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Introduction 
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M/G/1 queue 

• Jobs arrive according to a Poisson process 

– IID inter-arrival times 

– exponential inter-arrival time distribution with mean 1/l 

• Jobs are served by a single server 

– IID service times 

– general service time distribution with mean E[S] = 1/m 
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Service discipline 

• Service discipline determines the way the service 

capacity is shared among the jobs in the system 

 

• Service discipline is also known as 

– queueing discipline,  

– scheduling discipline, or  

– scheduling policy 

 

• Service discipline is work-conserving  

if jobs are served whenever the system is non-empty 

 



Some work-conserving disciplines 

• First In First Out (FIFO) 

– service in the arrival order (“ordinary queue”) 

– also known as First Come First Served (FCFS) 

 

• Processor Sharing (PS)  

– the service capacity is shared evenly among all jobs (“fair queue”) 

– ideal version of the Round Robin (RR) service discipline 
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Stability condition 

• Any work-conserving discipline is stable if and only if   
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Optimal scheduling problem* 

• Service capacity is shared among the jobs so that …  

 

• … the mean delay E[T] is minimized … 

 

• … within the family of disciplines considered 
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* … in this presentation 



Example: M/M/1 

• For any work-conserving discipline,  

 

 

 

• Conclusion: Any work-conserving discipline is optimal 
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Example: M/D/1 

• For FIFO (by Pollaczek-Khinchin),  

 

 

 

• For PS  (by insensitivity),  

 

 

 

• Conclusion: FIFO better than PS 
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Example: M/G/1 

• For FIFO (by Pollaczek-Khinchin),  

 

 

 

• For PS  (by insensitivity),  

 

 

 

• Conclusion: FIFO better than PS if and only if C2[S]  1  
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Service time distribution 

• Coefficient of variation C2[S]:  

 

 

 

• Note that  
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Part 1 

Fundamental scheduling results 
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Service discipline categories 

• Definition: Service discipline is work-conserving  
if jobs are served whenever the system is non-empty 

 

• Definition: Service discipline is non-sharing  
if jobs are served one-by-one 

 

• Definition: Service discipline is non-preemptive  
if jobs are served one-by-one until completion 

 

• Definition: Service discipline is non-anticipating  
if the remaining service times are not utilized  
(while the attained service times may be utilized) 



Service disciplines (1) 

• First In First Out (FIFO) 

– when the server becomes free,  

the earliest arrived job is taken into service (“ordinary queue”) 

– non-preemptive and non-anticipating 

– also known as First Come First Served (FCFS) 

 

• Most Attained Service (MAS) 

– when the server becomes free,  

a job is taken into service in any non-anticipating way 

– non-preemptive and non-anticipating 
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Service disciplines (2) 

• Processor Sharing (PS)  

– the service capacity is shared evenly  

among all jobs (“fair queue”) 

– sharing and non-anticipating 

– ideal version of the Round Robin (RR) service discipline 

 

• Least Attained Service (LAS)  

– the service capacity is shared evenly  

among the jobs with the least amount of attained service 

– sharing and non-anticipating 

– also known as Foreground Background (FB) 
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Service disciplines (3) 

• Shortest Processing Time (SPT) 

– when the server becomes free,  

the job with the shortest service time is taken into service 

– non-preemptive and anticipating 

 

• Shortest Remaining Processing Time (SRPT) 

– the job with the shortest remaining service time is served 

– non-sharing, preemptive, and anticipating 
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Service disciplines (4) 

• Shortest Expected Processing Time (SEPT) 

– when the server becomes free,  

the job with the shortest expected service time is taken into service 

– non-preemptive and non-anticipating 

 

• Shortest Expected Remaining Processing Time (SERPT) 

– the job with the shortest expected remaining service time is served 

– non-sharing, preemptive, and non-anticipating 
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Service discipline families 

• Non-preemptive non-anticipating disciplines PNPR-NA 

– e.g. FIFO, MAS, SEPT 

 

• Non-preemptive disciplines PNPR 
– e.g. FIFO, MAS, SEPT + SPT 

 

• Non-anticipating disciplines PNA 
– e.g. FIFO, MAS, SEPT + PS, LAS, SERPT 

 

• All disciplines P  
– e.g. all above + SRPT 
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• Service disciplines 

• Service time distributions 

• Gittins index approach 

• Optimality results 

• Summary 

Outline of Part 1 
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Service time distribution 

