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Abstract— In this paper we analyze the operation of two
scheduling algorithms, Class Based Queuing (CBQ) and Delay
Bounded Hybrid Proportional Delay (DBHPD). We compare
results obtained from simulations and measurements in a rea-
sonably equivalent setup and state that considerable differences
can be observed in the results produced by these two methods.
We also perform kernel profiling to investigate the resource
overhead caused by these algorithms. Kernel profiling results
support the observation that deviations between simulations
and measurements are mainly caused by complex measurement
and calculation procedures that generate extra delays in real
implementations. As a conclusion we suggest criticism to be used
when making judgements about algorithm performance based
on simulation results.

I. INTRODUCTION

Packet scheduling is one of the oldest and most impor-
tant mechanisms for providing Quality of Service (QoS).
Numerous scheduling algorithms have been proposed during
the last decades from conventional static algorithms such
as Generalized Processor Sharing (GPS) and Weighted Fair
Queueing (WFQ), Deficit Round Robin (DRR) and Earliest
Due Date (EDD) to adaptive approaches ( [3], [5], [2]).

Often these algorithms are evaluated only with simulations.
Judgements and conclusions are made about algorithm perfor-
mance based on the simulation results even though simulation
is an ideal simplification and abstraction of real world. In
discrete event simulations, (like with ns2) router operations
such as classification, enqueue, forwarding and dequeue do
not consume any time while in real world the effect of packet
processing can be considerable. Algorithms which utilize
time or resource consumption in scheduling decision require
several processor cycles to resolve dispatching order. Some of
these cycles are used during the enqueue event of packet but
mostly during the dequeue process where several packets are
investigated in parallel against the configured resource sharing
policy.

The goal of this paper is to evaluate two different types of
scheduling algorithms: Class Based Queuing (CBQ) and Delay
Bounded Hybrid Proportional Delay (DBHPD). CBQ is a well-
known hierarchical bandwidth sharing algorithm proposed by
Floyd and Jacobson [4]. DBHPD is our own delay-adaptive
algorithm proposed in [1]. It is based on proportional delay
constrained scheduling making it suitable for application dif-
ferentiation: it provides low delay service for real-time traffic

and allocates resources between the other classes based on
delay ratios.

Evaluations are made by using simulations with ns2 (op-
timistic) and implementation in PC-based testplatform (pes-
simistic). Algorithms are compared not only head to head (in
simulations and in implementation) but also how their perfor-
mance changes from the simulation to implementation. This
should reveal their relative computational complexity and also
how well they cope in real-time operation. We also perform
kernel profiling for both DBHPD and CBQ implementation
in terms of achievable throughput, time consumed in enqueue
and dequeue operations as well as the number of function
calls used in these operations. These profiling results provide
a view of the router processing overhead and can thus be
utilized in explaining the differences between simulations and
measurements.

We argue that simulations (with their idealized execution
environment) together with implementation measurements (in
highly unoptimized environment of PC platform) form a
good combination to investigate the overall performance of
scheduling algorithms. Actual performance of these algorithms
in embedded platforms lies somewhere in between.

In [6] we showed the very first implementation of the
DBHPD algorithm in a FreeBSD based ALTQ router. We
conducted several measurements with CBQ and DBHPD to
investigate their performance. However, these results were
obtained indirectly by utilizing traffic probes sending small
packets at regular intervals to different traffic classes. Delay
distributions were recorded only for the probes and the actual
distribution of application packets were argued to resemble the
distribution of probes. In this paper all measurement results
are based on the data obtained directly from TCPDump as
depicted in Figure 1, thus providing more accuracy. In this
paper we also compare measurement results to simulation
results obtained in an equivalent setup in order to determine
the effect of real world phenomena on the performance of
scheduling algorithms.

This paper is organized as follows. Section 2 explains the
operation of selected scheduling algorithms. It gives short
introduction to essential aspects of these algorithms. In Section
3 we have a short review of our measurement and simulation
setup. Comprehensive representation is given in [6]. Section
4 presents comparative results from the measurements and
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simulations and Section 5 presents results from the kernel
profiling. Section 6 concludes our work.

II. DESCRIPTION OF THE ALGORITHMS

This section presents the theoretical models used in simula-
tions for DBHPD and CBQ algorithms. It should be noted that
the theoretical models may deviate from the real implemen-
tations since the hardware and software set certain limits for
what can be implemented in practice. Implementation details
of these algorithms are given in [6].

A. Class Based Queueing (CBQ)

Class Based Queuing (CBQ) [4] is the most well known
hierarchical bandwidth sharing algorithm. In CBQ the roles
of the different hierarchy levels are following:

• Root class contains the link resource that is to be divided
among the traffic classes.

• Leaf classes represent the actual traffic classes that are
served by the link.

