp Js(a,A) =Js(a,s—a)=1/(s-a)
* Thus,
Gs... (ajx) = max; Gg, (aj) =1/min;j(s; —&;)

* Conclusion: SRPT = Gl discipline
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Outline of Part 1

« Service disciplines

« Service time distributions
 Gittins index approach

« Optimality results

e Summary
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Summary of Part 1

Mean delay minimization

in M/G/1
NPR-NA: NPR:
SEPT optimal SPT optimal
NA: All:
Gl optimal SRPT optimal
NBUE = MAS [SERPT] optimal
DHR = LAS [SERPT] optimal
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Part 2
The Gittins index approach revisited
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Outline of Part 2

 Introduction

« Gittins index

« Continuity and monotonicity result
« Monotonicity In finite intervals

« Service time distribution classes

« Optimality results

e Summary
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Optimal scheduling problem

* Transient system (no arrivals)
— Given a single-server queue
with 7 11D jobs and service time distribution /'(x),
what is the optimal non-anticipating service policy
so that the mean delay is minimized?

« Dynamic system (Poisson arrivals)

— Given an M/G/1 queue
with arrival rate 4 and service time distribution F(x),

what is the optimal non-anticipating service policy
so that the mean delay is minimized?
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Optimality results

* For both problems,
the optimal anticipating policy is SRPT,
but it requires exact information about the service times

* For both problems,
the optimal non-anticipating policy is Gl,
based on the amount of the attained service and
the service time distribution
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Gittins index discipline

 Gittins index discipline (Gl)
— job ¥ with the highest Gittins index ((a.+) is served
— non-anticipating

* QObservations:
— Gl is not necessary unique
— MAS is GI
if and only if G(a) > G(0) for all a
— LAS is Gl
if and only if G(a) is decreasing for all @
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Example
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Hazard rate h(x)

X
F(x)=[f(y)dy, h(x)= 1_f I(:X()X)
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Example 1
Constant hazard rate

h(x) =1

25 h X
2.0;

15F

30— ———————

1.0}

0.5+
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Example 1
Constant hazard rate

30— 7
25 WC
20/

15+

1.0

05"

0.0 Lo 0 0 ey ]
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Example 2
Increasing hazard rate

30 7

25 h X

20"

15+

1.0}

05"

0.0 Lo 0 0 ey ]
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Example 2
Increasing hazard rate

30 7

MAS

20"

15+

1.0}

05"

0.0 Lo 0 0 ey ]
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Example 3
Decreasing hazard rate

2, Xx<1
h(x):{

30 7

25 h X

20"

15+

1.0¢

05"

0.0 Lo 0 0 ey ]
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Example 3
Decreasing hazard rate

3-07 T T T T T T T T T T T T T T T T T T T T T T T T T T T T

s WC WC

20"

15+

1.0¢

05"

0.07\\\\\\\\\I\\\\\\\\\\\\\\\\\\\f
0.0 0.5 1.0 15 2.0 2.5 3.0
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Example 4
Increasing-decreasing hazard rate

1 x<1 x>2
h(x) =
2, 1<x<2

30 7

25 h X

20"

15+

1.0}

05"

0.0 Lo 0 0 ey ]
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Example 4
Increasing-decreasing hazard rate

3-07 T T T T T T T T T T T T T T T T T T T T T T T T T T T T

MAS - we

20"

15+

1.0}

05"

0.07\\\\\\\\\\\\\\\\\\\I\\\\\\\\\f
0.0 0.5 1.0 15 2.0 2.5 3.0
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Example 5
Decreasing-increasing hazard rate

2, X<1 X>2
h(x) =
1 1<x<?2

30 7

25 h X

20"

15+

1.0¢

05"

0.0 Lo 0 0 ey ]
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Example 5
Decreasing-increasing hazard rate

7
25 WC MAS
1.5\
e
0(())O - ‘0.‘5‘ - ‘1.:0‘ - ‘1.‘5‘ - ‘2.‘0‘ - ‘2.‘5‘ - ‘37.0
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Outline of Part 2

