

Recent Advances in Age and Size-based Scheduling

Samuli Aalto Aalto University, Finland

ITC 24 4–7 September 2012 Krakow, Poland

Tutorial outline

- Introduction
- Part 1: Fundamental scheduling results
- Part 2: The Gittins index approach revisited
- Part 3: Trade-off between size-based and opportunistic scheduling
- Final remarks

Earlier contributions

- S. Aalto, U. Ayesta and E. Nyberg-Oksanen, Two-level processor-sharing scheduling disciplines: Mean delay analysis, in ACM Sigmetrics/Performance 2004
- S. Aalto and U. Ayesta, Mean delay analysis of multi level processor sharing disciplines, in *IEEE Infocom* 2006
- S. Aalto, U. Ayesta, S. Borst, V. Misra and R. Nunez-Queija, Beyond Processor Sharing, ACM Sigmetrics Performance Evaluation Review, 2007
- S. Aalto and U. Ayesta, On the nonoptimality of the foreground-background discipline for IMRL service times, *Journal of Applied Probability*, 2006

Recent contributions

- S. Aalto, U. Ayesta and R. Righter, On the Gittins index in the M/G/1 queue, Queueing Systems, 2009
- S. Aalto, U. Ayesta and R. Righter, Properties of the Gittins index with application to optimal scheduling, Probability in the Engineering and Informational Sciences, 2011
- S. Aalto, A. Penttinen, P. Lassila and P. Osti, On the optimal trade-off between SRPT and opportunistic scheduling, in ACM Sigmetrics 2011
- S. Aalto, A. Penttinen, P. Lassila and P. Osti, Optimal size-based opportunistic scheduler for wireless systems, *Queueing Systems*, 2012 (to appear)

Introduction

M/G/1 queue

- Jobs arrive according to a Poisson process
 - IID inter-arrival times
 - exponential inter-arrival time distribution with mean $1/\lambda$
- Jobs are served by a single server
 - IID service times
 - general service time distribution with mean $E[S] = 1/\mu$

Service discipline

- Service discipline determines the way the service capacity is shared among the jobs in the system
- Service discipline is also known as
 - queueing discipline,
 - scheduling discipline, or
 - scheduling policy
- Service discipline is work-conserving if jobs are served whenever the system is non-empty

Some work-conserving disciplines

- First In First Out (FIFO)
 - service in the arrival order ("ordinary queue")
 - also known as First Come First Served (FCFS)
- Processor Sharing (PS)
 - the service capacity is shared evenly among all jobs ("fair queue")
 - ideal version of the Round Robin (RR) service discipline

Stability condition

• Any work-conserving discipline is stable if and only if

$$\rho = \frac{\lambda}{\mu} < 1$$

Optimal scheduling problem*

- Service capacity is shared among the jobs so that ...
- ... the mean delay E[T] is minimized ...
- ... within the family of disciplines considered

* ... in this presentation

Example: M/M/1

• For any work-conserving discipline,

$$E[T] = \frac{E[S]}{1-\rho} = E[S]\left(1 + \frac{\rho}{1-\rho}\right)$$

Conclusion: Any work-conserving discipline is optimal

Example: M/D/1

• For FIFO (by Pollaczek-Khinchin),

$$E[T] = E[S]\left(1 + \frac{\rho}{2(1-\rho)}\right)$$

• For PS (by insensitivity),

$$E[T] = \frac{E[S]}{1-\rho} = E[S]\left(1 + \frac{\rho}{1-\rho}\right) > E[S]\left(1 + \frac{\rho}{2(1-\rho)}\right)$$

Conclusion: FIFO better than PS

Example: M/G/1

• For FIFO (by Pollaczek-Khinchin),

$$E[T] = E[S] + \frac{\lambda E[S^2]}{2(1-\rho)}$$

• For PS (by insensitivity),

$$E[T] = \frac{E[S]}{1 - \rho} = E[S] + \frac{\lambda E[S]^2}{1 - \rho}$$

• Conclusion: FIFO better than PS if and only if $C^2[S] \le 1$

Service time distribution

• Coefficient of variation $C^2[S]$:

$$C^{2}[S] = \frac{D^{2}[S]}{E[S]^{2}} = \frac{E[S^{2}]}{E[S]^{2}} - 1$$

• Note that

$$C^{2}[S] \le 1 \iff \frac{E[S^{2}]}{2} \le E[S]^{2}$$

Part 1 Fundamental scheduling results

Outline of Part 1

- Service disciplines
- Service time distributions
- Gittins index approach
- Optimality results
- Summary

Service discipline categories

- Definition: Service discipline is work-conserving if jobs are served whenever the system is non-empty
- Definition: Service discipline is non-sharing if jobs are served one-by-one
- Definition: Service discipline is non-preemptive if jobs are served one-by-one until completion
- Definition: Service discipline is non-anticipating if the remaining service times are not utilized (while the attained service times may be utilized)

Service disciplines (1)

• First In First Out (FIFO)

- when the server becomes free,
 the earliest arrived job is taken into service ("ordinary queue")
- non-preemptive and non-anticipating
- also known as First Come First Served (FCFS)
- Most Attained Service (MAS)
 - when the server becomes free,
 a job is taken into service in any non-anticipating way
 - non-preemptive and non-anticipating

Service disciplines (2)

- Processor Sharing (PS)
 - the service capacity is shared evenly among all jobs ("fair queue")
 - sharing and non-anticipating
 - ideal version of the Round Robin (RR) service discipline
- Least Attained Service (LAS)
 - the service capacity is shared evenly among the jobs with the least amount of attained service
 - sharing and non-anticipating
 - also known as Foreground Background (FB)

Service disciplines (3)

