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Abstract:  
 

This Chapter in Lecture Notes explores the problem of signalling efficiency of the Session 
Initiation Protocol in a cellular network. We present performance metrics on SIP and compare 
SIP signalling efficiency with ISDN Q.931. We present measurement results on SIP and 
SigComp performance. We explore alternatives to SigComp signalling compression such a 
TLV encoding for SIP/SDP (of our own definition since such a thing does not exist). As 
another alternative, we present an estimation of the efficiency of using zipping for 
compressing SIP/SDP messages.  

1 Introduction 
 
The Session Initiation Protocol has been chosen by the 3GPP as the future signalling protocol 
for advanced packet based communication services in cellular networks. With SIP, the 
Session Description Protocol is used to describe the session parameters. SIP and SDP use 
UTF-8 representation for information and are very general [5]. SIP for example supports both 
stateless and stateful proxies and thus must carry a lot of context information in each message. 
Adding all the cellular network specific requirements have led to signalling messages that 
may be ca. 1500 octets long and to session establishment procedures with many messages. As 
a result, in an UMTS network session establishment takes a long time and the signalling 
overhead for essentially narrow band services such as voice is quite high leading to inefficient 
use of the expensive bandwidth resource.  
 
By taking a long time we mean that session establishment using 3G IP Multimedia Subsystem 
procedures takes much longer than a similar service takes in GSM. For example setting up a 
voice call using the 3GPP signalling sequences requires about 80 kbits of signalling 
information to be sent over the originating air interface. (If we take into account all the 
protocol layers starting from L2+IP+transport and a more recent IMS version, the signalling 
packet flow size is about 200kbit) If a narrow band voice codec at 8 kbps is used, users can 
speak for some 11 seconds to generate the same amount of bits as were needed for SIP 
signalling for the call (the 200Kbit flow size equals to 25s of voice on 8kbit/s). 
 
Signalling compression has been suggested as the solution to this problem in RFCs 3320, 
3321, 3485 [7, 8, 9]. However, an experimental study [2] shows that the achievable 
compression ratio without Huffman coding is at best in the order of 4 to 1, which is not 
enough to solve the problem. Moreover, the best compression ratio is achieved only for the 
lengthiest signalling flows with a heavy cost in processing cycles and memory. SigComp has 
the advantage that it is a generic solution to the problem of compressing protocol messages. 
On the downside, SigComp uses a lot of memory and processing cycles even without 
Huffman coding. With Huffman coding, the efficiency of SigComp can be improved probably 
to a compression ratio in the order of or close to 10 to 1. Also, in this case, the best ratios are 
achieved with only the lengthiest signalling flows. 
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This paper first explores the extent of the problem by presenting some performance metrics 
on SIP signalling and drawing some comparisons of SIP with ISDN Q.931. The paper 
analyses some design solutions in SIP and suggests optimisations that could be applied in a 
cellular access network without sacrificing the general nature of SIP. The analysis intends to 
demonstrate the causes of inefficiency in SIP. We carry out the first steps of optimisation in 
the text domain and then move to Type-Length-Value/Attribute-value pair (TLV/AVP) 
encoding. As an alternative we take a look at using zipping for compressing SIP/SDP. The 
paper estimates the signalling efficiency after each optimisation step.  
 

2 Signalling Efficiency 
 

2.1 What is signalling efficiency? 
From the user’s point of view, it is interesting that the post-dialling delay should be 
minimal. Post-dialling delay is the time that elapses from the point when the user has 
finished dialling till he/she hears the ringing tone.  
 
However, using post-dialling delay to make judgements about a particular signalling 
system or dimension signalling channels is inconvenient. One needs to have a network 
model and possibly assume a combination of several signalling systems for the call.  
For the limited purpose of dimensioning signalling channels, or more generally the 
signalling network or for the purpose of making judgements about a particular 
signalling system, it is more convenient to use a different measure. 
 
For digital signalling systems a good metric is to look at the size of typical signalling 
flows created using the signalling system. Flow size can be measured in bits. Bits can 
be turned into time spent by the signalling flow by formula (1) (see LNotes on ISDN): 
 

Transfer delay = size in bits/signaling channel speed.                     (1) 
 
We will use this measure for SIP. First, however, let’s look at some measurement 
results from a 3G test network. 

