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Research problem

 Downlink data transmission
In a wireless cellular system
* Traffic = elastic flows
— file transfers using TCP
» Scheduling decisions in each
time slot
— time scale of milliseconds

« Traffic dynamicsina much
longer time scale

— time scale of seconds/minutes

« Optimal time-slot-level scheduler

for flow-level performance?
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Flow-level performance

« Performance is expressed as flow-level delay

— Mean flow delay describes
how long, on the average, it takes to transfer a file

« Importance of the time scale

— Users do not care about time-slot or packet-level delays,
but the flow-level delay, i.e., the total time to transmit a file
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Ime-slot-level schedulers

« Channel-aware schedulers
— Channel conditions varying randomly for each user
— Scheduling based on channel information
— Scheduler may prefer users with a good channel
— Opportunistic scheduling
— Examples: MR, PF

« Size-based schedulers
— Scheduling based on flow size information
— Scheduler may prefer users with a short flow
— Example: SRPT
— Schrage (1968): SRPT optimal in the M/G/1 queue
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Fundamental trade-off

* Opportunistic scheduling

— Aggregate mean service rate increases with the number of
users (opportunistic gain, multiuser diversity gain)

— However, a user with a long remaining service requirement
blocks the other users

e SRPT
— The number of flows is reduced most efficiently

— However, opportunistic gain is lost due to suboptimal channel
(later on also due to a smaller number of flows)
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Combining opportunistic and size-based

scheduling

« Tsybakov (2003)
— Dynamic programming approach (time-slot scale)

Hu et al. (2004)
— Heuristic approach: TAOS (time-slot scale)

Lassila and Aalto (2008)
— Another heuristic approach: SRPT-P (time-slot scale)

Ayesta et al. (2010)
— Age-based information, Markovian system (time-slot scale)

Sadig and de Veciana (2010)
— Time-scale separation (flow scale)
— Transient system

— Optimality result for nested polymatroids
— Cf. optimality of SRPT-FM, Raj et al. (2004)
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Ime-scale separation:

From the time-slot scale to the flow scale
* R(t) = (Rqy(b),..., Ry(t)) = rate vector in time slot t

* R;(t) = instantaneous rate of user I

« Assume: Ri(t) IS a stationary and ergodic process

» Assume: Scheduling policy 7 € 11} is stationary
- Define: The long-term throughput for user I:

F =20 (NP{RE) =1}

» Define: The (opportunistic) capacity region:

Cy ={(6’l7z,...,6’lf)eﬂ%_kF rell}
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Part 1
Optimal scheduling in scalable queues
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Scalable queue

e Service system where the service capacity is
self-scalable depending on the current number of JObS

« Whenthere are K jobs with sizes

$12...2 Sk
choose a rate vector

Ck = (Ck1:---1Ckk ) € Ck

and serve job | with rate Cy;
» Assume: Capacity regions Cy compact and symmetric
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Optimal scheduling problem
(transient system)

Assume that there are n jobs in the system at time 0
What is the optimal way to make the system empty?
Objective: Minimize the mean delay (or flow time)
Define: Flow time (or total completion time) for policy ¢

T/ =3t

where {; is the completion time of job i
Define: Operating policies

O, ={p=(Cq,...,Cn) :Cx € Cy forallk}
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rivial case: One job

 Define
x
Gy =1
G
 Now
T = minT?
Py
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Simple case: Two jobs

« Ifjob 2 (i.e., the shorter one) completes first, th;en_
T? = 22 82 + SZ 1520 %21y, 3
(51— 21) = )

G G

 Otherwise
T? =23 4 (s)— L) l=1 (2 %2y, %
21 (52 21 22) 021( cl) ¢

« Let us minimize (a function not depending on sizes!)

C
g(Cc2) =é(2—§), Cr €Cy
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Simple case: Two jobs (cont.)

« (Geometric interpretation
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Simple case: Two jobs (cont.)

 Define:
* * i
Gy =g(C2)= min g(cy)
C2€C2
* Result: Now If
x x
G]_ < GZ

then (due to the symmetry property!)

T = min T? = SZG; + sle, ¢* = (CI,C;), 021 < czz
Pe®,
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Simple case:

wo Jobs (cont.)

T? > mMIN{s»9(C21,C22) + %Gy ,519(C22,C21) + 5261 }

- * oS * *
>min{s;G; + %G1, 5,6 + 5,Gq }

- 32(3;‘ it slef since G; > Gf ]
T? —5,0(Co1.Con)+5G, [since Cop > Coq]
—5,G 5G]
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Simple case: Two jobs (cont.)

* Required additional result:

Te-Hsle-"De
C22 G C21 G

12— ) <cpp2-2) =
G G
* * 0’51 CZz
(Coo —C21)(2-"5-"5)20<
GG G

C22(C2 —C21)(G2 —G1) 20
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Simple case: Two jobs (cont.)

« Equivalent condition: 0r
* *
G >G5 ©
*
Coq1 +Coo < 2 - ]
- Suffient condition: g
nested capacity regions
- Note: However, capacity .
regions are not required o s 10 13

to be nested

,, Aalto University
School of Electrical

Engineering 17



General case: n jobs

« Define (recursively):

Gy =C:T€igk gk (Ck), 9k (ck) = o (k YK tokG J
 Theorem 1: If
Gf <...<G;
then
T =minT? =3 5Gy, ¢ =(C1.....Cp)

SR
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General case: n jobs (cont.)

e |n addition,

Cr1 <...<Cy forallk

« Thus, the optimal policy applies the SRPT-FM principle:
— the shortest job is served with the highest rate,
— the second shortest job is served with the second highest rate,
— etc.

