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Heterogeneous Network

Source: Parkvall & al. (2011)
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http://www.ericsson.com/ourportfolio/telecom-operators/heterogeneous-networks

Load Balancing

Signal from macno
strongest

Source: Ericsson White Paper (2012)
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Bandwidth sharine and admission control for elastic tratiic

Elastic Traffic
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“Elastic flows, on the other hand, are established for the
transfer of digital objects which can be transmitted at
any rate up to the limit imposed by link and system ca-
pacity.”

“For an elastic flow, quality of service is manifested es-
sentially by the time it takes to complete the document
transfer.”

= flow delay (in our paper)

Source: Roberts & Massoulie (1998)

,, Aalto University
School of Electrical

Engineering 5



Part |l
\Y[e]e[=]

,, Aalto University
School of Electrical

Engineering




Scenario

« Single macro cell (index 0) with
multiple outband and separate
micro cells (1,...,n)

 No interference between cells

» Traffic consists of elastic DL
data flows

* Resources of each cell time-
shared uniformly between the
active flows
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Queueing Model

« Single macro cell (index 0) with
multiple micro cells (1,...,n)

« Traffic: elastic DL data flows
 Poisson arrivals in each cell
» Generally distributed flow sizes

 Cells modeled as M/G/1-PS
servers

Micro cells faster
than the macro cell

i = po VI
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Dispatching Policy

Dispatching policy decides

for each arriving flow
(belonging to any traffic class i)
whether

it should be served by

— the "local” micro cell i or
— the "global” macro cell 0

Maximal stability region:

Ao + itamax{4; — 44,0} < 11g
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Optimal Dispatching Problem

Optimal dispatching policy
minimizes the mean flow delay
Static policies
— state-independent
— analytical/numerical approach
— optimal static policy used as a
baseline in performance
comparisons
Dynamic policies
— state-dependent
— JSQ, MJSQ, LWL, MP, and FPI

— performance evaluation based
on simulations

— better performance?
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Static Dispatching Policies @O@

« Static (probabilistic)

dispatching policy defined
by vector

P=(P1s---» Pn)

« Results in independent parallel
M/G/1-PS queues

« Stable if and only if

AiPi < i Vi

Ao+ Xitg i (L= pi) < pg
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Mean Flow Delay © O@

» [For a stable static policy,

the mean flow delay given by

Pi i
E[T]_ZO > /1,( =1 s plﬂ“l

Ao +Xi4 4 (1-pj)
Ho—Ao—214 4i (1-pj)
« Optimal static policy:

E[T]=min!
P

* By numerical methods
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Symmetric Traffic Scenario

« Traffic scenario is symmetric if
ﬂ.«l — cee — ﬁan — ﬁy
HM=...=Hh=H

 Itis sufficient to consider
symmetric static policies
defined by scalar p

* Optimal symmetric static policy:

% i | 43 1o +(Ag+NA-pug) 1
-t

« Analytic solution

,, Aalto University
School of Electrical

Engineering 14

4




Dynamic Dispatching Policies (1) ©

JSQ (Join the Shortest Queue)
argmin{ng, n; }

— n = number of flows
MJISQ (Modified JSQ)

argmin{ng / 4o, ni / 44§
— n/u = expected workload
LWL (Least Work Left)

argmin{ug, U; |

— u = workload
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Dynamic Dispatching Policies (2)

A”

MP (Myopic Policy)
argmin{cg, oj |

— minimizes mean additional delay
costs without any new arrivals

— Bonomi & Kumar (1990)
FPI (First Policy Iteration)

argmin{oyg,c;j |

— minimizes mean additional delay
costs with future arrivals handled
by the optimal static policy

— Hyytia & al. (2011)
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Traffic Scenarios

« Exp flow sizes (2nd experiment: bdd Pareto)
« n=2(3rdexperiment:. n=2,...,10)

* Hp=1

Uy = [ = 2 (4th experiment: (/) = 1, = 4)

1 (symmetric) ,10 =0 ,11 = ,12 =1

2 (symmetric) Ay =4,=2 ,10 = A
Ag=0,4=2 A =4
M=14=2 Ay=4

3 (asym.)
4 (asym.)

A”

Aalto University
School of Electrical

Engineering 18




Mean Flow Delay Ratio

Traffic seenario 1 Traffic scenano 2
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Fig. 3. Ratio of the mean number of flows in the sysiem between the dynamic policies and the base line optimal static policy for Traffic scenarios 1-4
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Effect of Flow Size Variation (Scenario 2)
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Fig. 4. Ilustration of effect of the flow size variation: (a) bounded Pareto flow sire distribution: o = 1.5 (top lefi). (b) bounded Pareto flow size distribution:
o = 2.0. (top right). {c) bounded Pareto flow sire distmbution: o = 3.0 (bottom left) and (d) exponential flow sime distribution (hottom right)
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Effect of Nmbr of Microcells (Scenario 2)
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Fig. 5. Impact of the number of microcells on the performance gain of load balancing policies
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Impact of Service Rate Difference
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Fig. 6. Impact of service rae difference between macrocell and microcells for Traffic scenarios 1-4
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Conclusions

« All dynamic policies improve significantly the flow-level
performance compared to the optimal static policy
— best performance gain achieved with high load
— gain increased when more micro cells

 Among the implemented dynamic policies,
— myopic MP appears to be systematically the best;
— MP may even be close to optimal in minimizing the mean flow delay;

— more robust MJSQ is typically able to achieve almost the same
performance;

— FPI policies are not able to give any essential improvements over MJSQ;
— classical JSQ typically performs worst

« Performance gain of dynamic polices (except LWL)
approximately insensitive with respect to the flow size distribution
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The End
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