• Hazard rate (HR) function h(x)  

 

 

 

• Mean residual lifetime (MRL) function M(x)  
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Service time distribution classes (1) 

• Definition: Service times are IHR [DHR]  

if  h(x) is increasing [decreasing] 

 

• Definition: Service times are DMRL [IMRL]  

if  M(x) is decreasing [increasing] 

 

• Definition: Service times are NBUE [NWUE]  

if  M(0)  [] M(x)  for any x  



Service time distribution classes (2) 

• IHR = Increasing Hazard Rate 

• DMRL = Decreasing Mean 

Residual Lifetime 

• NBUE = New Better than Used 

in Expectation 

• DHR = Decreasing Hazard Rate 

• IMRL = Increasing Mean 

Residual Lifetime 

• NWUE = New Worse than Used 

in Expectation 

26 

NWUE 

IMRL 

DHR 

NBUE 

DMRL 

IHR 
EXP 

C2[S]  1 C2[S]  1 



• Service disciplines 

• Service time distributions 

• Gittins index approach 

• Optimality results 

• Summary 

Outline of Part 1 

27 



• Remaining service time distribution: 

 

 

 

• Hazard rate (HR) function h(x): 
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Inverse MRL 

• Mean residual lifetime (MRL) function M(x):  

 

 

 

• Inverse MRL function H(x): 
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Gittins index (1) 

• Consider a job with  

– attained service (age) a 

– served continuously during an interval of length (at most)  

• Probability that the service is completed 

 

 

• Mean time until the end of service or interval 
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Gittins index (2) 

• Efficiency function for age a and service quota : 

 

 

 

• Limiting values:  
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Gittins index (3) 

• Definition: Gittins index G(a) for a job with age a is  

 

 

 

• Optimal service quota for a job with age a: 
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Gittins index discipline 

• Gittins index discipline (GI)  

– job i* with the highest Gittins index G(ai*) is served 

– non-anticipating 

 

• Ordinary M/G/1 queue (with a single job class):  

 

 

• Multiclass M/G/1 queue (with multiple job classes):  
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Optimality of the GI discipline 

• Gittins (1989) 

• Theorem: For any M/G/1 queue with   1,  

the GI discipline is optimal  

among all non-anticipating disciplines,  

 

 

 

• See also Sevcik (1974), Klimov (1974, 1978)  

 }|][min{][ NAGI P= TETE
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Service discipline families 

• Non-preemptive non-anticipating disciplines PNPR-NA 

– e.g. FIFO, MAS, SEPT 

 

• Non-preemptive disciplines PNPR 
– e.g. FIFO, MAS, SEPT + SPT 

 

• Non-anticipating disciplines PNA 
– e.g. FIFO, MAS, SEPT + PS, LAS, SERPT 

 

• All disciplines P  
– e.g. all above + SRPT 
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Optimality of the SEPT discipline 

• Cox and Smith (1961) 

• Theorem: For any M/G/1 queue with   1,  

the SEPT discipline is optimal  

among all non-preemptive non-anticipating disciplines,  

 

 

 

• Special case of the optimality of the cm-rule (with c  1) 

 }|][min{][ NA-NPRSEPT P= TETE
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Interpretation by the GI approach 

• For the ordinary M/G/1 queue, the result is trivial. 

• Consider the  multi-class M/G/1 queue. Due to the 

restriction to the non-preemptive disciplines, the Gittins 

index is only considered for a = 0 and  = :  

 

 

• Thus,  

 

 

• Conclusion: SEPT = GI discipline 
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Optimality of the SPT discipline 

• Cox and Smith (1961) 

• Theorem: For any M/G/1 queue with   1,  

the SPT discipline is optimal  

among all non-preemptive disciplines,  

 }|][min{][ NPRSPT P= TETE
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Interpretation by the GI approach 

• Define the class of the job based on its known service  

requirement s  

• Due to the restriction to the non-preemptive disciplines, 

the Gittins index is only considered for a = 0 and  = :  

 

 

• Thus,  

 

 

• Conclusion: SPT = GI discipline 
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Service time distribution classes 

• IHR = Increasing Hazard Rate 

• DMRL = Decreasing Mean 

Residual Lifetime 

• NBUE = New Better than Used 

in Expectation 

• DHR = Decreasing Hazard Rate 

• IMRL = Increasing Mean 

Residual Lifetime 

• NWUE = New Worse than Used 

in Expectation 
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Optimality of the MAS discipline 

• Righter, Shanthikumar and Yamazaki (1990)  

• Theorem: For the ordinary M/G/1 queue  

with NBUE service times and   1,  

any MAS discipline (e.g. FIFO) is optimal  

among all non-anticipating disciplines,  

 }|][min{][NBUE NAMAS P= TETE
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Interpretation by the GI approach 

• Aalto, Ayesta and Righter (2009) 

• Lemma: For NBUE service times,  

J0,  J0, for all . 