 Introduction

 Gittins index

« Continuity and monotonicity result
« Monotonicity In finite intervals

« Service time distribution classes

« Optimality results

e Summary

,, Aalto University
School of Electrical

Engineering 68



Hazard rate

 Remaining service time distribution:

F(X+Yy)—F(x)
1-F(x)

P{S—-x<y|S>x}=

« Hazard rate (HR) function A(x):

h(x) 2 limy 0 LP{S ~x < A|S > x}= ()X)
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Inverse MRL

« Mean residual lifetime (MRL) function M(x):

. (1-F(y))d
M (X) = E[S —X|S > x] = <1_Fg)>> Y

* |nverse MRL function H(x):

H (x) =

1 1-F(x)
E[S—x|S>X] [P@-F(y)dy
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Efficiency function

« Efficiency function for age a and service quota A:

P{S-a<A|S>a} _ [ f(y)ady
E[min{S —a,A}|S >a] [***@-F(y)dy

J(a,A) =

 Limiting values:

J(a,0)=h(a), J(a,0)=H(a)

,, Aalto Un
Scho IfEI t al
Engineerin g 71



Gittins index

« Definition: Gittins index G(a) for a job with age a is
G(a) =supa>pJ(a,A)
« Optimal service quota for a job with age a:

A (@) = sup{A>0|J(a,A) = G(a)}
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Example 6
Oscillating hazard rate

h(X) =

1+sIn X

5
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

NOTE!

h(X) continuous

—
G(x) continuous
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

NOTE! ~..__

G(x) decreasing |
—

h(x) decreasing
and

G(x) = h(x)
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

NOTE! ~.___

h(X) increasing
or

H(X) increasing
—

G(X) increasing
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Example 6
Oscillating hazard rate

Gittins index G(x) (rescaled)
optimal service quota A*(x)
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Example 6
Oscillating hazard rate

Gittins index G(x) (rescaled)
optimal service quota A*(x)

Here A*(x) = o0
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Outline of Part 2

 Introduction

« Gittins index

« Continuity and monotonicity result
« Monotonicity In finite intervals

« Service time distribution classes

« Optimality results

e Summary
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Continuity result

f (x) Is continuous for all x
<> h(x) 1s continuous for all x
< J(x,d) iIs continuous for all x,d

h(x) 1s continuous for all x
= G(X) Is continuous for all x
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Monotonicity result 1

* Proposition:
h(x) strictly decreasing for all x € (a,b)
—
G(x) strictly decreasing for all x € (a,c),
G(x) increasing for all x € (c,b)
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

a C b
05 :

0.4F
0.3 Z

0.2"

0.1}

0.07 1 1 | | \E\ | w0
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Monotonicity result 2

* Proposition:
h(x) increasing for all x  (a,b)
—
G(x) Increasing for all x  (a,b)
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

05+ ———— 7

0.4F
0.3}
0.2

0.1}

00—
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Continuity and monotonicity result

¢ Summary:
h(x) Is continuous and piecewise monotonic for all x
= G(X) Is continuous and piecewise monotonic for all x
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

NOTE! -.._

Continuity
needed here
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Outline of Part 2

 Introduction

« Gittins index

« Continuity and monotonicity result
« Monotonicity In finite intervals

« Service time distribution classes

« Optimality results

e Summary
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Monotonicity In finite intervals 1

* Proposition:
G(x) Is strictly increasing for all x  (a,b)
S
G(x) > h(x) forall xe(a,b)
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Example 6

Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

05—
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Monotonicity In finite intervals 2

* Proposition:
G(x) 1s Increasing for all x € (a,b)
S

A (x) >0 forall x  (a,b)
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Example 6
Oscillating hazard rate

Gittins index G(x) (rescaled)
optimal service quota A*(x)

a b
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Monotonicity in finite intervals 3

