
 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 1

S38.3115 Signaling Protocols – Lecture Notes

Lecture 2 – Modeling of signaling
systems and historical examples in
PSTN

S38.3115 Signaling Protocols – Lecture Notes ... 1!
Lecture 2 – Modeling of signaling systems and historical examples in PSTN .. 1!

Modeling of signaling .. 1!
Signaling Flow Chart ... 2!
Finite state machine (FSM) and EFSA .. 4!
Representing FSMs graphically ... 5!
Telephony signaling specifications are written in SDL 5!
From specifications to implementation .. 7!
Avoiding deadlocks and making implementation robust 8!
Other representations of FSM and EFSA .. 9!

Generations of exchanges .. 9!
Hardware and software of digital switching systems 10!
Move to Software defined networks .. 11!

Classification of signaling systems .. 11!
Examples .. 13!

Analogue subscriber signaling ... 13!
R2 – an example analogue trunk signaling system 15!

Limitations of analogue signaling systems .. 16!

Modeling of signaling

Signaling and call control are implemented in software. Two exchanges
implemented by different vendors need to be able to accurately talk to each
other and understand exactly what the other is sending. The end result needs to
meet high availability performance requirements. If two vendors understand a
written specification for a signaling system in even a rarely occurring situation
differently, the result is less than satisfactory. It is said that if we need one unit
of design work to implement a program for non-real time data processing with
1000 lines of code, a real-time program of the same size may easily require 10
units of design work, a real-time program of the same size that must talk to a
system programmed by someone else possibly using another programming
language may require 100 units of design work. If that program needs to be
adaptable to slightly different environments, e.g. in different countries, things
become even more complex – even more design efforts are spent. The last
applies to for example signaling in telephone exchanges and in standards based
collaboration systems.

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 2

To achieve a high level of accuracy in specification of signaling functionality,
more than text documents are needed. One can claim that actually for the
purpose of designing a large system or even a subsystem or a non-trivial
program a model is always needed. The model will depict the grand idea the
programmer has in mind while structuring the system. Without such an idea,
all that results is spaghetti that no one else besides the author will understand
and will be unable to maintain. One can generalize this by the claim that a
large system like an exchange can be seen as a set of models organized
hierarchically on program, on subsystem and on network element levels.

Because of the inherent challenge of designing large systems, many modeling
methods have been developed for example for signaling system definition and
design.

Maybe the most traditional method that is used to describe signaling is called a
flow chart or signaling chart. Figure 2.1 shows an example. It reflects an
analogue signaling environment for PSTN subscribers.

Signaling Flow Chart
A signaling flow chart will have several participating elements, systems or
subsystems that send and receive signals between each other for a particular
purpose or a situation. The purpose, the context or situation may be shown in
the title of the chart. The chart will show the sequence of signals between the
elements. Signals usually have names. Since the chart shows a sequence, time
passes from top to bottom of page on the chart. The chart does not have a time
scale. It just depicts the sequence.

© Rka/ML -k2007 Signaling Protocols 2 - 3

Signaling Flow Chart illustrates the main events
Calling Subscriber (A) Called Subscriber (B)

Originating Exchange
Terminating Exchange

Local loop

trunk
Local loop

on-hook

off-hook

Dial tone

1. digit

last. nr

.
:

Seizure

on-hook

Start dialing

.
:

1. Address signal

Last address signal
Alerting or ringing tone Ringing

off-hook
Answer

Through Connection

The purpose of this slide
is to illustrate the method!

Figure 2.1: A signaling flow example.

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 3

In our example (Figure 2.1) we take a look at a hypothetical analogue PSTN
network. In the beginning, off-hook is the event when the caller picks up the
phone. Prior to that the phone was in the on-hook state or the previous event of
the phone was when the phone was put on hook. The response of the
originating exchange to the off-hook signal is the dial-tone. When the caller
hears the dial tone, he or she will start pushing buttons on the phone or rotating
the disk on the phone. When the originating exchange has received enough
digits, it will be able to determine the circuit (a timeslot in the PCM system) or
trunk that it will use on the outgoing side and it will send the seizure signal
onto that trunk. This signal is used to indicate the reservation of the trunk for a
new call.

Our example shows only two involved exchanges. On reception of the seizure
signal, the terminating exchange responds with a start-dialing signal. The
terminating exchange will need some dialed digits to determine which of its
subscribers it should alert. These are sent in Address signals one by one. When
all of the dialed digits have been received by the terminating exchange, it will
send a Ringing current or voltage to B-subscriber’s local loop. This will make
the phone ring. In the backward direction the terminating exchange will send
an Alerting or Ringing tone on the backward voice path. At this moment, the
backward voice path needs to be through-connected in the originating
exchange.