2.2 Average performance of session establishment using SIP 
 
In a study the delay of session establishment was measured in different access networks when 
the text based SIP was used [1]. Some of the results are presented in Table 1. In the UTRAN 
measurements the network allocated at least 64 kbps for signalling and the user device was 
capable of 128/384 kbps UL/DL speeds. 
 

Table 1: Average session establishment delay using SIP 
 
 IETF signalling 

UTRAN 
3GPP signalling 
UTRAN 

IETF signalling 
GPRS 

Delay measured between 
GGSN and IMS 

1.4s 8.8s Not measured 

Delay measured at end user 3.3s 11.5s 8.0 
 
If a user is not registered in the IMS but wants to start a session, the overall delay experienced 
by the end user consists of the following parts: the IMS registration, session establishment 
and call acceptance. With 3GPP SIP signalling over UTRAN, this takes on average 27.9s [1]. 
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IETF signalling drops the delay to 20.2s [1], which is still high compared to GSM. The call 
setup delays according to Foster et al. [3] for Mobile Originated and Mobile Terminated GSM 
calls are about 2 seconds. When UMTS release 99 circuit switched call procedures are used, 
the delays are a bit shorter than in GSM [3]. 
 
Another study [2] implemented a rather comprehensive SigComp prototype except for 
Huffman coding and tested its performance extensively. SigComp achieved a compression 
ratio of less than 4:1 in the study. Table 2 shows the 3G SIP signalling flow summary for 
3GPP release 5 [4]. Naturally, the length of the messages depends on the length of the names 
that are used. However, shortening the names defeats the main argument of human readability 
for text based signalling. 
 
Let us study the 3GPP release 5 signalling flows found in [4] for both Mobile Originated and 
Mobile Terminated session setup. Assuming that the UTF-8 encoding is used like in [4], the 
total length of the MO session setup sequence in Table 2 is 79000 bits. The Mobile 
Terminated session setup procedure is even lengthier and totals about 96000 bits. Table 2 
shows the number of UTF-8 characters in each of the MO and MT messages in columns two 
and four respectively and the cumulative bits in the flows in columns three and five. 
 

Table 2 SIP messages in Session Setup in 3G IMS 

 MO char 
Cumulative 

MO bits MT Char 
Cumulative 

MT Bits 
INVITE 1427 11416 1687 13496 
100 Trying 249 13408 534 17768 
183 Session Progress 1390 24528 1605 30608 
PRACK 1310 35008 1185 40088 
200 OK 902 42224 1206 49736 
UPDATE 1283 52488 1146 58904 
200 OK 854 59320 1153 68128 
180 Ringing 558 63784 898 75312 
PRACK 674 69176 571 79880 
200 OK 255 71216 558 84344 
200 OK 523 75400 876 91352 
ACK 447 78976 547 95728 

 
Let us consider the components of the session setup delay. One of the components is the 
message transfer delay (d) on a narrow band signalling channel. This delay follows formula 1. 
 

d = size / speed of the signalling channel      (1) 
 
Considering a mobile to mobile call, the total delay caused by transferring signalling over the 
two air interfaces is almost the sum of the delays according to (1) excluding messages that 
appear on the two interfaces truly in parallel. The 180 Ringing is likely to be such a message. 
We assume that it may appear in parallel on the MT interface while the MO interface is 
transferring the previous OK –message. In human to human communications there are no 
other messages that are likely to benefit from a similar parallelism in the message flow. 
Therefore, for our reasoning we will assume that the total delay on the two air interfaces in a 
mobile to mobile call is the sum of the MO and MT delays according to (1) minus the delay 
caused by the Ringing message on the MT side. Note that the Ringing message is the shorter 
of the two parallel messages. 
 
In Figure 1, we present the accumulation of the Mobile Originated SIP message transfer delay 
on 16 kbps, 64 kbps and 128 kbps signalling channels using formula 1 and the message sizes 
in Table 2. The Figure shows that the delays experienced by such long messages on a 
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reasonable signalling channel are significant. In a 3G Mobile to Mobile call the total transfer 
delay for call setup is about 10.5 seconds assuming that 16 kbps signalling channels are used.  
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Figure 1: MO SIP message transfer delay on a signalling channel in ms. 
 