* Proposition:
G(x) 1s constant for all x € (a,b)
S

G(x)=h(x) and A (x)>0 forall x  (a,b)
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Example 3

Decreasing hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

3.0

250

2.0

1.5)
1.0}
0.5+

0.0
0.
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Monotonicity In finite intervals 4

* Proposition:
G(x) 1s decreasing for all x  (a,b)

e
G(x) = h(x) forall x  (a,b)
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(X)
hazard rate h(x)

05, + [ 7
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Monotonicity in finite intervals 5

* Proposition:
G(x) 1s strictly decreasing for all x € (a,b)
S

A (x) =0 forall x € (a,b)
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Example 6
Oscillating hazard rate

Gittins index G(x) (rescaled)
optimal service quota A*(x)
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Outline of Part 2

 Introduction

« Gittins index

« Continuity and monotonicity result
« Monotonicity In finite intervals

» Service time distribution classes

« Optimality results

e Summary
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Service time distribution classes

* |IHR = Increasing Hazard Rate DHR = Decreasing Hazard Rate

« DMRL = Decreasing Mean IMRL = Increasing Mean
Residual Lifetime Residual Lifetime

* NBUE = New Better than Used NWUE = New Worse than Used
iIn Expectation in Expectation

C2[S]< 1 C2[S] > 1
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Properties in infinite intervals 1

* Proposition:
G(x) >G(a) forall x e (a,)
S
H(x)>H(a) forall x € (a,x)
S
G(a)=H(a)
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

NOTE! -.

G(a) = H(a)
G(X) > G(a)

H(x) > H(a)
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NBUE service times

« Corollary:
G(x) > G(0) forall x
S
Service times are NBUE

N
G(0)=H(0)
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Properties In infinite intervals 2

* Proposition:
G(x) Isincreasing for all x e (a, o)
=
H (x) Is Increasing for all X € (a,0)
=
G(x) = H(x) forall x  (a,)
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Example 5
Decreasing-increasing hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

a X

NOTE! -._ B0

< L
SO L
S 2.57

~ L

~ L

G(x) = H(x)

forall x > a

05"

0.07\\\\\\\\\i\\\\\\\\\\\\\\\\\\\f
0.0 0.5 1.0 15 2.0 25 3.0
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DMRL service times

« Corollary:
G(x) 1sincreasing for all x
S
Service times are DMRL

S
G(x) =H(x) forall x
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Properties In infinite intervals 3

* Proposition:

G(x) Is constant for all X € (a, )

=
H (X) Is constant for all x € (a,0)

=
h(x) 1s constant for all x € (a, )

=

G(x) = H(x) =h(x) forall x e (a,»)
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EXP service times

« Corollary:
G(x) 1s constant for all x
St
Service times are EXP

S
G(x) =H(x)=h(x) forall x
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Properties in infinite intervals 4

* Proposition:
G(x) Is decreasing for all X € (a,)
=
h(x) Is decreasing for all X e (a, )
=
G(x) = h(x) forall x e (a, )
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Example 4
Increasing-decreasing hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

a X
NOTE! --.___ Y
) G
G(x) = h(x) : =
20" >
forall x > a 150
1.0}
05
0.0:\\\\\\\\\é\\\\\\\\\x\\\\\\\\\f
0.0 05 1.0 15 2.0 25 3.0
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DHR service times

« Corollary:
G(x) 1s decreasing for all x
=
Service times are DHR

e
G(x) = h(x) for all x
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Outline of Part 2

 Introduction

« Gittins index

« Continuity and monotonicity result
« Monotonicity In finite intervals

« Service time distribution classes

« Optimality results

e Summary
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Optimality of the MAS discipline

« Corollary:

MAS is optimal
—
Service times are NBUE

« Note: In this case MAS = SERPT (due to NBUE)

,, Aalto Un
School fEI t al
Engineerin g 114



Example 2
Increasing hazard rate

39— :
25 MAS

20"

15+

1.0}

05"