Off-hook at the terminating side indicates that the B-subscriber has answered.
On reception of the off-hook signal, the terminating exchange will send an
Answer signal in the backwards direction. When the Answer signal is received
by the originating exchange, it will through-connect also the forward direction
of the voice path and the involved parties can talk. At the same time, as the
through-connection is made by the originating exchange, it will start collecting
charging information for the call.

In PSTN pulse charging was used, pulses were generated and collected by the
originating exchange in counters for all calls, for trunk calls etc. The pace of
pulsing depended on the call tariff. In GSM and in many other modern
networks, time based call charging is based on call seconds. In such a case, a
CDR – Call Data Record (possibly about 1 kbyte of data) is created for each
call. The CDR will store the caller’s and callee’s telephone number, start time
of the call and end time of the call and possibly other relevant information.

The advantages of signaling flow charts as description methods for signaling
are

1) flow charts are visually clear and easy to understand
2) the whole series of situations that may take place related to a call, can

be broken down into several charts and the whole set of charts will
clearly show the sequence of main events in all important situations

The disadvantages of the flow chart method are

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 4

1) the difficulty of showing all exceptional sequences: if one tries, the
result is a large set of very similar charts that may easily confuse the
reader and have a lot of redundant information.

2) A typical situation is, that an element is signaling in two directions at
the same time, at least release should be possible from both parties at
almost any time. This is difficult to show or leads to a lot of very
similar charts and thus easily confuses the reader.

It follows from the advantages of the flow chart method that for signaling
specification, the method is often the first that is used to lay down the main
sequences that constitute the purpose for a protocol or a service. For accurate
specification some other method is needed.

Finite state machine (FSM) and EFSA
A finite state machine is a five tuple: < s0, I, O, S, f > where s0 is the initial
state, I - the set of incoming signals, O - the set of outgoing signals, S - the set
of states and function f is the mapping: I×S ! S × O.

FSMs are widely used in computer science for various purposes. One example
is machine language processing. State represents the concept of memory.
Consequently, the basic hardware elements that make computer memory, i.e
flip-flops are also nicely modeled as FSMs.

It turns out that in telephony and for signaling protocols almost every program
in an exchange can nicely be modeled using FSMs. The model that is used is a
bit richer than a basic FSM. We call this an Extended Finite State Automaton
or EFSA. In addition to state, it has memory in secondary state variables. This
extension reflects the need to process several different kinds of data in a
signaling or call control program.

Now imagine that an exchange has four functions (programs) each modeled as
an EFSA for processing a call: incoming call signaling process, incoming call
control process, outgoing call control process and outgoing signaling process.
The resulting programming model is called that of communicating state
machines. This is very different for example from the well-known client-
server model. In the client server model, the server does not have state related
to a particular call or service. The server just responds always in the same way
when asked irrespective of what happened earlier. Of course it is common that
the server has some internal data, it may even have a database. However, from
the client perspective, the server responds in the same way irrespective of what
the client has asked earlier.

Conversely, in the model of communicating state machines, the response of
each state machine depends on two factors: the incoming signal and the history

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 5

or state. Therefore, the response of FSM B to FSM A depends on all the
previous messages that have been sent by A.

Programmers typically believe that programming in the client server model is
much easier than programming communicating state machines. This may be
because a system of communicating state machine exhibits some peculiar
failure modes. Such a system, because of a programming error, may end up in
a dead lock – a state from which it will not recover on its own. Because of this,
a many computer scientists have spent their whole lives in creating methods
that would allow detecting dead-locks or more generally errors in
specifications or implementations of this type of programs. As a result, a lot of
methods and tools have been created.

Representing FSMs graphically
May be the most traditional graphical representation of FSM is the one with
bubbles and arrows as in Figure 2.2: An example FSM.

© Rka/ML -k2007 Signaling Protocols 2 - 6

Graphical representation of an FSM

s0

s2

s5

s4

s1

s3

i 1/o 1

i2/o3

i3/o2

i5/o2

i 6/o 2

i 5/
o 2

i6 /o
5

FSM - Finite State Machine
The use of FSMs is well known also in computer languages e.g.
for lexical analysis. In this course it turns out that all most import
real time programs in a Switching System are FSMs or sets of FSMs.

Figure 2.2: An example FSM

A circle or a bubble shows a state and an arrow shows a state transition. A
state transition is labeled with the signal that caused it to take place and
possibly (after the slash) with the signal that was sent out in the transition. This
representation is compact and exact. When the example FSM is implemented
in software, only one state variable with values 0…5 is needed. The limitation
of the model is in the difficulty of adding a secondary state variable without
loss of clarity.