UMTS networks can be configured to use signalling channels of different speed. However, it 
is reasonable to claim that a performance criterion for a signalling system is its capability to 
use a signalling channel that takes no more radio capacity than the service that is being 
established and that only for a period of time that is not significantly longer than what current 
signalling systems need. Most of the service use in 3G will consist of essentially narrow band 
services such as voice, messaging or data without graphics. An example of a narrow band 
data service is presence. Using a higher capacity signalling channel would be justified if the 
signalling channel were shared, which is not the case. This would help with the delays but can 
not help wasting air interface capacity for non-chargeable bits. We should also note that 
Figure 1 shows only one major component of the session setup delay. Any current version of 
3GPP SIP can be expected to become more feature rich as time goes on. Figure 1 shows that 
in order to achieve reasonable performance, the access for IMS services needs a 128 kbps 
signalling channel. This is also the recommendation proposed in [1]. 
 
Let us assume that packet voice uses a coder at 4.75 (or 8) kbps. It takes 18 (11) seconds of 
speech to produce as many bits in a Mobile Originated call as are needed for the 
corresponding session setup and release on the same interface. Taking into account the lower 
layers of signalling would present an even more dismal picture. 
 
From the analysis we can conclude that text based SIP in IMS is inefficient in using the 
cellular radio capacity. If the signalling channel is configured for low speed, it leads to a 
significantly lengthier session setup than in GSM or ISDN. It is reasonable to expect that 
users will not be happy about such services. To avoid introducing unusable services to the 
market, the operators are forced to configure 3G signalling channels to use at least 128 kbps 
for IMS signalling. This is a clear waste of precious radio capacity for something that from 
the users’ perspective is pure overhead and non-chargeable for the operators.  
 
Naturally, time and Moore’s law tend to offer a cure. The High Speed Packet Access brings 
higher speeds to the air interface allowing configuring higher speeds for signalling. When 
cells become smaller, one cell is used by fewer users at any given time. These things will help 
but the air interface will still remain a shared precious resource for a long time. 
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2.3 Signalling message delays in ISDN 
 
We captured an ISDN signalling sequence of Q.931 and Q.921 using a basic rate interface 
with 16 kbps for signalling. With 8 digits for both the calling and the called number, call 
setup creates a signalling transfer delay of 44 ms and the whole call flow uses 62 ms for 
transferring layer 3 and layer 2 signalling bits. Results were presented in Lecture Notes on 
ISDN. 

2.4 Conclusions on signalling delays 
 
In our analysis of the 3G signalling we have ignored the lower layers completely and 
concentrated on SIP alone. In case of ISDN we consider the combined message transfer delay 
created at layers two and three. Even so, the comparison shows that SIP and SDP, as specified 
for 3G and presented in 3G documents [4], takes 100 times more time than ISDN signalling 
on the same signalling channel. On the other hand it is easy to see from Figure 1 that the large 
size of SIP messages does not matter much in a broadband environment such as WLAN 
where signalling speed is calculated in megabits per second. The comparison also shows that 
besides the overhead due to text representation instead of binary, SIP is much more verbose 
than ISDN signalling. 
 

3 Optimisation of SIP for cellular access 
 
In this section we take a critical look at the 3G signalling sequences as they have been 
presented in [4] and suggest an optimisation process for narrow band SIP. Taking the 
optimisation step by step we can see the sources of inefficiency in SIP. Our target is a 
compression ratio of better than 10:1 which is probably better than what SigComp can 
achieve. Such a compression ratio would allow signalling channels of ca 12 to 16 kbps instead 
of 128 kbps.  
 
First, we can assume that P-CSCF, the first proxy in the IMS always has state and can form a 
virtual connection with the UE. The SIP/SDP flows consist of lines of text and contain a lot of 
redundancy, the same information is sent many times. Due to the assumption of stateful P-
CSCF and UE, we can remove most of the redundancy by introducing a reference to a line 
that has appeared previously in the session. The receiver can append the removed signalling 
message text using its state. One of the things that will happen is that we remove headers for 
session identification since the corresponding headers are repeated in every message. 
 