« Note also that the optimal rate vector does not depend
on the absolute sizes (only on their order)

,, Aalto Umversuy
Sc hool fEI ctrical
Engineerin 19



Example:
Alpha-ball

« Leto > 1 and consider capacity regions

Cy ={cy =0: Z‘}zlcfjj <1}

 Now
a—1

Gy = (kal —(k —1)alj " (increasing in k)
1

*\a-1
c;- :(Gj)a (increasingin |)
J Kk
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Summary of Part 1

e Assumptions:
— Abstract capacity regions (time-scale separation)
— Transient system

* Results:
— Optimality result for compact and symmetric capacity regions
* includes nested polymatroids (cf. Sadiq and de Veciana (2010))
* requires an implicit condition related to capacity regions
— Optimal rate vectors for each phase
 applying the SRPT-FM principle
* Open questions:
— Isit possible to make the implicit condition explicit?
— Isit possible to implement the optimal policy at time-slot scale?
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Part 2
Optimal time-slot-level scheduler
for the wireless cellular system
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Ime-slot-level model

* R(t) = (Rqy(b),..., Ry(t)) = rate vector in time slot t
* R;(t) = instantaneous rate of user I

« Assume: Ri(t) IS a stationary and ergodic process
taking values in a finite set

» Assume: Processes R;(t) are IID
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Ime-slot-level schedulers

Assume: Scheduling policy 7 € 11 is stationary

Define: The long-term throughput for user I:

=2 1P (NP{R(t) =1}

Define: The (opportunistic) capacity region:
K .
Cv ={(6,....6¢) e R i w1} }

Note: Capacity regions are compact and symmetric

,, Aalto Un
Scho IfEI t al
Engineerin g 29



Weight-based schedulers

- Define: Weight-based scheduler 7 € 11} allocates time
slot t to user 1™ for which

WixRix () = max; Wi R; (t)

— where W; are the weights related to the scheduler

+ Example: MR (which is the same as PF in our case)
— W; = 1forall |
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Connection between the two time scales

* Proposition 1:
E[max; wiR; (t)] = max¢, c, 2. WiCki
_ Proofis straightforward:
maX e, 5 WiCkj = max - > > wili pi” (NP{R(t) =r}

= 2 (max; wir )P{R(t) =r}
= E[max; w;R; ()]
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Recall the optimal scheduling problem
(transient system)

Assume that there are n jobs in the system at time 0
What is the optimal way to make the system empty?
Objective: Minimize the mean delay (or flow time)
Define: Flow time (or total completion time) for policy ¢

_~h

T =30t
where {; is the completion time of job i
Define: Operating policies

O, ={p=(Cq,...,Cn) :Cx € Cy forallk}

,, Aalto Un
Scho IfEI t al
Engineerin g 32



Recall the recursion for G*
(based on the flow-level model)

« Define (recursively):

Gk = min g (Ck), 9k(Ck) = (k YK tokG J
CkECk kk
« Open problem 1:1s it possible to show that in our case
Gf <...< G;

« Open problem 2:If so, how to implement the optimal
operating policy with a the time-slot-scale scheduler:

6"k =c; forallk,i
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Key property

* Proposition 2;
E[max; Gj Rj] = max, «c, 2 Gi Cki = 2. Gij Cki =K

— Proof by induction
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Alternative recursion for G*
(based on the time-slot-level model)

« Define (recursively)'

fi (a) = j (1-P{aRy < r}kl_[lP{G R <r}dr
0 i=1

GE = fk_l(k) (well - defined since fj increasing)

— Based on the equation:

E[ max GR]_j(l HP{GR rHdr =k
1=1... k O =1
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Key result

* Proposition 3:

*

G]’_€<...<Gn

— Proof by induction
— ldea briefly on the following slide

» Corollary: Solution of the optimal scheduling problem

T = min T¢=ZE=13ka, ¢ =(C1’---’Cn)
SO

Cr1 <...<Cy forallk
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ldea of the proof

» Define:
Xk =maxj_y_ Gi R
he,1(a) = E[(aRg 11 — Xk) - Igar, ;> %, H
» Easily: hy_ 1(a) is non-decreasing and satisfies
11 (Giar) = E[X kg — Xi ] = (k +1) —k =1
* Iltremains to show that
hk+1(G;) <1
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Optimal time-slot-level scheduler
for flow-level performance

« Theorem Z2: The optimal operating policy ¢* can be
Implemented by a sequence of weight-based schedulers

7| defined by weight vectors
Wy = (Gl ,...,Gk)

— Proof based on Propositions 1 and 2

« Summary: The optimal time-slot-level scheduler
allocates time slot t to user i* for which

GixRi=(t) = max; Gi R (t)
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Related reading

o S. Aalto, A. Penttinen, P. Lassila and P. Osti,

On the optimal trade-off between SRPT and
opportunistic scheduling, in ACM SIGMETRICS 2011

« S. Aalto, A. Penttinen, P. Lassila and P. Osti,
Optimal size-based opportunistic scheduler for wireless
systems, submitted, 2011
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