0.0 Lo 0 0 ey ]
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Optimality of the LAS discipline

« Corollary:

LAS is optimal
—
Service times are DHR

» Note: In this case LAS = SERPT (since DHR = IMRL)
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Example 3
Decreasing hazard rate

2.5 LAS

20"

15+

3-07 T T T T T T T T T T T T T T T T T T T T T T T T T T T T

1.0¢

05"

0.07\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0.0 0.5 1.0 15 2.0
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Optimality of the MAS+LAS discipline

« Corollary:

Service times are NBUE + DHR(k)
p—
MAS + LAS(k*) Is optimal

« MAS+LAS belongs to MLPS (Multi-Level Processor
Sharing) policies, cf. Kleinrock (1976)
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Example 4
Increasing-decreasing hazard rate

k ok
3.0 [
25 MAS {1 LAS

2.o§ P

1.5?—

e T W

05"

0%0 - ‘0.‘5‘ - ‘1.‘0‘ - ‘1.‘5‘ ‘2.:0‘ - ‘2.‘5‘ - ‘37.0
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Optimality of the LAS+MAS discipline

« Corollary:

Service times are DHR + IHR(k),
h(0) > H ()
—
LAS + MAS(k*) Is optimal

 LAS+MAS belongs to MLPS (Multi-Level Processor
Sharing) policies, cf. Kleinrock (1976)
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Example 5
Decreasing-increasing hazard rate

k*

3.0 [
250 LAS MAS
20- ? f
1.5\
g o
05" :

0(())0 o ‘0.‘5 o ‘1.:0 o ‘1.‘5 o ‘2.‘0 o ‘2.‘5 o ‘37.0
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ransient system 1

« Assume: h(x) continuous and piecewise monotonic
« Corollary:

Hazard rate h(x) is first increasing

—
MAS + LAS + MAS +...(k;*,ko*,...) Is optimal
for the transient system

« MAS+LAS+MAS+... belongs to MLPS (Multi-Level
Processor Sharing) policies, cf. Kleinrock (1976)
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Example 6
Oscillating hazard rate

h(X) =

1+sIn X

5
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Example 6
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)

kR.* ky*

05——————

- MAS LAS MAS

0.4
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ransient system 2

« Assume: h(x) continuous and piecewise monotonic
« Corollary:
Hazard rate h(x) is first decreasing

—
LAS + MAS + LAS +...(ky*, ko*,...) Is optimal
for the transient system

« LAS+MAS+LAS+... belongs to MLPS (Multi-Level
Processor Sharing) policies, cf. Kleinrock (1976)
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Example 7
Oscillating hazard rate

h(X) =

1—sin X

5
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Example 7
Oscillating hazard rate

Gittins index G(x)
iInverse MRL H(Xx)
hazard rate h(x)
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Outline of Part 2

 Introduction

« Gittins index

« Continuity and monotonicity result
« Monotonicity In finite intervals

« Service time distribution classes

« Optimality results

e Summary
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Summary of Part 2

NA:

Mean delay minimization

in M/G/1

Gl optimal

NBUE < MAS optimal

DHR < LAS optimal
NBUE+DHR = MAS+LAS optimal
DHR+IHR = LAS+MAS optimal
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Related contributions

« S. Aalto, U. Ayesta and R. Righter,
On the Gittins index in the M/G/1 queue,
Queueing Systems, 2009

« S. Aalto, U. Ayesta and R. Righter,
Properties of the Gittins index with application,

Probability in the Engineering and Informational
Sciences, 2011
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Part 3
Trade-off between size-based and
opportunistic scheduling
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Outline of Part 3
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« Time-scale separation

« Optimal flow-level operating policy
 Examples

« Optimal time-slot-level scheduler

e Summary
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Research problem

« Downlink data transmission
In a wireless cellular system
 Traffic = elastic flows
— file transfers using TCP
« Scheduling decisions in each
time slot
— time scale of milliseconds
« Traffic dynamics in a much
longer time scale
— time scale of seconds/minutes

* Optimal time-slot-level scheduler

for flow-level performance?