Telephony signaling specifications are written in SDL
ITU-T (or actually its predecessor CCITT) has specified the Specification and
Description Language, or SDL for short, for the purpose of writing signaling
protocol specifications. Subsequently richer and richer variants of the SDL
language were standardized in 1980, 1984, 1988 and 1992 by CCITT. Many
companies, among them software tool vendors and switching system vendors
have created their own tools for writing SDL and gradually adding

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 6

programming level details so that the tool set can be used first for system
independent specification, then for adding system specific (such as DX 200
specific) details and finally for writing signaling and call control programs
themselves. It may be that only program skeletons are written in SDL while
many subroutines that are needed in the state transitions are written in some
other language such as C or C++.

SDL has both a graphical and a textual representation. A SDL toolbox usually
has means of producing one from the other. Graphical representation is useful
for specification purposes. When details are added and translation to
programming languages such as the C-language need to be done, the textual
representation becomes more important. A well-designed SDL toolset is able
to maintain correspondence between the graphical and the textual
representations while the details are added and even when the programs are
later modified to meet new emerging needs.

In any graphical SDL, there are symbols for state, reception of a signal,
sending of a signal, a decision and a task. These symbols are shown in Figure
2.3.

© Rka/ML -k2007 Signaling Protocols 2 - 7

SDL representation of an FSM

State a

Sent
signal

Received
signal

Received
signal

Received
signal

Task

State x

Condition

Sent
signal

Condition

Task

State z

SDL - Spesification and Description
Language

Figure 2.3: An example SDL

Usually, one state with its transitions is depicted in one Figure. It gives all
expected signals in the state and possibly shows also how any other signals are
processed in that state (a “star” reception element). A transition always ends
in the next state of that transition. Naturally, under different conditions the
transition can branch and end in different states. Signal names from the
graphical representation can be nicely mapped onto the textual representation.
The content of a task box in older versions of SDL is just comments in
programming language terms. Later versions of SDL allow producing
programming level code from the contents of task and decision boxes.

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 7

The interfaces of programs that are programmed at least initially in SDL can
totally be produced from the SDL. From the SDL, a tool can produce header
files that can be used for example in the C –program that will give the details
of what needs to be done in each transition.

One can take this idea of specifying the program interfaces in SDL even
further. It may be convenient that the whole program and subsystem structure
or model for a software release is written in SDL. This is possible for example
in DX 200.

From specifications to implementation
The main level program that runs an FSM or an extended FSM is like this:

Initialisation
Do Forever
 Receive Message
 A <- Branch (State, (Secondary state,) Message)
 Execute Transition (A)
Od

So, all the process that is created does is wait for a signal (or a message) to
arrive and executes a transition when one does arrive.

Processes that are run-time objects in a real-time operating system can be
executed in at least two different modes. In non-pre-emptive scheduling, a
transition, like the one above, is always executed till the end before any other
program can run. In pre-emptive scheduling, a transition can be stopped by a
process or a signal that has higher priority.

One can say that processes that allow pre-emptive scheduling are real
processes and the ones that do not allow it are a sort of light-weight processes.
Pre-emptive scheduling may require taking care of some contention situations
that can never take place if non-pre-emptive scheduling is assumed. So,
designing and programming “real processes” is a bit more demanding than
programming “light weight processes”.

In switching systems programming (or real time operating systems) both
signal priorities (e.g. AXE by LM Ericsson) and process priorities (e.g. DX200
by Nokia) have been successfully used. Priorities are needed to establish the
processing order that takes into account different importance or emergency
levels of different events in a real time system.

A real time operating system that is used to run programs created from SDL,
must typically support message passing efficiently and allow easy mapping of

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 8

SDL signals to message passing in the run time environment. For
synchronization of processes, such a real-time operating system typically also
supports semaphores that are used to control the entry of a program to a
critical piece of code where two programs may compete for access to a section
of memory. Obviously, if two programs may write to the same memory
simultaneously, nothing good will take place – the result is a bug that is
difficult to spot. In my experience, programming with message passing can be
quite simple while using semaphores may be messy. One should also note that
passing information between two processes in a real time system using
memory resident files may sometimes be useful. Then a good design is such
that one program or process writes and another reads. If the second program
never writes to the file, it may be that no semaphores are necessary. Rather, the
synchronization either may be left to fate or handled by priorities of processes.
The delicate situation is when several items need to be written into a file and
the writing program may be interrupted while only some of the items have
been written while others are still pending.

Operating systems have different properties in terms of how they handle
parallel processing of several programs. If context switching between
processes is slow, it makes sense to map many FSMs to a process in such a
way that context switches between processes are not needed too often. It may
also be that the amount of context information needed for a process is large. In
such a case, an operating system on a machine can support only a limited
number of processes. This is a further argument to map many FSMs into a
single process.