- Shortest Processing Time (SPT)
 - when the server becomes free,
 the job with the shortest service time is taken into service
 - non-preemptive and anticipating
- Shortest Remaining Processing Time (SRPT)
 - the job with the shortest remaining service time is served
 - non-sharing, preemptive, and anticipating

Service disciplines (4)

- Shortest Expected Processing Time (SEPT)
 - when the server becomes free,
 the job with the shortest expected service time is taken into service
 - non-preemptive and non-anticipating
- Shortest Expected Remaining Processing Time (SERPT)
 - the job with the shortest expected remaining service time is served
 - non-sharing, preemptive, and non-anticipating

Service discipline families

- Non-preemptive non-anticipating disciplines Π^{NPR-NA} e.g. FIFO, MAS, SEPT
- Non-preemptive disciplines Π^{NPR} – e.g. FIFO, MAS, SEPT + SPT
- Non-anticipating disciplines Π^{NA} – e.g. FIFO, MAS, SEPT + PS, LAS, SERPT
- All disciplines Π
 - e.g. all above + SRPT

Outline of Part 1

- Service disciplines
- Service time distributions
- Gittins index approach
- Optimality results
- Summary

Service time distribution

• Hazard rate (HR) function h(x)

$$F(x) \triangleq \int_{0}^{x} f(y) dy, \qquad h(x) \triangleq \frac{f(x)}{1 - F(x)}$$

• Mean residual lifetime (MRL) function M(x)

$$M(x) \doteq E[S - x | S > x] = \frac{\int_{x}^{\infty} (1 - F(y)) dy}{1 - F(x)}$$

Service time distribution classes (1)

- Definition: Service times are IHR [DHR] if h(x) is increasing [decreasing]
- Definition: Service times are DMRL [IMRL] if M(x) is decreasing [increasing]
- Definition: Service times are NBUE [NWUE] if $M(0) \ge [\le] M(x)$ for any x

Service time distribution classes (2)

- IHR = Increasing Hazard Rate
- DMRL = Decreasing Mean Residual Lifetime
- NBUE = New Better than Used in Expectation

- **DHR** = Decreasing Hazard Rate
- IMRL = Increasing Mean Residual Lifetime
- NWUE = New Worse than Used in Expectation

Outline of Part 1

- Service disciplines
- Service time distributions
- Gittins index approach
- Optimality results
- Summary

Hazard rate

• Remaining service time distribution:

$$P\{S - x \le y \mid S > x\} = \frac{F(x+y) - F(x)}{1 - F(x)}$$

• Hazard rate (HR) function h(x):

$$h(x) \triangleq \lim_{\Delta \to 0} \frac{1}{\Delta} P\{S - x \le \Delta \mid S > x\} = \frac{f(x)}{1 - F(x)}$$

Inverse MRL

• Mean residual lifetime (MRL) function M(x):

$$M(x) \triangleq E[S - x | S > x] = \frac{\int_{x}^{\infty} (1 - F(y)) dy}{1 - F(x)}$$

• Inverse MRL function H(x):

$$H(x) \triangleq \frac{1}{E[S - x \mid S > x]} = \frac{1 - F(x)}{\int_{x}^{\infty} (1 - F(y)) dy}$$

Gittins index (1)

- Consider a job with
 - attained service (age) α
 - served continuously during an interval of length (at most) Δ
- Probability that the service is completed

$$P\{S - a \le \Delta \mid S > a\} = \frac{F(a + \Delta) - F(a)}{1 - F(a)} = \frac{\int_{a}^{a + \Delta} f(y) dy}{1 - F(a)}$$

Mean time until the end of service or interval

$$E[\min\{S-a,\Delta\} | S > a] = \dots = \frac{\int_{a}^{a+\Delta} (1-F(y))dy}{1-F(a)}$$

Gittins index (2)

• Efficiency function for age α and service quota Δ :

$$J(a,\Delta) \triangleq \frac{P\{S - a \le \Delta \mid S > a\}}{E[\min\{S - a, \Delta\} \mid S > a]} = \frac{\int_{a}^{a + \Delta} f(y) dy}{\int_{a}^{a + \Delta} (1 - F(y)) dy}$$

• Limiting values:

$$J(a,0) = h(a), \quad J(a,\infty) = H(a)$$

Gittins index (3)

• Definition: Gittins index $G(\alpha)$ for a job with age α is

$$G(a) \triangleq \sup_{\Delta \ge 0} J(a, \Delta)$$

• Optimal service quota for a job with age *a*:

$$\Delta^*(a) \triangleq \sup\{\Delta \ge 0 \mid J(a, \Delta) = G(a)\}$$

Gittins index discipline

- Gittins index discipline (GI)
 - job i^* with the highest Gittins index $G(a_{i^*})$ is served
 - non-anticipating
- Ordinary M/G/1 queue (with a single job class):

 $G(a_{i^*}) \cong \max_i G(a_i)$

Multiclass M/G/1 queue (with multiple job classes):

$$G_{k_{i^*}}(a_{i^*}) \triangleq \max_i G_{k_i}(a_i)$$

Optimality of the GI discipline

- Gittins (1989)
- Theorem: For any M/G/1 queue with ρ < 1, the GI discipline is optimal among all non-anticipating disciplines,

$$E[T^{\mathbf{GI}}] = \min\{E[T^{\pi}] \mid \pi \in \Pi^{\mathbf{NA}}\}$$

• See also Sevcik (1974), Klimov (1974, 1978)

Outline of Part 1

- Service disciplines
- Service time distributions
- Gittins index approach
- Optimality results
- Summary