Central to the optimisations is session identification. When we remove the lengthy Call-Id, To 
– and From header based session identification, we must put in place an alternative 
mechanism that will preserve session integrity and is robust. This can be done based on the 
source IP address and port and a session reference value. The session reference value can 
work at least in one of two ways. The first option is like in Q.931. A session id is allocated by 
the initiator and a flag having two values says who has allocated the session reference (UE or 
proxy). The second option is that both the Initiator and the Responder allocate their own 
reference values and the peer will always use at least the receiver’s value in the reminder of 
the flow. Learning each other’s reference values takes place during the first two messages that 
are exchanged between a UE and P-CSCF. Naturally, this approach assumes that there can be 
no proxies between the UE and the P-CSCF. 
 
Moreover, we can remove all headers in SIP messages and all elements in the SDP that are 
there for the stateless proxy option. This means that we remove the headers and parameters 
with address information originating from the UE. Unnecessary address information coming 
from the user opens a door for spoofing and that we do not need in telephony. On the other 
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hand, if such information is needed, it can be registered and properly verified in the process of 
registration rather than complicating the session setup itself. We also remove the headers or 
parts of headers that describe the signalling path. This is justified because in IMS the path 
from the UE to the P-CSCF is fixed and because a user is not really interested to know what 
path the signalling message took on its way through different proxies.  
 

3.1 Optimisation process for narrow band SIP/SDP 
 
Let us use the following process for demonstrating and verifying the efficiency of different 
optimisations. Let us first reconstruct a full Mobile Originated session setup and release flow 
from [4] so that all lines of text in both SIP and SDP are in place. Let us place the flow in a 
spreadsheet (I used Excel). The selection of the MO flow is arbitrary and done for the sake of 
limiting the amount of processing. The process has the following steps. 
 

1. Instrument the lines of text in SIP/SDP that should not be removed. These are the 
start lines. 

2. Add line numbers to the flow. Since both the sender and the receiver see the same 
messages, they can also number the lines identically and independently. 

3. Sort the lines in an ascending order by content. 
4. Replace replicate lines with line references to the first line in a sequence of identical 

lines. For our purpose and without loss of generality we will assume that a reference 
has a form “=12” or “=123” or “=12 23 34 56 123”. 

5. Restore the flow into the original order. 
6. Add session reference values. Simplify the protocol: Tempting headers to be removed 

are the To –header because the information in it is not used by the network, the Call-
ID –header just because it seems pointless to carry a global call identifier in every 
message, the Max-Forwards and Via –headers because our communicating parties are 
connected in a point to point manner over a PDP context and finally all references to 
SigComp because we are not going to use SigComp. Note also that the above 
modifications lead to removing lines from the protocol. As a result, we also need to 
remove the line references in the flow to the removed lines. 

7. Identify long valued repeated parameters by placing the parameter values on their 
own lines in a spreadsheet, adding a new numbering to the lines, sorting the lines in 
an alphabetical order, replacing replicate parameters with parameter references 
pointing to the first parameter value in a sequence of identical values and restoring 
the whole flow back to the original order. 

8. Introduce an option for delegating the responsibility of routing SIP messages to the 
proxy CSCF. Such an option could be requested by the user device in the INVITE 
message. In the remaining message no ROUTE or ROUTE RECORD headers would 
be needed. 

9. Introduce TLV encoding for the remaining headers and SDP lines. Usually compound 
TLV elements correspond to lines and nested TLV elements to parameters. All 
compound and nested TLV elements can be numbered in the order of appearance of 
types in a session. Thus the references to lines and parameters are replaced by 
references to TLV elements by introducing two types for that purpose. One will 
contain a list of one-byte references as values and the other a list of two byte values 
as references. 

 
We show the process of optimisation in steps 1 to 9 in detail in [6]. Alternatively, we can take 
the original MO flow or the optimised flow after step 8 and use zipping for compression. The 
value of the above step by step process is in showing the sources of data redundancy in the 
flow and in preparing a base for an efficient TLV encoding. We will use both approaches and 
compare the results. 
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3.2 Optimisation results 
 
The size of the reconstructed MO flow including session setup and release is 10810 UTF-8 
encoded characters. We will present the results after steps 5 to 9. In our evaluation we 
compare the optimised SIP flow with the original flow using the compression ratio that is the 
relation of the original number of bits in the flow to the number of bits in the optimised flow. 
 