• Lemma implies that  

 

 

• On the other hand, due to the NBUE property,  

 

 

• Conclusion: MAS = GI discipline 

º 
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Service time distribution classes 

• IHR = Increasing Hazard Rate 

• DMRL = Decreasing Mean 

Residual Lifetime 

• NBUE = New Better than Used 

in Expectation 

• DHR = Decreasing Hazard Rate 

• IMRL = Increasing Mean 

Residual Lifetime 

• NWUE = New Worse than Used 

in Expectation 
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Optimality of the LAS discipline 

• Yashkov (1987); Righter and Shanthikumar (1989) 

• Theorem: For the ordinary M/G/1 queue  

with DHR service times and   1,  

the LAS discipline is optimal  

among all non-anticipating disciplines, 

 

 

 

• See also Aalto and Ayesta (2006) 

 }|][min{][DHR NALAS P= TETE
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Interpretation by the GI approach 

• Aalto, Ayesta and Righter (2009) 

• Lemma: For DHR service times,  

Ja, is decreasing (with respect to ) for all a, . 

• Lemma implies that  

 

 

• On the other hand, due to the DHR property,  

 

 

• Conclusion: LAS = GI discipline 
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Optimality of the SRPT discipline 

• Schrage (1968); Smith (1978) 

• Theorem: For any M/G/1 queue with   1,  

the SRPT discipline is optimal  

among all disciplines,  

 }|][min{][ SRPT P= TETE
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Interpretation by the GI approach 

• Define the class of the job based on its known service  

requirement s  

• The Gittins index is now given by   

 

 

• Thus,  

 

 

• Conclusion: SRPT = GI discipline 
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Summary of Part 1 

SEPT optimal 

NPR-NA: NPR: 

NA: All: 

SPT optimal 

GI optimal 

 NBUE  MAS [SERPT] optimal  
 DHR  LAS [SERPT] optimal 

SRPT optimal 

NWUE 
IMRL 

DHR 
DMRL 

IHR 
NBUE 

Mean delay minimization 

in M/G/1 



Part 2 

The Gittins index approach revisited 
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Optimal scheduling problem 

• Transient system (no arrivals) 

– Given a single-server queue  

with n IID jobs and service time distribution F(x),  

what is the optimal non-anticipating service policy  

so that the mean delay is minimized?  

• Dynamic system (Poisson arrivals) 

– Given an M/G/1 queue  

with arrival rate l and service time distribution F(x),  

what is the optimal non-anticipating service policy  

so that the mean delay is minimized?  
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Optimality results 

• For both problems,  

the optimal anticipating policy is SRPT,  

but it requires exact information about the service times 

 

• For both problems,  

the optimal non-anticipating policy is GI,  

based on the amount of the attained service and  

the service time distribution 
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Gittins index discipline 

• Gittins index discipline (GI)  

– job i* with the highest Gittins index G(ai*) is served 

– non-anticipating 

 

• Observations: 

– GI is not necessary unique 

– MAS is GI  

if and only if  G(a)  G(0) for all a  

– LAS is GI  

if and only if  G(a) is decreasing for all a  



Example 
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Hazard rate h(x) 
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Example 1 

Constant hazard rate 
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Example 1 

Constant hazard rate 
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Example 2 

Increasing hazard rate 
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Example 2 

Increasing hazard rate 
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Example 3 

Decreasing hazard rate 
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Example 3 

Decreasing hazard rate 
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Example 4 

Increasing-decreasing hazard rate 
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Example 4 

Increasing-decreasing hazard rate 
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Example 5 

Decreasing-increasing hazard rate 
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Example 5 

Decreasing-increasing hazard rate 
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• Remaining service time distribution: 

 

 

 

• Hazard rate (HR) function h(x): 
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Inverse MRL 

• Mean residual lifetime (MRL) function M(x):  

 

 

 

• Inverse MRL function H(x): 
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Efficiency function 

• Efficiency function for age a and service quota : 

 

 

 

• Limiting values:  
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Gittins index 

• Definition: Gittins index G(a) for a job with age a is  

 

 

 

• Optimal service quota for a job with age a: 
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Example 6 

Oscillating hazard rate 
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Example 6 

Oscillating hazard rate 
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Example 6 

Oscillating hazard rate 
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Example 6 

Oscillating hazard rate 
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NOTE! 