Service discipline families

- Non-preemptive non-anticipating disciplines Π^{NPR-NA} e.g. FIFO, MAS, SEPT
- Non-preemptive disciplines Π^{NPR} – e.g. FIFO, MAS, SEPT + SPT
- Non-anticipating disciplines Π^{NA} – e.g. FIFO, MAS, SEPT + PS, LAS, SERPT
- All disciplines Π
 - e.g. all above + SRPT
Optimality of the SEPT discipline

- Cox and Smith (1961)
- Theorem: For any M/G/1 queue with ρ < 1, the SEPT discipline is optimal among all non-preemptive non-anticipating disciplines,

$$E[T^{\text{SEPT}}] = \min\{E[T^{\pi}] \mid \pi \in \Pi^{\text{NPR-NA}}\}$$

• Special case of the optimality of the $c\mu$ -rule (with $c \equiv 1$)

Interpretation by the GI approach

- For the ordinary M/G/1 queue, the result is trivial.
- Consider the multi-class M/G/1 queue. Due to the restriction to the non-preemptive disciplines, the Gittins index is only considered for $\alpha = 0$ and $\Delta = \infty$:

$$G_k(0) = J_k(0,\infty) = H_k(0) = 1/E[S_k]$$

• Thus,

$$G_{k_{i^*}}(0) = \max_i G_{k_i}(0) = 1/\min_i E[S_{k_i}]$$

• Conclusion: SEPT = GI discipline

Optimality of the SPT discipline

- Cox and Smith (1961)
- Theorem: For any M/G/1 queue with ρ < 1, the SPT discipline is optimal among all non-preemptive disciplines,

$$E[T^{\text{SPT}}] = \min\{E[T^{\pi}] \mid \pi \in \Pi^{\text{NPR}}\}$$

Interpretation by the GI approach

- Define the class of the job based on its known service requirement s
- Due to the restriction to the non-preemptive disciplines, the Gittins index is only considered for $\alpha = 0$ and $\Delta = \infty$:

$$G_s(0) = J_s(0,\infty) = H_s(0) = 1/s$$

• Thus,

$$G_{s_{i^*}}(0) = \max_i G_{s_i}(0) = 1/\min_i s_i$$

• Conclusion: SPT = GI discipline

Service time distribution classes

- IHR = Increasing Hazard Rate
- DMRL = Decreasing Mean Residual Lifetime
- NBUE = New Better than Used in Expectation

- **DHR** = Decreasing Hazard Rate
- IMRL = Increasing Mean Residual Lifetime
- NWUE = New Worse than Used in Expectation

Optimality of the MAS discipline

- Righter, Shanthikumar and Yamazaki (1990)
- Theorem: For the ordinary M/G/1 queue with NBUE service times and p < 1, any MAS discipline (e.g. FIFO) is optimal among all non-anticipating disciplines,

NBUE
$$\Rightarrow E[T^{\text{MAS}}] = \min\{E[T^{\pi}] | \pi \in \Pi^{\text{NA}}\}$$

Interpretation by the GI approach

- Aalto, Ayesta and Righter (2009)
- Lemma: For NBUE service times, $J(0,\Delta) \leq J(0,\infty)$ for all Δ .
- Lemma implies that

$$G(0) = \sup_{\Delta \ge 0} J(0, \Delta) = J(0, \infty) = H(0)$$

• On the other hand, due to the **NBUE** property,

$$G(a) \ge H(a) \ge H(0) = G(0)$$

• Conclusion: MAS = GI discipline

Service time distribution classes

- IHR = Increasing Hazard Rate
- DMRL = Decreasing Mean Residual Lifetime
- NBUE = New Better than Used in Expectation

- **DHR** = Decreasing Hazard Rate
- IMRL = Increasing Mean Residual Lifetime
- NWUE = New Worse than Used in Expectation

Optimality of the LAS discipline

- Yashkov (1987); Righter and Shanthikumar (1989)
- Theorem: For the ordinary M/G/1 queue with DHR service times and p < 1, the LAS discipline is optimal among all non-anticipating disciplines,

DHR
$$\Rightarrow E[T^{\text{LAS}}] = \min\{E[T^{\pi}] | \pi \in \Pi^{\text{NA}}\}$$

• See also Aalto and Ayesta (2006)

Interpretation by the GI approach

- Aalto, Ayesta and Righter (2009)
- Lemma: For DHR service times,
 J(α,Δ) is decreasing (with respect to Δ) for all α, Δ.
- Lemma implies that

$$G(a) = \sup_{\Delta \ge 0} J(a, \Delta) = J(a, 0) = h(a)$$

• On the other hand, due to the DHR property,

 $G(a_{i^*}) = \max_i G(a_i) = \max_i h(a_i) = h(\min_i a_i)$

• Conclusion: LAS = GI discipline

Optimality of the SRPT discipline

- Schrage (1968); Smith (1978)
- Theorem: For any M/G/1 queue with ρ < 1, the SRPT discipline is optimal among all disciplines,

$$E[T^{\text{SRPT}}] = \min\{E[T^{\pi}] \mid \pi \in \Pi\}$$

Interpretation by the GI approach

- Define the class of the job based on its known service requirement s
- The Gittins index is now given by

$$G_s(a) = \sup_{\Delta \ge 0} J_s(a, \Delta) = J_s(a, s-a) = 1/(s-a)$$

• Thus,

$$G_{s_{i^*}}(a_{i^*}) = \max_i G_{s_i}(a_i) = 1/\min_i (s_i - a_i)$$

• Conclusion: SRPT = GI discipline

Outline of Part 1

- Service disciplines
- Service time distributions
- Gittins index approach
- Optimality results
- Summary

Part 2 The Gittins index approach revisited

Outline of Part 2

- Introduction
- Gittins index
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Service time distribution classes
- Optimality results
- Summary

Optimal scheduling problem

• Transient system (no arrivals)

- Given a single-server queue with *n* IID jobs and service time distribution F(x), what is the optimal non-anticipating service policy so that the mean delay is minimized?
- Dynamic system (Poisson arrivals)
 - Given an M/G/1 queue

with arrival rate λ and service time distribution F(x), what is the optimal non-anticipating service policy so that the mean delay is minimized?