After step 5, we have removed 63% from the reconstructed MO setup and release sequence 
and have 4004 characters left in the remaining lines. The line references to the removed lines 
take 695 characters of the remaining total. The compression ratio after step 5 is 2.7. This is a 
little less than the SigComp compression implemented in [2] could achieve. In the process we 
have removed session identification from all messages but INVITE, so the resulting protocol 
will not work. We fix this in the next step. 
 
In step 6 we remove 332 characters and the compression ratio grows to 2.9. We assume that a 
user created session reference is of the form “Sf: U12” and a P-CSCF created network session 
reference is of the form “ Sf: N12345”. 
 
In step 7, we look for repeated parameters with long values and replace them by parameter 
references. There are 23 cases where we can replace a long parameter value with a reference 
to the same value since the value appears earlier in the flow. Typical long values are names, 
addresses and telephone numbers. After these modifications, the flow is 3302 bytes and the 
compression ratio is 3.3 compared to the original. This shows that SigComp is unlikely to 
work on any arbitrary chucks of text but seems to be replacing redundant lines and 
parameters. This result can possibly be used to create a compression method integrated with 
SIP such that instead of parsing the message again, the method would work directly on the 
binary SIP/SDP syntax tree saving memory and processing cycles. 
 
In step 8 we introduce the option of delegating the routing responsibility to the network. A 
user device could ask for such an option in the INVITE message and in the remaining 
messages no ROUTE or ROUTE RECORD headers will appear. The result is an optimised 
UTF-8 flow of 3062 bytes and the compression ratio is 3.5. It is noteworthy, that the 
remaining flow has 730 bytes of references to lines and long valued parameters. The share of 
references is so high because the references are also in UTF-8 encoded text. Removing all 
those references would increase the compression ratio to 4.6. 
 
At step 9 we review the remaining text line by line in order to estimate the efficiency of TLV 
encoding for SIP/SDP. First we create a common header for all SIP messages. It is presented 
in Figure 2. 
 

V
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7 

Session Reference ValuexxxA

CseqR/M   Msg Type or Response Code

Type Length Value

Common TLV Header for all SIP messages
 

Figure 2: Proposed common header for all TLV encoded SIP messages 
 
The common header has fields for session and transaction identification, for the SIP version, 
for Message types that distinguish request messages and for response codes that appear in 
responses. For the reference value we also need a flag to indicate whether it was allocated by 
the UE or the proxy or alternatively by the sender or the receiver.  
 
For network allocated session references at least 3 bytes are needed because it is easy to 
imagine a system that can handle more than 65 000 simultaneous sessions. On the other hand 
the need to be able to identify more than 16 Million simultaneous sessions locally is not clear. 
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Therefore, 3 bytes would seem to be just right. For sequence numbers for ensuring the order 
of messages in a session it would seem that 16 bits would be quite enough in a cellular 
context. One could even argue that one byte is enough. 
 
Response codes can be encoded with 10 bits (response codes are between 100 and 699). By 
using one bit to distinguish between response codes and message types, we can encode both 
the message type and the response code in the same two byte field since they do not appear in 
the same messages. 
 
We assign new types as new information items appear on the lines and use new and existing 
types to estimate the space needed for the Lengths and the Values in the TLV elements. 
After step 9 of our optimisation procedure, we have 53 types that are needed for encoding the 
MO session setup and release and have used 1186 bytes for the whole flow without routing 
delegation and only 1056 bytes with routing delegation. The compression ratio is now 9.1 to 1 
without routing delegation and 10.2 to 1 with routing delegation. We present the result of this 
and other intermediate steps in [6].  
 
Figure 3 summarises the effects of different optimisation steps. The TLV encoded result with 
routing delegation still has about 20 percent of UTF-8 encoded text in values. It has many 
references to popular lines. Therefore, if we are ready to throw computing cycles into 
compressing the result further, we could try using a Huffman code for a part of the TLV 
encoded result. This may help for sessions if the code is agreed in the Registration procedure. 
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Figure 3: Comparison of different optimisations in accumulated bits 
 
The Figure demonstrates that the TLV encoding works well also for short flows while 
optimisation in the text domain tends to bite seriously only from the fourth message onwards. 