• Intermediate classes are responsible for resource sharing
among the leaf classes. The intermediate classes act as
parents for the leaf classes, allowing the leaf classes to
borrow resources.

The resource allocation in CBQ is enforced with two
different schedulers: a general scheduler and a link sharing
scheduler.

• General scheduler is all that is required when initial
provisioning of resources is adequate for each individual
leaf class.

• Link sharing scheduler is required when some of the
leaf classes get congested. In this case, the link sharing
scheduler enforces rules by which the congested classes
can borrow resources from the parent classes.

The actual implementation for the general scheduler and the
link sharing scheduler has not been defined. The idea is that
any rate-based scheduler, such as WRR or DRR can be used
as the general scheduler. Only the high-level operation of link
sharing scheduler is defined. Actual rules and heuristics for
borrowing the resources are left for implementations.

B. Delay-bounded HPD (DBHPD)

Scheduling decision in DBHPD is dividen into two phases.
In phase one accumulated queueing delay (tcurr(m)−tin(m))
of head of line (HOL) packet (m) in delay bounded class is
checked against delay bound dmax and safety margin tsafe.
Packet is scheduled next to the link if the delay bound of
HOL-packet (m) is considered to be violating its bound.

tcurr(m) − tin(m) + tsafe > dmax (1)

If delay violation is not occurring phase two of algorithm
is executed.

In phase two the algorithm calculates the normalized hybrid
queueing delays of HOL-packets in each of the classes. The
calculation is based on the exponentially weighted moving
average of experienced queueing delay of class i packets

Fig. 1. Measurement network topology.

(d̄i(m − 1)) and HOL-packet waiting time (w̄i(m)). These
delays are normalized with Delay Differentiation Parameter
(DDP) of class i.

d̃i(m − 1) =
d̄i(m − 1)

δi
, w̃i(m) =

w̄i(m)
δi

(2)

The DBHPD algorithm selects for transmission at time t,
when the server becomes free, a packet from a backlogged
class j with the maximum normalized hybrid delay [3]:

j = arg max (gd̃i(m − 1) + (1 − g)w̃i(m)), (3)

0 ≤ g ≤ 1 is a weighting coefficient between short w̃i(m)
and long term d̃i(m) queuing delays.

III. MEASUREMENT AND SIMULATION SETUP

The measurement network topology is shown in Figure 1.
The simulation topology was the same except that VLANs and
TCPDump were not used and all traffic sources had their own
access link to the edge router.

Four different applications were represented in the evalua-
tion: FTP, HTTP, Video Streaming and VoIP. In the measure-
ments, FTP, HTTP and QuickTime Video Streaming traffic
was produced with Spirent’s test appliances. VoIP traffic was
emulated by defining suitable traffic generation pattern, how-
ever the actual codec and protocol was missing. In simulations
the traffic processes produced by these applications were
somewhat different. First, the webcache model used in the
simulations for FTP and HTTP traffic deviated from the FTP
and HTTP traffic creation process used in appliance. There
were also minor differences in the VoIP and Video traffic
patterns. The differences in the load patterns were mainly
caused by the fact that appliance offers only very basic patterns
for starting new sessions. For instance, in the measurements
HTTP and FTP session arrival process are flat or sinusoid with
a constant phase while in the ns2 webcache model session
interarrivals are drawn from an exponential distribution. A flat
or sinusoid session arrival process used in the measurements
clearly results in more periodic and deterministic behavior.
Some deviation in the load processes may also be caused by
the differences in TCP implementation details in ns2 and test
appliance.

In both simulations and measurements desired load level
was generated by changing the bottleneck link capacity. In
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Fig. 2. Offered class loads in the simulations (Total offered load 90%)

measurements link capacity can be changed with token bucket
rate control at dequeue events. Software based implementation
of token bucket rate control is prone to small errors caused
by low resolution of kernel timer. This error causes the actual
link capacity to vary around the correct link capacity. Figure 2
and Figure 3 show the offered load patterns of different traffic
types in the simulations and in the measurements for a desired
average offered load of 90%. It can be observed that the
average amount of offered traffic is the same in both cases.
However, due to these differences in the temporal properties
of load patterns within individual traffic classes, the simulation
and measurement results can be compared only at a relatively
coarse level.

The mapping of traffic into different scheduling classes
was performed so that the VoIP uses the first class (delay
bounded in DBHPD), Video second class, HTTP third class
and FTP fourth class. The relative traffic shares for different
applications were following: (FTP: 30%, WWW: 40%, Video:
20%, VoIP: 10%).