Optimality results

- For both problems, the optimal anticipating policy is SRPT, but it requires exact information about the service times
- For both problems, the optimal non-anticipating policy is GI, based on the amount of the attained service and the service time distribution

Gittins index discipline

- Gittins index discipline (GI)
 - job i^* with the highest Gittins index $G(a_{i^*})$ is served
 - non-anticipating

• Observations:

- GI is not necessary unique
- MAS is GI
 - if and only if $G(\alpha) \ge G(0)$ for all α
- LAS is GI

if and only if $G(\alpha)$ is decreasing for all α

Hazard rate h(x)

$$F(x) = \int_{0}^{x} f(y) dy, \quad h(x) = \frac{f(x)}{1 - F(x)}$$

Example 1 Constant hazard rate

h(x) = 1

Example 1 Constant hazard rate

Example 2 Increasing hazard rate

$$h(x) = \begin{cases} 1, & x < 1 \\ 2, & x \ge 1 \end{cases}$$

Example 2 Increasing hazard rate

Example 3 Decreasing hazard rate

$$h(x) = \begin{cases} 2, & x < 1 \\ 1, & x \ge 1 \end{cases}$$

Example 3 Decreasing hazard rate

Example 4 Increasing-decreasing hazard rate

$$h(x) = \begin{cases} 1, & x < 1, x > 2\\ 2, & 1 \le x < 2 \end{cases}$$

Example 4 Increasing-decreasing hazard rate

Example 5 Decreasing-increasing hazard rate

$$h(x) = \begin{cases} 2, & x < 1, x > 2\\ 1, & 1 \le x < 2 \end{cases}$$

Example 5 Decreasing-increasing hazard rate

Outline of Part 2

- Introduction
- Gittins index
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Service time distribution classes
- Optimality results
- Summary

Hazard rate

• Remaining service time distribution:

$$P\{S - x \le y \mid S > x\} = \frac{F(x+y) - F(x)}{1 - F(x)}$$

• Hazard rate (HR) function h(x):

$$h(x) \triangleq \lim_{\Delta \to 0} \frac{1}{\Delta} P\{S - x \le \Delta \mid S > x\} = \frac{f(x)}{1 - F(x)}$$

Inverse MRL

• Mean residual lifetime (MRL) function M(x):

$$M(x) \triangleq E[S - x | S > x] = \frac{\int_{x}^{\infty} (1 - F(y)) dy}{1 - F(x)}$$

• Inverse MRL function H(x):

$$H(x) \triangleq \frac{1}{E[S - x \mid S > x]} = \frac{1 - F(x)}{\int_{x}^{\infty} (1 - F(y)) dy}$$

Efficiency function

• Efficiency function for age α and service quota Δ :

$$J(a,\Delta) \triangleq \frac{P\{S - a \le \Delta \mid S > a\}}{E[\min\{S - a, \Delta\} \mid S > a]} = \frac{\int_{a}^{a + \Delta} f(y) dy}{\int_{a}^{a + \Delta} (1 - F(y)) dy}$$

• Limiting values:

$$J(a,0) = h(a), \quad J(a,\infty) = H(a)$$

Gittins index

• Definition: Gittins index $G(\alpha)$ for a job with age α is

$$G(a) \triangleq \sup_{\Delta \ge 0} J(a, \Delta)$$

• Optimal service quota for a job with age *a*:

$$\Delta^*(a) \triangleq \sup\{\Delta \ge 0 \mid J(a, \Delta) = G(a)\}$$

Gittins index G(x) inverse MRL H(x) hazard rate h(x)

Gittins index G(x) (rescaled) optimal service quota $\Delta^*(x)$

Gittins index G(x) (rescaled) optimal service quota $\Delta^*(x)$

Outline of Part 2

- Introduction
- Gittins index
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Service time distribution classes
- Optimality results
- Summary

Continuity result

• Property:

f(x) is continuous for all x $\Leftrightarrow h(x)$ is continuous for all x $\Leftrightarrow J(x,d)$ is continuous for all x,d

• Proposition:

h(x) is continuous for all x $\Rightarrow G(x)$ is continuous for all x

Monotonicity result 1

• Proposition:

 $h(x) \text{ strictly decreasing for all } x \in (a,b)$ \Rightarrow $G(x) \text{ strictly decreasing for all } x \in (a,c),$ $G(x) \text{ increasing for all } x \in (c,b)$

Monotonicity result 2

• Proposition:

h(x) increasing for all $x \in (a,b)$ \Rightarrow G(x) increasing for all $x \in (a,b)$

Continuity and monotonicity result

• Summary:

h(x) is continuous and piecewise monotonic for all x $\Rightarrow G(x)$ is continuous and piecewise monotonic for all x

Gittins index G(x) inverse MRL H(x) hazard rate h(x)

Outline of Part 2

- Introduction
- Gittins index
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Service time distribution classes
- Optimality results
- Summary

Monotonicity in finite intervals 1

• Proposition:

G(x) is strictly increasing for all $x \in (a,b)$ \Leftrightarrow G(x) > h(x) for all $x \in (a,b)$

Monotonicity in finite intervals 2

• Proposition:

G(x) is increasing for all $x \in (a,b)$ \Leftrightarrow $\Delta^*(x) > 0$ for all $x \in (a,b)$