3.3 Zipping as an optimisation method 
 
Zipping is available in well-known tools such as gzip, zlib and WinZip. They first find 
repeated strings of bytes, replace them by distance-length pairs (LZ77) and then can use 
Huffman coding to encode most frequent symbols with short codes and less frequent with 
longer codes using a prefix code. Typically, the tree of codes is stored with the resulting file. 
We use the WinZip program to compress each of the original and optimised text messages 
individually. In addition we create all sub flows of the original MO flow and the optimised 
UTF-8 encoded text flow. We zip the sub flows to model the use of this compression method 
incrementally during a session.  
 
The results show that zipping each message individually gives an overall gain for the whole 
MO flow of 1.7 to 1 while incremental use of WinZip on the best optimised MO flow gives a 
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compression of 8.7 to 1 compared to the original flow. The results also show that WinZip is 
good at finding repeated lines and parameters in the source and removing them manually does 
not pay off. Figure 4 presents the scatter diagram of the results showing compressed size as a 
function of the original SIP/SDP size. The Figure shows that roughly speaking until the size 
of about 2000 bytes WinZip gradually achieves a compression ratio of about 2:1 and for the 
reminder of a flow the ratio is about 25:1, i.e. some 400 zipped bytes are generated from 
about 10 000 bytes of SIP/SDP material. The gzip tool seems to create results that are a bit 
less compact but the difference is within 10% of WinZip. Quite naturally, for message sizes 
of just a few hundred bytes, the compression ratio is significantly less than 2:1. 
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Figure 4: WinZipped length of messages and sub flows of the MO session 
 
Let us now consider how efficient a real working solution based on LZ77 and Huffman 
coding could be for SIP and SDP in cellular networks provided that the solution allows 
agreeing on the Huffman code in the registration procedure and possibly creates a seed string 
for later use in compressing of sessions. By looking at Figure 4, we can guess that due to the 
fact that no Huffman tree information needs to be transferred, it may be possible that for call 
sessions this approach could also achieve the compression ratio of 10:1 like we have 
demonstrated with TLV –encoding especially if we do some protocol simplifications such as 
we have suggested in this paper. However, this remains to be proven with a prototype. Also 
we expect that due to the incremental application of zipping, this approach is less efficient for 
short flows than for long flows. 

4 A new architecture for SIP optimised for cellular access 
We present an architecture that adds a TLV representation to SIP as an option that can be 
efficiently used for narrow band services in narrow band networks. Concerning IMS the 
justification for the introduction of such a SIP variant is twofold: (1) we achieve signalling 
efficiency that meets user needs as we have shown and (2) 3G already has many protocols, 
one new protocol variant does not hurt. It is reasonable to expect that a TLV encoded SIP 
would also be more efficient in using processing cycles than the combination of SIP and 
SigComp by two to three orders of magnitude. In the use of memory the gain is likely to be 
significant but less than in cycles. The proposed architecture is presented in Figure 5. 
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              Figure 5: A new SIP architecture 
 
There are essentially three new elements in the architecture. The first is the TLV Front End. 
The second is the database for the state used solely by the Front End. Third, the Application 
Programming Interface between the Signalling Processor and the parsing and generating SIP 
messages has been made explicit. The API is based on binary data structures that carry the 
content of SIP messages in a format that can be directly processed by the signalling processor. 
A SIP implementation always needs either the text parser and the signalling text generator or 
the front end with its database or both of them. The Signalling Processor and the Registrar 
stay compulsory just as they are in the present architecture. 
 
Following the architecture in Figure 5 we may create inexpensive mobile devices with packet 
services that only speak TLV SIP but do not understand the text encoded SIP at all. A 
network based implementation or a high end mobile device would typically have either text 
and TLV capabilities or the text capabilities only. This allows carrying out the new feature 
specification first for the text version and introducing TLV encoding for the features in a 
separate effort if so desired by the industry. 
 