 

h(x) increasing 

          or 

H(x) increasing 

             

G(x) increasing 

Example 6 
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Continuity result 

• Property: 

 

 

 

 

• Proposition: 
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Monotonicity result 1 

• Proposition: 

),( allfor  increasing )(

),,( allfor  decreasingstrictly  )(
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Monotonicity result 2 

• Proposition: 
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Continuity and monotonicity result 

• Summary: 
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Monotonicity in finite intervals 1 

• Proposition: 
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Monotonicity in finite intervals 2 

• Proposition: 
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Monotonicity in finite intervals 3 

• Proposition: 
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• Proposition: 

),( allfor   )()(     

                         

),( allfor  decreasing is )(

baxxhxG

baxxG

=







Example 6 

Oscillating hazard rate 

97 

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

Gittins index G(x) 

inverse MRL H(x) 

hazard rate h(x) 

a        b 



98 

Monotonicity in finite intervals 5 
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Service time distribution classes 

• IHR = Increasing Hazard Rate 

• DMRL = Decreasing Mean 

Residual Lifetime 

• NBUE = New Better than Used 

in Expectation 

• DHR = Decreasing Hazard Rate 

• IMRL = Increasing Mean 

Residual Lifetime 

• NWUE = New Worse than Used 

in Expectation 
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Properties in infinite intervals 1 

• Proposition: 
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NBUE service times 

• Corollary: 
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Properties in infinite intervals 2 

• Proposition: 
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DMRL service times 

• Corollary: 
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Properties in infinite intervals 3 

• Proposition: 
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EXP service times 

• Corollary: 
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Properties in infinite intervals 4 

• Proposition: 
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DHR service times 

• Corollary: 
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Optimality of the MAS discipline 

• Corollary: 

 

 

 

 

 

• Note: In this case MAS = SERPT (due to NBUE) 

NBUE are  timesService 

                  

optimal is MAS         
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Increasing hazard rate 
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Optimality of the LAS discipline 

• Corollary: 

 

 

 

 

 

• Note: In this case LAS = SERPT (since DHR  IMRL) 
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Optimality of the MAS+LAS discipline 

• Corollary: 

 

 

 

 

 

• MAS+LAS belongs to MLPS (Multi-Level Processor 

Sharing) policies, cf. Kleinrock (1976) 

optimal is )*LAS(MAS      
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Optimality of the LAS+MAS discipline 

• Corollary: 

 

 

 

 

 

 

• LAS+MAS belongs to MLPS (Multi-Level Processor 

Sharing) policies, cf. Kleinrock (1976) 
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• Assume: h(x) continuous and piecewise monotonic 

• Corollary: 

 

 

 

 

 

• MAS+LAS+MAS+… belongs to MLPS (Multi-Level 

Processor Sharing) policies, cf. Kleinrock (1976) 
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• Assume: h(x) continuous and piecewise monotonic 

• Corollary: 

 

 

 

 

 

• LAS+MAS+LAS+… belongs to MLPS (Multi-Level 

Processor Sharing) policies, cf. Kleinrock (1976) 
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Summary of Part 2 

NA: 

GI optimal 

  NBUE  MAS optimal  
  DHR  LAS optimal 

NBUE+DHR  MAS+LAS optimal 

    DHR+IHR  LAS+MAS optimal 

NWUE 
IMRL 

DHR 
DMRL 

IHR 
NBUE 

Mean delay minimization 

in M/G/1 



Related contributions 

• S. Aalto, U. Ayesta and R. Righter,  

On the Gittins index in the M/G/1 queue,  

Queueing Systems, 2009 

 

• S. Aalto, U. Ayesta and R. Righter,  

Properties of the Gittins index with application,  

Probability in the Engineering and Informational 

Sciences, 2011 
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Part 3 

Trade-off between size-based and 

opportunistic scheduling 

131 
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• Summary 

Outline of Part 3 

132 



Research problem 

• Downlink data transmission  

in a wireless cellular system 

• Traffic = elastic flows 

– file transfers using TCP 

• Scheduling decisions in each 

time slot 

– time scale of milliseconds 

• Traffic dynamics in a much 

longer time scale 

– time scale of seconds/minutes 

• Optimal time-slot-level scheduler 

for flow-level performance? 