~A
g User K

Base Station

: Hu et al. (2004)
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Flow-level performance

* Performance is expressed as flow-level delay

— Mean flow delay describes
how long, on the average, it takes to transfer a file

* Importance of the time scale

— Users do not care about time-slot or packet-level delays,
but the flow-level delay, i.e., the total time to transfer a file

* Flow-level models try to characterize the system at the
time scale where users experience the performance
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Time-slot-level schedulers

« Channel-aware schedulers
— Channel conditions varying randomly for each user
— Scheduling based on channel information
— Scheduler may prefer users with a good channel
— Opportunistic scheduling
— Examples: MR, PF

« Size-based schedulers
— Scheduling based on flow size information

— Scheduler may prefer users with a short flow
— Example: SRPT
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Fundamental trade-off

e Opportunistic scheduling

— Aggregate mean service rate increases with the number of
users (opportunistic gain, multiuser diversity gain)

— However, a user with a long remaining service requirement
blocks the other users

e SRPT
— The number of flows is reduced efficiently
— However, opportunistic gain is lost due to suboptimal channel
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Combining opportunistic and size-based
scheduling

Tsybakov (2003)
— Dynamic programming approach (time-slot scale)

Hu et al. (2004)
— Heuristic approach: TAOS (time-slot scale)

Lassila and Aalto (2008)
— Another heuristic approach: SRPT-P (time-slot scale)

Ayesta et al. (2010), Jacko (2011)
— Age-based information, Markovian system (time-slot scale)

Sadig and de Veciana (2010)

— Time-scale separation (flow scale)

— Transient system

— Optimality result for nested polymatroids

— Cf. optimality of SRPT-FM, Raj et al. (2004)
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SRPT-FM

« SRPT-FM = Shortest Remaining Processing Time
on the Fastest Machine

* Pinedo (1995)

* Theorem: SRPT-FM minimizes the mean delay
In heterogeneous parallel server systems
for a batch of jobs (without any new arrivals)
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Outline of Part 3

 Introduction

« Time-scale separation

« Optimal flow-level operating policy
 Examples

« Optimal time-slot-level scheduler

e Summary
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Ime-scale separation

* R(t) = (R@®),..., R,(?)) = rate vector in time slot ¢

* R.(?) = instantaneous rate of user :

- Assume: R;(?) Is a stationary and ergodic process
» Assume: Scheduling policy 7 € I, Is stationary

« Define: The long-term throughput for user i:

=2 1P (NP{R(t) =r}

» Define: The (opportunistic) capacity region:

Cy ={(<91”,...,¢9é7)69%5 relly}
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Model

« Service system where the service capacity is
adjustable depending on the current number of jObS

 When there are % jobs with sizes

$12...2 Sk
choose a rate vector
Ck = (Ck1:---1Ckk) € Ck

and serve job : with rate c;;
Capacity regions C;, compact and symmetric
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Example:
Alpha-ball

 Leto > 1. Capacity regions:

Cy ={cy =0: Zi}:lC% <1}
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Optimal scheduling problem
(transient system)

Assume that there are n jobs in the system at time 0
What is the optimal way to make the system empty?
Objective: Minimize the mean delay (or flow time)
Define: Flow time (or total completion time) for policy ¢

¢ _ NN

T =3t
where ¢; is the completion time of job :
Define: Operating policies

O ={p=(Cq,...,Cn) :Cx € Cy forall k}
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Trivial case: One job

 Define
G =1,
G
« Now
T = min T? =
ped;
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Simple case: Two jobs

« If job 2 (i.e., the shorter one) completes first, th_en

T-2%2 4 (s— 2op) L= 2 (2-%20)4 %
C22 (51 C22 21) C22( cl) o

« Otherwise

T¢ 2 Sl +(52 C22)C1
1

« Let us minimize (a function not depending on sizes!)

g(C2) =(:;2(2—c;?1), Cr €Cy

(2 C22) +52
C21 Cl Cl
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Simple case: Two jobs (cont.)