Provisioning for scheduling algorithms was performed
based on best knowledge i.e. traffic was known in advance and
resource provisioning was set to meet the service requirements
with our traffic mix. Provisioning of CBQ was performed by
simply allocating each class a bandwidth share that corre-
sponds to the load fraction of that class. CBQ hierarchy and
provisioned bandwidth fractions are shown in Figure 4. In
delay-bounded HPD the delay-bound (dmax) was set to 5ms,
safety margin (tsafe) to 0, long-range delay EWMA coefficient
(γ) to 1/210, long-term short-term weighting coefficient (g)
to 0.875 and the delay ratios to 4. Queue lengths in both
algorithms are set to 15, 15, 80 and 200 packets.
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Fig. 3. Offered class loads in the measurements (Total offered load 90%)

Fig. 4. CBQ link-sharing hierarchy

IV. RESULTS OF THE SIMULATION AND MEASUREMENT

COMPARISON

In this section we present performance statistics in terms
of queuing delay distributions and bandwidth allocations for
both simulations and measurements of DBHPD and CBQ
algorithms.

A. Delay distributions

Figure 5 presents the delay distributions for each traffic
class when the target load level is 90%. The ranges of delay
values seem to be relatively close to each other with both
algorithms but there are clear deviations in the medians and
exact delay distributions for both algorithms. The deviations
can partly be explained by the differences in the offered
load processes. However, most of the difference is due to the
simplifications used in real implementation as well as overhead
caused by the estimation procedures. For CBQ simulations
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Fig. 5. Delay distributions for DBHPD and CBQ simulations and measurements (Load 90%)

tend to provide smaller delays for each class compared with
measurements. This is natural since demanding borrowing
operations occur frequently with 90% load that cause extra
delays for the packets in a real router. It should also be noted
that in measurements operations performed before dequeue,
such as packet header analysis, classification and enqueue add
some extra delay that is not modelled in simulations.

As we already concluded from the measurement results in
[6], also in simulations CBQ provides smaller delays for the
HTTP class at the expense of the real time classes. Even with
a relatively small load the maximum delay for VoIP is 5 ms
for DBHPD and 20 ms for CBQ and the maximum delay for
Video is 20 ms for DBHPD and nearly 50 ms for CBQ.

Since this observation can be made from both simulation
and measurement results, it can be deduced that high delays for
real-time traffic are caused by the CBQ’s bandwidth allocation
mechanism itself, not by router processing overhead.

Figure 6 show the corresponding delay distributions with
offered load of 100%. From the distributions CBQ’s problem
of reversed service order between class 2 and 3 can be
observed for both simulations and measurements. Thus, even
though CBQ might provide smaller delays than DBHPD for
some classes, the overall service differentiation is not as
predictable when offered load increases.

The results also show that as the offered load closes to 100%
the deviation between CBQ measurement and simulation re-
sults decreases. This is due to the fact that with high load
each traffic class is using its fixed share of resources and thus
expensive borrowing operations do not occur. The algorithm
mainly operates as the DRR general scheduler, which is a basic
bandwidth sharing algorithm.

B. Bandwidth allocation

Figure 7 and Figure 8 present bottleneck router bandwidth
allocations for the traffic classes with offered load level of
100% in both simulations and measurements. From these
figures it is evident that DBHPD allocates more bandwidth for
the real-time classes while CBQ provides more capacity for
the non-real-time classes. This corresponds to the delay results
presented earlier where DBHPD guaranteed small delays for
the real-time classes and CBQ provided clearly smaller delays
for the HTTP traffic at the expense of VoIP and Video delays.

It should be noted that especially in the CBQ measurements
there are clear darker bands near the guaranteed minimum
capacity for each class, suggesting that at these points CBQ
operates as a basic bandwidth sharing algorithm. DBHPD does
not provide a guaranteed bandwidth but the capacity allocation
fluctuates according to the incoming load and queuing delays.
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Fig. 6. Delay distributions for DBHPD and CBQ simulations and measurements (Load 100%)

TABLE I

ACHIEVABLE THROUGHPUT

Scheduler Throughput (Mbps) Frames/s Relative
PRIQ 84.38 65 322 0.987
CBQ 65.31 50 528 0.764

DBHPD 70.51 54 579 0.824

In simulations the CBQ bands are not that clear. This is most
likely due to the fact that the implemented algorithm does not
operate exactly according to the theoretical model used in the
simulations and thus is not able to perform so sophisticated
borrowing.

V. KERNEL PROFILING RESULTS

We also performed initial kernel profiling for simple PRIQ
(Priority Queueing), CBQ and DBHPD implementation for
investigating the achievable throughput and resource overhead
of these algorithms. Resulting throughputs for PRIQ, CBQ and
DBHPD are shown in Table I. It can be observed that through-
put is highest for PRIQ algorithm since they do not use any
estimation or time measurement procedures for scheduling.
Correspondingly, DBHPD is able to achieve better throughput
than CBQ due to its more simple implementation.