The task of the TLV Front End is to read and generate TLV encoded SIP messages and use all 
the optimisations suggested in Section 3. It identifies sessions based on IP addresses, port 
numbers and session reference values. A new standard port needs to be allocated for TLV 
SIP. The TLV FE replaces references to previously seen compound TLV elements 
representing lines of UTF-8 SIP and references to nested TLV elements representing SIP 
parameters by their content. The TLV FE uses default values as registered by the user to 
generate regular SIP messages. The Front End stores SIP and SDP data into its database so 
that it can benefit from the pieces of text that it has seen in a signalling flow or that has been 
generated during the signalling flow. 

5 Conclusion 
 
This paper has demonstrated the inefficiency of using text based signalling in a narrow band 
network for narrow band services. The efficiency of 3G SIP/SDP signalling flows was shown 
to relate to the efficiency of ISDN signalling as 1:100. We brought out measurement results 
showing that SigComp without Huffman coding can only cut the length of a 3G SIP flow to 
one fourth at best. We did not bring out facts but pointed out the issue of the efficiency in 
terms of processing power or memory usage. In our experience the combined efficiency of 
SIP and SigComp relates to ISDN CPU and memory use as something in the order of 100:1 to 
1000:1.  This paper explored the possibility of eliminating some of the information in 3G IMS 
SIP messages. We were able to show the sources of improvements in signalling efficiency by 
performing the optimisation step by step. We assumed that P-CSCF and UE always keep state 
for a session and redesigned the SIP session identification mechanism. The elimination of 
repeated lines and long parameter values in addition to the suggested protocol simplifications 
seem to give about the same gain as using SigComp without Huffman coding. 
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Looking for a more efficient compression method, we drafted a TLV encoding for SIP/SDP 
and suggested a new architecture for SIP applicable in narrow band networks for narrow band 
services. We showed that our mixed Type-Length-Value/Attribute Value Pair encoding 
achieves a compression ratio of better than 10:1 compared to the original Mobile Originated 
session flow on the UE to P-CSCF interface. This results a significant improvement over the 
release 5 text based SIP/SDP that requires a signalling channel of 128 kbps. 
 
We also explored an alternative optimisation approach using the well known LZ77 and 
Huffman coding that are used in many zipping programs. Also this approach may be able to 
achieve a compression ratio of 10 to 1 for call sessions but this remains to be proven by a 
prototype. We expect that zipping is less efficient for short flows than for long flows while 
TLV encoding is efficient for all flows. The advantage of zipping would be that SIP remains 
independent of the compression method. The disadvantage is that like SigComp this approach 
uses a lot of memory and computing cycles. All compression methods that work best for long 
flows would benefit if some initial state can be created during Registration. 
 
SigComp leads to wasting a lot of processing capacity for converting the initially binary 
information to text and from text to binary. The receiver receives binary, converts it to text, 
and parses the text converting it to binary. This requires a lot of memory and finally is 
inefficient in terms of the achievable compression ratio. The processing cycles and the 
memory consumption cannot and should not be ignored when all this is implemented in a 
mobile device or thousands of sessions need to be processed in parallel.  
 
We further argue that TLV and Attribute Value Pair encoding is easy to process, does not 
require heavy data conversions and provides a reasonable compression ratio as compared to 
the current text based SIP/SDP. Alternatively, we should agree on a fixed compression 
algorithm such as zipping (LZ77 combined with Huffman coding) and allow for agreeing on 
the code and creating a seed string for further compression in the registration procedure. 
 
Our analysis also shows that solutions exist that achieve even better signalling efficiency than 
the proposed SIP/SDP variant. We, however, argue that a significantly more efficient protocol 
would have to be based on a monolithic communicating state machine approach. Moreover, 
such protocols are being designed by porting the circuit switched GSM signalling on top of an 
IP infrastructure. Or instead of SIP we could use H.323. Therefore, there are limits after 
which further optimization will not produce anything new. 
 

6 Further study 
 
This paper analysed a problem and a possible solution on the level of requirements. It remains 
to be proven that a TLV/Attribute Value Pair encoded representation can be added to the SIP 
architecture so that the flexibility and openness of SIP for new services is preserved. 
Naturally, precise definition of the representation and prototyping is needed. Trying to 
generalise the result is important. We should also consider using the resulting binary protocol 
everywhere in the IMS for cellular network services. In parallel the efficiency of using LZ77 
and Huffman coding should be verified. 
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