Gittins index G(x) (rescaled) optimal service quota $\Delta^*(x)$

Monotonicity in finite intervals 3

• Proposition:

 $G(x) \text{ is constant for all } x \in (a,b)$ \Leftrightarrow $G(x) = h(x) \text{ and } \Delta^*(x) > 0 \text{ for all } x \in (a,b)$

Example 3 Decreasing hazard rate

Monotonicity in finite intervals 4

• Proposition:

G(x) is decreasing for all $x \in (a,b)$ \Leftrightarrow G(x) = h(x) for all $x \in (a,b)$

Monotonicity in finite intervals 5

• Proposition:

G(x) is strictly decreasing for all $x \in (a,b)$

 \Leftrightarrow

 $\Delta^*(x) = 0$ for all $x \in (a,b)$

Gittins index G(x) (rescaled) optimal service quota $\Delta^*(x)$

Outline of Part 2

- Introduction
- Gittins index
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Service time distribution classes
- Optimality results
- Summary

Service time distribution classes

- IHR = Increasing Hazard Rate
- DMRL = Decreasing Mean Residual Lifetime
- NBUE = New Better than Used in Expectation

- **DHR** = Decreasing Hazard Rate
- IMRL = Increasing Mean Residual Lifetime
- NWUE = New Worse than Used in Expectation

Properties in infinite intervals 1

• Proposition:

 $G(x) \ge G(a) \text{ for all } x \in (a, \infty)$ \Leftrightarrow $H(x) \ge H(a) \text{ for all } x \in (a, \infty)$ \Leftrightarrow G(a) = H(a)

NBUE service times

• Corollary:

Properties in infinite intervals 2

• Proposition:

 $G(x) \text{ is increasing for all } x \in (a, \infty)$ \Leftrightarrow $H(x) \text{ is increasing for all } x \in (a, \infty)$ \Leftrightarrow $G(x) = H(x) \text{ for all } x \in (a, \infty)$

Example 5 Decreasing-increasing hazard rate

DMRL service times

• Corollary:

G(x) is increasing for all x \Leftrightarrow Service times are DMRL \Leftrightarrow G(x) = H(x) for all x

Properties in infinite intervals 3

• Proposition:

G(x) is constant for all $x \in (a, \infty)$ \Leftrightarrow H(x) is constant for all $x \in (a, \infty)$ \Leftrightarrow h(x) is constant for all $x \in (a, \infty)$ \bigcirc G(x) = H(x) = h(x) for all $x \in (a, \infty)$
EXP service times

• Corollary:

Properties in infinite intervals 4

• Proposition:

 $G(x) \text{ is decreasing for all } x \in (a, \infty)$ \Leftrightarrow $h(x) \text{ is decreasing for all } x \in (a, \infty)$ \Leftrightarrow $G(x) = h(x) \text{ for all } x \in (a, \infty)$

Example 4 Increasing-decreasing hazard rate

DHR service times

• Corollary:

G(x) is decreasing for all x \Leftrightarrow Service times are DHR \Leftrightarrow G(x) = h(x) for all x

Outline of Part 2

- Introduction
- Gittins index
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Service time distribution classes
- Optimality results
- Summary

Optimality of the MAS discipline

• Corollary:

⇔ Service times are NBUE

• Note: In this case MAS = SERPT (due to NBUE)

Example 2 Increasing hazard rate

Optimality of the LAS discipline

• Corollary:

 \Leftrightarrow

Service times are DHR

• Note: In this case LAS = SERPT (since DHR \Rightarrow IMRL)

Example 3 Decreasing hazard rate

Optimality of the MAS+LAS discipline

• Corollary:

Service times are NBUE + DHR(k) \Rightarrow MAS + LAS(k^*) is optimal

 MAS+LAS belongs to MLPS (Multi-Level Processor Sharing) policies, cf. Kleinrock (1976)

Example 4 Increasing-decreasing hazard rate

Optimality of the LAS+MAS discipline

• Corollary:

Service times are DHR + IHR(k), $h(0) \ge H(\infty)$ \Rightarrow

 $LAS + MAS(k^*)$ is optimal

 LAS+MAS belongs to MLPS (Multi-Level Processor Sharing) policies, cf. Kleinrock (1976)

Example 5 Decreasing-increasing hazard rate

Transient system 1

- Assume: h(x) continuous and piecewise monotonic
- Corollary:

Hazard rate h(x) is first increasing

 \Rightarrow

MAS + LAS + MAS + $\dots(k_1^*, k_2^*, \dots)$ is optimal for the transient system

 MAS+LAS+MAS+... belongs to MLPS (Multi-Level Processor Sharing) policies, cf. Kleinrock (1976)

Example 6 Oscillating hazard rate

Example 6 Oscillating hazard rate

Transient system 2

- Assume: h(x) continuous and piecewise monotonic
- Corollary:

Hazard rate h(x) is first decreasing

 \Rightarrow LAS + MAS + LAS + ...($k_1^*, k_2^*, ...$) is optimal

for the transient system

 LAS+MAS+LAS+... belongs to MLPS (Multi-Level Processor Sharing) policies, cf. Kleinrock (1976)

Example 7 Oscillating hazard rate

Example 7 Oscillating hazard rate

Outline of Part 2

- Introduction
- Gittins index
- Continuity and monotonicity result
- Monotonicity in finite intervals
- Service time distribution classes
- Optimality results
- Summary

Related contributions

- S. Aalto, U. Ayesta and R. Righter, On the Gittins index in the M/G/1 queue, *Queueing Systems*, 2009
- S. Aalto, U. Ayesta and R. Righter, Properties of the Gittins index with application, *Probability in the Engineering and Informational Sciences*, 2011

Part 3 Trade-off between size-based and opportunistic scheduling

Outline of Part 3

- Introduction
- Time-scale separation
- Optimal flow-level operating policy
- Examples
- Optimal time-slot-level scheduler
- Summary

Research problem

- Downlink data transmission in a wireless cellular system
- Traffic = elastic flows
 - file transfers using TCP
- Scheduling decisions in each time slot
 - time scale of milliseconds
- Traffic dynamics in a much longer time scale
 - time scale of seconds/minutes
- Optimal time-slot-level scheduler for flow-level performance?