133 

Source: Hu et al. (2004) 



Flow-level performance 

• Performance is expressed as flow-level delay 

– Mean flow delay describes  

how long, on the average, it takes to transfer a file 

 

• Importance of the time scale 

– Users do not care about time-slot or packet-level delays,  

but the flow-level delay, i.e., the total time to transfer a file 

 

• Flow-level models try to characterize the system at the 

time scale where users experience the performance 

134 



Time-slot-level schedulers 

• Channel-aware schedulers 

– Channel conditions varying randomly for each user 

– Scheduling based on channel information 

– Scheduler may prefer users with a good channel 

– Opportunistic scheduling 

– Examples: MR, PF 

 

• Size-based schedulers 

– Scheduling based on flow size information 

– Scheduler may prefer users with a short flow 

– Example: SRPT 

135 



Fundamental trade-off 

• Opportunistic scheduling 

– Aggregate mean service rate increases with the number of 

users (opportunistic gain, multiuser diversity gain) 

– However, a user with a long remaining service requirement 

blocks the other users 

 

• SRPT 

– The number of flows is reduced efficiently 

– However, opportunistic gain is lost due to suboptimal channel 

136 



Combining opportunistic and size-based 

scheduling 
• Tsybakov (2003) 

– Dynamic programming approach (time-slot scale) 

• Hu et al. (2004) 
– Heuristic approach: TAOS (time-slot scale) 

• Lassila and Aalto (2008) 
– Another heuristic approach: SRPT-P (time-slot scale) 

• Ayesta et al. (2010), Jacko (2011) 
– Age-based information, Markovian system (time-slot scale) 

• Sadiq and de Veciana (2010) 
– Time-scale separation (flow scale) 
– Transient system 
– Optimality result for nested polymatroids 

– Cf. optimality of SRPT-FM, Raj et al. (2004)  
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SRPT-FM 

• SRPT-FM = Shortest Remaining Processing Time  

on the Fastest Machine 

• Pinedo (1995) 

• Theorem: SRPT-FM minimizes the mean delay  

in heterogeneous parallel server systems  

for a batch of jobs (without any new arrivals) 
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Time-scale separation 

• R(t) = (R1(t),…, Rk(t)) = rate vector in time slot t 

• Ri(t) = instantaneous rate of user i 

• Assume: Ri(t) is a stationary and ergodic process 

• Assume: Scheduling policy   Pk is stationary 

• Define: The long-term throughput for user i: 
 

 

• Define: The (opportunistic) capacity region:  
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Model 

• Service system where the service capacity is  

adjustable depending on the current number of jobs 

• When there are k jobs with sizes  

 

 

choose a rate vector  

 

 

and serve job i with rate cki  

• Assume: Capacity regions Ck compact and symmetric 
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Example: 

Alpha-ball 

• Let   1. Capacity regions:  
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Optimal scheduling problem  

(transient system) 

• Assume that there are n jobs in the system at time 0 

• What is the optimal way to make the system empty? 

• Objective: Minimize the mean delay (or flow time) 

• Define: Flow time (or total completion time) for policy f  

 

 

where ti is the completion time of job i  

• Define: Operating policies 
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Trivial case: One job 

• Define:  

 

 

• Now 
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Simple case: Two jobs 

• If job 2 (i.e., the shorter one) completes first, then  

 

 

• Otherwise  

 

 

• Let us minimize (a function not depending on sizes!)  
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Simple case: Two jobs (cont.) 

• Geometric interpretation 
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Simple case: Two jobs (cont.) 

• Define:  

 

 

• Result: If  

 

 

then (due to the symmetry property!) 
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Simple case: Two jobs (cont.) 

• Justification:  
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Simple case: Two jobs (cont.) 

• Required additional result:  
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Simple case: Two jobs (cont.) 

• Equivalent condition: 

 

 

 

 

 

• Suffient condition:  

nested capacity regions 

• Note: However, capacity 

regions are not required  

to be nested 
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General case: n jobs 

• Define (recursively): 

 

 

• Theorem 1: If  

 

 

then  
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General case: n jobs (cont.) 