« (Geometric interpretation

1.0

0.8},
0.6F.
04k

02}

i -
-
--------
-y
-

00!
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Simple case: Two jobs (cont.)

 Define:
Gy =g(C2)= min g(cy)
C2€C2
 Result: If
x x
Gl < Gz

then (due to the symmetry property!)

T = min T? = SZG; + sle, ¢* = (CI,C;), 021 < czz
S0P
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Simple case:

wo Jjobs (cont.)

T? > min{s,g(Cy1,Con) + Sle ,$19(C22,Cp1) + Ssz }

> min{s,G, + Gy , G, + 5,6 }

* e . * *
¢* * * * . * *
T =529(C21,C22) + 5161 since Cyp > Cp1]

= 52(5’2k + sle
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Simple case: Two jobs (cont.)

* Required additional result:

1@-ie-P)e
C22 G il

* C* * C*
C21(2-"5)<cp(2-"%) &
G G

(a2 —Co1)(2- 2 -2)>0
GG G

C22(C2 —C21)(G2 —G1) 20
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Simple case: Two jobs (cont.)

« Equivalent condition: 20—
* *
G >(G <
*
Co1+Coo < 2 - G
« Suffient condition: g
nested capacity regions
- Note: However, capacity P .
regions are not required T

to be nested
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General case: n jobs

» Define (recursively):

Gy =CLn€igk gk (Ck), 9k (ck) = o (k YK okiG J
 Theorem 1. If
Gf <...<G:
then
T =min T? =30 _5Gx, 4 =(C1,....Cp)

SO
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General case: n jobs (cont.)

e |n addition,

CEls...scEk for all k

« Thus, the optimal policy applies the SRPT-FM principle:
— the shortest job is served with the highest rate,
— the second shortest job is served with the second highest rate,
— efc.

* Note also that the optimal rate vector does not depend
on the absolute sizes (only on their order)
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« Time-scale separation

« Optimal flow-level operating policy
 Examples

« Optimal time-slot-level scheduler

e Summary

,, Aalto Umversuy
Sc hool fEI ctrical
Engineerin 154



Example:
Alpha-ball

 Let o > 1 and consider capacity regions

Cy ={cy =0: Zij:lC% <1}

 Now
a—1

Che (kal —(k —1)alj " (increasing in k)

* GT -1 . . ..
Ckj =| & (increasing in |)
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Alpha = 2.0
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Alpha =5.0
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08| \\ /"
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06k \\ Lo
(Infinite-server queue)
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Summary thus far

« Assumptions:
— Abstract capacity regions (time-scale separation)
— Transient system

 Results:

— Optimality result for compact and symmetric capacity regions
* includes nested polymatroids (cf. Sadiq and de Veciana (2010))
* requires an implicit condition related to capacity regions

— Optimal rate vectors for each phase
» applying the SRPT-FM principle
* Open questions:
— Is it possible to make the implicit condition explicit?
— Is it possible to implement the optimal policy at time-slot scale?
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Time-slot-level model

* R(t) = (R@®),..., R,(?)) = rate vector in time slot ¢
* R.(?) = instantaneous rate of user :

- Assume: R;(?) Is a stationary and ergodic process
taking values in a finite set

- Assume: Processes R.(¢) are [ID (symmetric case)
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Ime-slot-level schedulers

Assume: Scheduling policy 7 € I, Is stationary
Define: The long-term throughput for user i:

© =2 1P (NP{R(t) =1}

Define: The (opportunistic) capacity region:

Cy ={(01”,...,9f)6935 well}

Note: Capacity regions are compact and symmetric
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Weight-based schedulers

+ Define: Weight-based scheduler 7 € I1, allocates time
slot ¢ to user ¢* for which