Flow-level performance

- Performance is expressed as flow-level delay
 - Mean flow delay describes how long, on the average, it takes to transfer a file
- Importance of the time scale
 - Users do not care about time-slot or packet-level delays, but the flow-level delay, i.e., the total time to transfer a file
- Flow-level models try to characterize the system at the time scale where users experience the performance

Time-slot-level schedulers

Channel-aware schedulers

- Channel conditions varying randomly for each user
- Scheduling based on channel information
- Scheduler may prefer users with a good channel
- Opportunistic scheduling
- Examples: MR, PF
- Size-based schedulers
 - Scheduling based on flow size information
 - Scheduler may prefer users with a short flow
 - Example: SRPT

Fundamental trade-off

Opportunistic scheduling

- Aggregate mean service rate increases with the number of users (opportunistic gain, multiuser diversity gain)
- However, a user with a long remaining service requirement blocks the other users

• SRPT

- The number of flows is reduced efficiently
- However, opportunistic gain is lost due to suboptimal channel

Combining opportunistic and size-based scheduling

- Tsybakov (2003)
 - Dynamic programming approach (time-slot scale)
- Hu et al. (2004)
 - Heuristic approach: TAOS (time-slot scale)
- Lassila and Aalto (2008)
 - Another heuristic approach: SRPT-P (time-slot scale)
- Ayesta et al. (2010), Jacko (2011)
 - Age-based information, Markovian system (time-slot scale)
- Sadiq and de Veciana (2010)
 - Time-scale separation (flow scale)
 - Transient system
 - Optimality result for nested polymatroids
 - Cf. optimality of SRPT-FM, Raj et al. (2004)

SRPT-FM

- SRPT-FM = Shortest Remaining Processing Time on the Fastest Machine
- Pinedo (1995)
- Theorem: SRPT-FM minimizes the mean delay in heterogeneous parallel server systems for a batch of jobs (without any new arrivals)

Outline of Part 3

- Introduction
- Time-scale separation
- Optimal flow-level operating policy
- Examples
- Optimal time-slot-level scheduler
- Summary

Time-scale separation

- $R(t) = (R_1(t), ..., R_k(t)) =$ rate vector in time slot t
- $R_i(t)$ = instantaneous rate of user i
- Assume: $R_i(t)$ is a stationary and ergodic process
- Assume: Scheduling policy $\pi \in \Pi_k$ is stationary
- Define: The long-term throughput for user *i*:

$$\theta_i^{\pi} = \sum_{\mathbf{r}} r_i p_i^{\pi}(\mathbf{r}) P\{R(t) = \mathbf{r}\}$$

Define: The (opportunistic) capacity region:

$$C_k = \{(\theta_1^{\pi}, \dots, \theta_k^{\pi}) \in \mathfrak{R}^k_+ : \pi \in \Pi_k\}$$

- Service system where the service capacity is adjustable depending on the current number of jobs
- When there are k jobs with sizes

$$s_1 \ge \ldots \ge s_k$$

0.6

0.4

 C_2

choose a rate vector

$$\mathbf{c}_k = (c_{k1}, \dots, c_{kk}) \in C_k$$

and serve job i with rate c_{ki}

• Assume: Capacity regions C_k compact and symmetric

Example: Alpha-ball

• Let $\alpha \ge 1$. Capacity regions:

$$C_k = \{ \mathbf{c}_k \ge 0 : \sum_{j=1}^k c_{kj}^{\alpha} \le 1 \}$$

Outline of Part 3

- Introduction
- Time-scale separation
- Optimal flow-level operating policy
- Examples
- Optimal time-slot-level scheduler
- Summary

Optimal scheduling problem (transient system)

- Assume that there are n jobs in the system at time 0
- What is the optimal way to make the system empty?
- Objective: Minimize the mean delay (or flow time)
- Define: Flow time (or total completion time) for policy

$$T^{\phi} = \sum_{i=1}^{n} t_i^{\phi}$$

where t_i is the completion time of job i

Define: Operating policies

$$\Phi_n = \{ \phi = (\mathbf{c}_1, \dots, \mathbf{c}_n) : \mathbf{c}_k \in C_k \text{ for all } k \}$$

Trivial case: One job

• Define:

$$G_1^* = \frac{1}{c_1^*}, \quad c_1^* = \max_{c_1 \in C_1} c_1$$

• Now

$$T^* = \min_{\phi \in \Phi_1} T^{\phi} = s_1 G_1^*, \ \phi^* = (\mathbf{c}_1^*)$$

Simple case: Two jobs

If job 2 (i.e., the shorter one) completes first, then

$$T^{\phi} = 2\frac{s_2}{c_{22}} + (s_1 - \frac{s_2}{c_{22}}c_{21})\frac{1}{c_1^*} = \frac{s_2}{c_{22}}(2 - \frac{c_{21}}{c_1^*}) + \frac{s_1}{c_1^*}$$

0.6

0.4

 C_2

0.4

0.6

0.8

• Otherwise

$$T^{\phi} = 2\frac{s_1}{c_{21}} + (s_2 - \frac{s_1}{c_{21}}c_{22})\frac{1}{c_1^*} = \frac{s_1}{c_{21}}(2 - \frac{c_{22}}{c_1^*}) + \frac{s_2}{c_1^*}$$