• In addition,  

 

 

 

• Thus, the optimal policy applies the SRPT-FM principle: 

– the shortest job is served with the highest rate,  

– the second shortest job is served with the second highest rate,  

– etc. 

 

• Note also that the optimal rate vector does not depend 

on the absolute sizes (only on their order) 
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Example: 

Alpha-ball 

• Let   1 and consider capacity regions 

 

 

• Now 
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Alpha = 1.0 

(single-server queue) 
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Alpha = 1.2 
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Alpha = 2.0 
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Alpha = 5.0 
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Alpha = infinite 

(infinite-server queue) 
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Summary thus far 

• Assumptions: 
– Abstract capacity regions (time-scale separation) 

– Transient system 

• Results: 
– Optimality result for compact and symmetric capacity regions 

• includes nested polymatroids (cf. Sadiq and de Veciana (2010)) 

• requires an implicit condition related to capacity regions 

– Optimal rate vectors for each phase 

• applying the SRPT-FM principle 

• Open questions: 
– Is it possible to make the implicit condition explicit? 

– Is it possible to implement the optimal policy at time-slot scale? 
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Time-slot-level model 

• R(t) = (R1(t),…, Rk(t)) = rate vector in time slot t 

• Ri(t) = instantaneous rate of user i 

• Assume: Ri(t) is a stationary and ergodic process  

taking values in a finite set 

• Assume: Processes Ri(t) are IID (symmetric case) 
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Time-slot-level schedulers 

• Assume: Scheduling policy   Pk is stationary 

• Define: The long-term throughput for user i: 
 

 

• Define: The (opportunistic) capacity region: 

 

 

• Note: Capacity regions are compact and symmetric 
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Weight-based schedulers 

• Define: Weight-based scheduler   Pk allocates time 

slot t to user i* for which  

 

 

where wi are the weights related to the scheduler 

 

• Example: MR (which is the same as PF in our case) 

wi = 1 for all i 
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Connection between the two time scales 

• Proposition 1: 

 

 

– Proof is straightforward:  
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Recall the optimal scheduling problem  

(transient system) 

• Assume that there are n jobs in the system at time 0 

• What is the optimal way to make the system empty? 

• Objective: Minimize the mean delay (or flow time) 

• Define: Flow time (or total completion time) for policy f  

 

 

where ti is the completion time of job i  

• Define: Operating policies 
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Recall the recursion for G* 

(based on the flow-level model) 

• Define (recursively): 

 

 

• Open problem 1: Is it possible to show that in our case  

 

 

• Open problem 2: If so, how to implement the optimal 

operating policy with a time-slot-level scheduler so that   
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Key property 

• Proposition 2: 

 

 

– Proof by induction 
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Alternative recursion for G* 

(based on the time-slot-level model) 

• Define (recursively): 

 

 

 

 

 

– Based on the equation: 
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Key result 

• Proposition 3: 

 

 

– Proof by induction 

– Idea briefly on the following slide 

• Corollary: Solution of the optimal scheduling problem 
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Idea of the proof 

• Define: 

 

 

 

• Easily: hk1a is non-decreasing and satisfies  

 

 

• It remains to show that  
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Optimal time-slot-level scheduler  

for flow-level performance 

• Theorem 2: The optimal operating policy f* can be 

implemented by a sequence of weight-based schedulers 

 k defined by weight vectors  

 

 

– Proof based on Propositions 1 and 2 

• Summary: The optimal time-slot-level scheduler 

allocates time slot t to user i* for which  
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Summary of Part 3 

• Assumptions: 

– Stationary and ergodic rate processes 

– Symmetric case (rate processes IID for different users) 

– Transient system (a batch of jobs without new arrivals) 

• Results: 

– Optimality result based on a time-scale separation argument 

– Optimal flow-level rate vectors for each phase 

– Optimal time-slot-level scheduler constructed  

• Open questions: 

– Optimal scheduler for the asymmetric case (with non-IID users)? 

– Optimal scheduler for the dynamic system (with new arrivals)? 
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Related contributions 
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On the optimal trade-off between SRPT and 

opportunistic scheduling, in ACM Sigmetrics 2011  

 

• S. Aalto, A. Penttinen, P. Lassila and P. Osti,  

Optimal size-based opportunistic scheduler for wireless 

systems, Queueing Systems, 2012 (to appear) 
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Final remarks 

177 



The End 
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