WixRix () = max; Wi R; (t)

where w; are the weights related to the scheduler

« Example: MR (which is the same as PF in our case)
w;=1forall ¢
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Connection between the two time scales

* Proposition 1:
E[max; wiRj ()] = maX¢, ec, 2 WiCki
_ Proof is straightforward:
maXe, 5 WiCkj = Max , > > wili pi” (NP{R(t) =r}

= 2. (max; wir )P{R(t) =r}
= E[max; w;R; ()]

,, Aalto Un
School fEI t al
Engineerin g 166



Recall the optimal scheduling problem
(transient system)

Assume that there are n jobs in the system at time 0
What is the optimal way to make the system empty?
Objective: Minimize the mean delay (or flow time)
Define: Flow time (or total completion time) for policy ¢

¢ _ ~n

T =yt
where {; is the completion time of job :
Define: Operating policies

O, ={p=(Cq,...,Cpn) :C €Cy forall k}
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Recall the recursion for G*
(based on the flow-level model)

» Define (recursively):

Gk = min gy (Ck), 9k(Ck) = (k YK okiG J
ckeCk kk
* Open problem 1: Is it possible to show that in our case
Gf <...< G:

* Open problem 2: If so, how to implement the optimal
operating policy with a time-slot-level scheduler so that

67« =cy; forallk,i
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Key property

* Proposition 2:
E[max; Gj Rj] = max¢, ¢, 2.iGi Cki = 2.;Gj Ckj =K

— Proof by induction
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Alternative recursion for G*
(based on the time-slot-level model)

« Define (recursively)'

fi. (a) = j (1-P{aRy < r}k]_[1 P{G R <r}dr
0 1=1

GE = fk_l(k) (well - defined since fy increasing)

— Based on the equation:

E[ max G; Ri]= j(l HP{G Ri <rpdr=k
=1..., k 0 _1
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Key result

* Proposition 3:

*

Gf<...<Gn

— Proof by induction
— ldea briefly on the following slide

» Corollary: Solution of the optimal scheduling problem

T = min T¢=ZE:13ka, ¢ =(C1’--~’Cn)
SN

cﬁls...scﬁk for all k
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ldea of the proof

Xk =maxij—, kG R
he11(a) = E[(aRy 11 — Xk) - Lar, 1> X H
 Easily: 2, (a) Is non-decreasing and satisfies

he+1(Gk11) = E[ Xy 41 — Xk ]=(k+1) -k =1
e |t remains to show that

hk+1(G;) <1
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Optimal time-slot-level scheduler
for flow-level performance

« Theorem 2: The optimal operating policy ¢* can be
Implemented by a sequence of weight-based schedulers

77 defined by weight vectors
Wy = (Gl ,...,Gk)

— Proof based on Propositions 1 and 2

- Summary: The optimal time-slot-level scheduler
allocates time slot ¢ to user * for which

GixRi=(t) = max; Gi R (t)
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Outline of Part 3

 Introduction

« Time-scale separation

« Optimal flow-level operating policy
 Examples

« Optimal time-slot-level scheduler

e Summary
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Summary of Part 3

« Assumptions:
— Stationary and ergodic rate processes
— Symmetric case (rate processes IID for different users)
— Transient system (a batch of jobs without new arrivals)

* Results:
— Optimality result based on a time-scale separation argument
— Optimal flow-level rate vectors for each phase
— Optimal time-slot-level scheduler constructed

« Open questions:
— Optimal scheduler for the asymmetric case (with non-IID users)?
— Optimal scheduler for the dynamic system (with new arrivals)?
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Related contributions

« S. Aalto, A. Penttinen, P. Lassila and P. Osti,
On the optimal trade-off between SRPT and
opportunistic scheduling, in ACM Sigmetrics 2011

e S. Aalto, A. Penttinen, P. Lassila and P. Osti,
Optimal size-based opportunistic scheduler for wireless
systems, Queueing Systems, 2012 (to appear)
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Final remarks
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The End
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