• Let us minimize (a function not depending on sizes!)

$$g(\mathbf{c}_2) = \frac{1}{c_{22}} (2 - \frac{c_{21}}{c_1^*}), \ \mathbf{c}_2 \in C_2$$

Geometric interpretation

 C_2

• Define:

$$G_2^* = g(\mathbf{c}_2^*) = \min_{\mathbf{c}_2 \in C_2} g(\mathbf{c}_2)$$

Result: If

$$G_1^* < G_2^*$$

then (due to the symmetry property!)

$$T^* = \min_{\phi \in \Phi_2} T^{\phi} = s_2 G_2^* + s_1 G_1^*, \ \phi^* = (\mathbf{c}_1^*, \mathbf{c}_2^*), \ \mathbf{c}_{21}^* \le \mathbf{c}_{22}^*$$

• Justification:

$$T^{\phi} \ge \min\{s_{2}g(c_{21}, c_{22}) + s_{1}G_{1}^{*}, s_{1}g(c_{22}, c_{21}) + s_{2}G_{1}^{*}\}$$

$$\ge \min\{s_{2}G_{2}^{*} + s_{1}G_{1}^{*}, s_{1}G_{2}^{*} + s_{2}G_{1}^{*}\}$$

$$= s_{2}G_{2}^{*} + s_{1}G_{1}^{*} \qquad [\text{since } G_{2}^{*} > G_{1}^{*}]$$

$$T^{\phi^{*}} = s_{2}g(c_{21}^{*}, c_{22}^{*}) + s_{1}G_{1}^{*} \qquad [\text{since } c_{22}^{*} \ge c_{21}^{*}]$$

$$= s_{2}G_{2}^{*} + s_{1}G_{1}^{*} \qquad [\text{since } c_{22}^{*} \ge c_{21}^{*}]$$

Required additional result:

• Equivalent condition:

$$G_{2}^{*} > G_{1}^{*} \iff$$

 $c_{21} + c_{22} < 2 \cdot c_{1}^{*}$

- Suffient condition: nested capacity regions
- Note: However, capacity regions are not required to be nested

General case: n jobs

• **Define** (recursively):

$$G_k^* = \min_{\mathbf{c}_k \in C_k} g_k(\mathbf{c}_k), \quad g_k(\mathbf{c}_k) = \frac{1}{c_{kk}} \left(k - \sum_{i=1}^{k-1} c_{ki} G_i^* \right)$$

• Theorem 1: If

$$G_1^* < \ldots < G_n^*$$

then

$$T^* = \min_{\phi \in \Phi_n} T^{\phi} = \sum_{k=1}^n s_k G_k^*, \ \phi^* = (\mathbf{c}_1^*, \dots, \mathbf{c}_n^*)$$

General case: n jobs (cont.)

• In addition,

$$c_{k1}^* \le \dots \le c_{kk}^*$$
 for all k

- Thus, the optimal policy applies the SRPT-FM principle:
 - the shortest job is served with the highest rate,
 - the second shortest job is served with the second highest rate,
 - etc.
- Note also that the optimal rate vector does not depend on the absolute sizes (only on their order)

Outline of Part 3

- Introduction
- Time-scale separation
- Optimal flow-level operating policy
- Examples
- Optimal time-slot-level scheduler
- Summary

Example: Alpha-ball

• Let $\alpha \ge 1$ and consider capacity regions

$$C_k = \{ \mathbf{c}_k \ge 0 : \sum_{j=1}^k c_{kj}^{\alpha} \le 1 \}$$

• Now

$$G_{k}^{*} = \left(k^{\frac{\alpha}{\alpha-1}} - (k-1)^{\frac{\alpha}{\alpha-1}}\right)^{\frac{\alpha-1}{\alpha}} \text{ (increasing in } k)$$
$$c_{kj}^{*} = \left(\frac{G_{j}^{*}}{k}\right)^{\frac{1}{\alpha-1}} \text{ (increasing in } j)$$

Alpha = 1.0 (single-server queue)

1.0

Outline of Part 3

- Introduction
- Time-scale separation
- Optimal flow-level operating policy
- Examples
- Optimal time-slot-level scheduler
- Summary

Summary thus far

- Assumptions:
 - Abstract capacity regions (time-scale separation)
 - Transient system
- Results:
 - Optimality result for compact and symmetric capacity regions
 - includes nested polymatroids (cf. Sadiq and de Veciana (2010))
 - requires an implicit condition related to capacity regions
 - Optimal rate vectors for each phase
 - applying the SRPT-FM principle
- Open questions:
 - Is it possible to make the implicit condition explicit?
 - Is it possible to implement the optimal policy at time-slot scale?

Time-slot-level model

- $R(t) = (R_1(t), ..., R_k(t)) =$ rate vector in time slot t
- $R_i(t)$ = instantaneous rate of user *i*
- Assume: $R_i(t)$ is a stationary and ergodic process taking values in a finite set
- Assume: Processes $R_i(t)$ are IID (symmetric case)

Time-slot-level schedulers

- Assume: Scheduling policy $\pi \in \Pi_k$ is stationary
- Define: The long-term throughput for user *i*:

$$\theta_i^{\pi} = \sum_{\mathbf{r}} r_i p_i^{\pi}(\mathbf{r}) P\{R(t) = \mathbf{r}\}$$

• Define: The (opportunistic) capacity region:

$$C_k = \{(\theta_1^{\pi}, \dots, \theta_k^{\pi}) \in \mathfrak{R}^k_+ : \pi \in \Pi_k\}$$