TABLE II

RESOURCE CONSUMPTION IN DEQUEUE AND ENQUEUE OPERATIONS

Cumulative time (s) Function calls
Scheduler Enqueue Dequeue Enqueue Dequeue

PRIQ 0.25 0.07 3998480 2998860
CBQ 0.35 0.87 7996792 13994386

DBHPD 0.18 0.24 6997254 5997648

In order to examine how much more resources CBQ con-
sumes compared to DBHPD one million TCP/IP packets
of size 110 bytes were sent and processed by both of the
algorithms with a sending rate of 15000 packets/s. Table II
shows the cumulative time consumed in enqueue and dequeue
operations as well as the number of function calls used by
these algorithms. Results for PRIQ are also shown for com-
parison. The cumulative time used in enqueue and dequeue
operations as well as the number of function calls is in line
with the throughput results and confirm the observation that
CBQ dequeue function results in significantly larger overhead
than DBHPD’s dequeue. PRIQ has smallest overhead but
it lacks control from the resource sharing, thus making it
unsuitable for providing reasonable differentiation.
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Fig. 7. Bandwidth allocations for DBHPD (top) and CBQ (bottom) in
simulations (Load 100%)

VI. CONCLUSIONS

In this paper two scheduling algorithms, Class Based Queu-
ing (CBQ) and Delay Bounded Hybrid Proportional Delay
(DBHPD) were evaluated. Evaluations were made with dis-
crete event simulator (ns2) and with prototype implementa-
tion in FreeBSD operating system. According to the results
prototype implementations of the algorithms produced results
that were in the same range of magnitude with the simulation
models. However, the medians, exact shapes of the delay distri-
butions and bandwidth allocations exhibited clear differences.
The deviations between simulations and measurements can
be explained by the differences in the offered load processes
and the simplifications used in the real implementations as
well as overhead caused by the estimation procedures. For
example, in CBQ, demanding borrowing operation forces to
use approximations in implementation. These approximations
cause deviation from the ideal scheduling order. However, the
major difference comes still from the fact that discrete event
simulation lacks the effect which comes from the processing of
the packets within a router. These effects are additional delays
and performance bottlenecks that cannot be modelled with
analytical formulas nor with easy approximations. The more
complex the scheduling algorithm is the more time it takes to
process the packet and less time is devoted to other actions
within a router. The performance of the processor in contrast
to link speed ultimately dictates the operational range of pop-
ular open source software routers. High volume of interrupts
from the network interfaces and computational complexity of
scheduling algorithms usually limit the performance of these
devices to some tens of megabits per second or some tens of
thousands packets per second.

0 50 100 150 200 250 300
0

2

4

6

8

10
x 10

5

B
an

dw
id

th
 (

bp
s)

Time (s)

DBHPD Class1

0 50 100 150 200 250 300
0

2

4

6

8

10
x 10

5

B
an

dw
id

th
 (

bp
s)

Time (s)

CBQ Class1

(a) Class 1

0 50 100 150 200 250 300
0

1

2

3

4

5
x 10

6

B
an

dw
id

th
 (

bp
s)

Time (s)

DBHPD Class2

0 50 100 150 200 250 300
0

1

2

3

4

5
x 10

6

B
an

dw
id

th
 (

bp
s)

Time (s)

CBQ Class2

(b) Class 2

0 50 100 150 200 250 300
0

2

4

6

8

10
x 10

6

B
an

dw
id

th
 (

bp
s)

Time (s)

DBHPD Class3

0 50 100 150 200 250 300
0

2

4

6

8

10
x 10

6

B
an

dw
id

th
 (

bp
s)

Time (s)

CBQ Class3

(c) Class 3

0 50 100 150 200 250 300
0

2

4

6

8
x 10

6

B
an

dw
id

th
 (

bp
s)

Time (s)

DBHPD Class4

0 50 100 150 200 250 300
0

2

4

6

8
x 10

6

B
an

dw
id

th
 (

bp
s)

Time (s)

CBQ Class4

(d) Class 4

Fig. 8. Bandwidth allocations for DBHPD (top) and CBQ (bottom) in
measurements (Load 100%)

These results were further confirmed with kernel profiling
that indicated high number of function calls and high cumu-
lative time used in enqueue and dequeue operations with the
advanced scheduling algorithms. The results presented in this
paper suggest that any algorithm on the datapath should be
evaluated carefully with both simulations and measurements
on realistic scenario before making any judgements about their
performance. This paper presented the behavior of scheduling
algorithms in one router case where traffic is destined into
single output link. Also all of the servers reside on the
same side of the network causing highly asymmetric network
usage. However, results show comparative differences between
algorithms and evaluation methods. As a future work, we are
going to evaluate the operation in real network scenario where
we have multiple routers, cross traffic and distributed servers
and clients througout the network.
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