• Note: Capacity regions are compact and symmetric

Weight-based schedulers

Define: Weight-based scheduler π ∈ Π_k allocates time slot t to user i* for which

$$w_{i} * R_{i} * (t) = \max_{i} w_{i} R_{i}(t)$$

where w_i are the weights related to the scheduler

Example: MR (which is the same as PF in our case)
 w_i = 1 for all i

Connection between the two time scales

• Proposition 1:

$$E[\max_{i} w_{i} R_{i}(t)] = \max_{\mathbf{c}_{k} \in C_{k}} \sum_{i} w_{i} c_{ki}$$

– Proof is straightforward:

$$\max_{\mathbf{c}_{k}} \sum_{i} w_{i} c_{ki} = \max_{\pi} \sum_{\mathbf{r}} \sum_{i} w_{i} r_{i} p_{i}^{\pi}(\mathbf{r}) P\{R(t) = \mathbf{r}\}$$
$$= \sum_{\mathbf{r}} (\max_{i} w_{i} r_{i}) P\{R(t) = \mathbf{r}\}$$
$$= E[\max_{i} w_{i} R_{i}(t)]$$

Recall the optimal scheduling problem (transient system)

- Assume that there are n jobs in the system at time 0
- What is the optimal way to make the system empty?
- Objective: Minimize the mean delay (or flow time)
- Define: Flow time (or total completion time) for policy

$$T^{\phi} = \sum_{i=1}^{n} t_{i}^{\phi}$$

where t_i is the completion time of job i

Define: Operating policies

$$\Phi_n = \{ \phi = (\mathbf{c}_1, \dots, \mathbf{c}_n) : \mathbf{c}_k \in C_k \text{ for all } k \}$$

Recall the recursion for G* (based on the flow-level model)

• Define (recursively):

$$G_k^* = \min_{\mathbf{c}_k \in C_k} g_k(\mathbf{c}_k), \quad g_k(\mathbf{c}_k) = \frac{1}{c_{kk}} \left(k - \sum_{i=1}^{k-1} c_{ki} G_i^* \right)$$

• Open problem 1: Is it possible to show that in our case

$$G_1^* < \ldots < G_n^*$$

 Open problem 2: If so, how to implement the optimal operating policy with a time-slot-level scheduler so that

$$\theta_i^{\pi_k^*} = c_{ki}^*$$
 for all k, i

Key property

• Proposition 2:

$$E[\max_{i} G_{i}^{*} R_{i}] = \max_{\mathbf{c}_{k} \in C_{k}} \sum_{i} G_{i}^{*} c_{ki} = \sum_{i} G_{i}^{*} c_{ki}^{*} = k$$

- Proof by induction

Alternative recursion for G* (based on the time-slot-level model)

• **Define** (recursively):

$$f_k(a) = \int_0^\infty (1 - P\{aR_k \le r\} \prod_{i=1}^{k-1} P\{G_i^*R_i \le r\}) dr$$

 $G_k^* = f_k^{-1}(k)$ (well - defined since f_k increasing)

- Based on the equation:

$$E[\max_{i=1,...,k} G_i^* R_i] = \int_0^\infty (1 - \prod_{i=1}^k P\{G_i^* R_i \le r\}) dr = k$$

Key result

• Proposition 3:

$$G_1^* < \ldots < G_n^*$$

- Proof by induction
- Idea briefly on the following slide
- Corollary: Solution of the optimal scheduling problem

$$T^* = \min_{\phi \in \Phi_n} T^{\phi} = \sum_{k=1}^n s_k G_k^*, \ \phi^* = (\mathbf{c}_1^*, \dots, \mathbf{c}_n^*)$$

$$c_{k1}^* \leq \ldots \leq c_{kk}^*$$
 for all k

Idea of the proof

• Define:

$$X_{k} = \max_{i=1,...,k} G_{i}^{*} R_{i}$$

$$h_{k+1}(a) = E[(aR_{k+1} - X_{k}) \cdot 1_{\{aR_{k+1} > X_{k}\}}]$$

- Easily: $h_{k+1}(a)$ is non-decreasing and satisfies $h_{k+1}(G_{k+1}^*) = E[X_{k+1} - X_k] = (k+1) - k = 1$
- It remains to show that

$$h_{k+1}(G_k^*) < 1$$

Optimal time-slot-level scheduler for flow-level performance

Theorem 2: The optimal operating policy φ* can be implemented by a sequence of weight-based schedulers π_k defined by weight vectors

$$\mathbf{w}_k = (G_1^*, \dots, G_k^*)$$

Proof based on Propositions 1 and 2

 Summary: The optimal time-slot-level scheduler allocates time slot t to user i* for which

$$G_{i^{*}}^{*}R_{i^{*}}(t) = \max_{i} G_{i}^{*}R_{i}(t)$$

Outline of Part 3

- Introduction
- Time-scale separation
- Optimal flow-level operating policy
- Examples
- Optimal time-slot-level scheduler
- Summary

Summary of Part 3

• Assumptions:

- Stationary and ergodic rate processes
- Symmetric case (rate processes IID for different users)
- Transient system (a batch of jobs without new arrivals)
- Results:
 - Optimality result based on a time-scale separation argument
 - Optimal flow-level rate vectors for each phase
 - Optimal time-slot-level scheduler constructed
- Open questions:
 - Optimal scheduler for the asymmetric case (with non-IID users)?
 - Optimal scheduler for the dynamic system (with new arrivals)?

Related contributions

- S. Aalto, A. Penttinen, P. Lassila and P. Osti, On the optimal trade-off between SRPT and opportunistic scheduling, in *ACM Sigmetrics* 2011
- S. Aalto, A. Penttinen, P. Lassila and P. Osti, Optimal size-based opportunistic scheduler for wireless systems, *Queueing Systems*, 2012 (to appear)

Final remarks

The End