Natively, real-time operating systems that have been designed for example for
telephone exchanges are quite efficient in context switching and they can
support a large number of processes in a single computer (e.g. > 100 000). In
such an environment, it is feasible and most straightforward to map each FSM
or EFSA to its own process. The result is that the real time operating system
will take care of switching between telephone calls. The programmer of the
signaling and call control application needs to worry just about a single call.

Avoiding deadlocks and making implementation robust
Implementing parts of the program that take care of the intended behavior may
be just a small share of the total program code that is needed. A real time
program in a telephony system must behave in a reasonable manner if e.g. a
signal that it sends is lost, or it does not receive a signal that it expects, its
communicating FSM disappears completely or a received message contains
unexpected data. It may also need to differentiate its own behavior in all those
cases.

A widely used good programming practice is such that before entering a state,
an FSM will always set a guard timer for the state. Then one of the incoming

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 9

signals in a state is a timeout of that guard timer. The timeout triggers a
recovery transition that may for example resend a previous signal until
resending limit is reached. When the resending limit is reached, it may release
all reserved resources and set the next state to IDLE that may also delete the
process itself if there is a one to one mapping between processes and FSMs.
Depending on the case, the releasing of reserved resources may require
intermediate states before the FSM can go to IDLE.

When message loss is detected, it may be appropriate to report the event as a
failure indication of some part of the underlying hardware system. Such
reports should be received, consolidated and otherwise processes by a fault
detection subsystem.

The number of timers a system is able to support simultaneously is an
important aspect of performance or scalability of a system. One should note
that when the timer accuracy is increased, i.e. the clock-tick is reduced say
from 10ms to 1ms, the service that provides the timers to applications must use
10 times more processing power.

Other representations of FSM and EFSA
Both can be represented in a Table format.

Generations of exchanges
Historically, automatic telephone exchanges were implemented using cross-
bar and other electro-mechanical hardware. For example, in Finland during
the 1970s and as late as early 1980’s, Televa, a government owned company
manufactured KMK cross-bar exchanges. (KMK exchanges were even
exported in significant volumes). All signals in such systems were analogue.

Between electro-mechanical and fully digital exchanges, some hybrid systems
with an electro-mechanical switching fabric, an analogue voice path but digital
processor control were manufactured and taken into use (for example Televa,
in Finland, designed a hybrid system called KKY).

Digital trunk exchanges started to appear in 1970’s. The microprocessor was
invented by Intel in 1972. Digitalization of telephone exchanges started from
transit exchanges by several vendors. The first fully digital local exchange in
the world was manufactured by Nokia and taken into use in Korppoo Finland
in 19811. It was an early version of DX 200 with 8-bit micro-processors (Intel
8080) in control computers.

1 Probably, some other manufacturer will deny this and say that they were the first.

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 10

In the 1980’s many vendors created their own brands of digital exchanges for
PSTN networks and they were taken into use gradually and at varying pace in
different countries. This was a time when markets for the public telephony
were largely controlled by state monopolies in most countries often leading to
slow adoption of new technology. An example of a country with real
technology competition was Finland that historically had many telephone
network operators (initially hundreds, after several tens of years of
consolidation several tens).

The 1990’s were the decade of GSM and mobile telephony. Mobile services
were deployed across the world and the number of mobile subscriptions
surpassed the number of PSTN subscriptions. All GSM exchanges are fully
digital.

Hardware and software of digital switching systems
The early design philosophy of major manufacturers (sounds silly from
today’s perspective) was that telephony is such a different task from
everything else that special purpose processors are needed and they were
designed. These processors required their own assembly language and also
such special purpose high level programming languages as CHILL (by
CCITT).

What actually happened was that special purpose hardware leads to a long
time to market of new innovations and a switching system vendor spending
efforts, time and money into something where other companies designing
general purpose computers and micro-processors have greater volumes,
leading to lower prices and a faster time to market.

The programming environment in digital switching moved gradually to
general purpose micro-processors and general purpose programming
languages such as the C-language. However, SDL as a means of specification
with the possibility of a gradual adding of detail and a gradual move to
implementation has retained its place in switching systems through the era of
GSM till 3G.

PC industry moved gradually into a horizontal value chain: different
companies make the micro-processors, PC boards, hardware assembly of PCs,
operating systems plus most common programs and finally applications.

Nothing similar took place in the area of digital switching over the 30 years of
1980 till 2010. A digital switching system is a vertically integrated system: the
manufacturer such as LM Ericsson or Nokia buys micro-processors and other
chips from chip manufacturers, designs its own circuit boards (some of this
may be subcontracted but very rarely bought from “open market”), writes its
own real-time operating system and programming tools (some of this may be

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 11

subcontracted or even come from open market) and finally creates the software
for its system. Also, in software development the main vendor may use
subcontracting. Only recently, these main vendors have started experimenting
with open source software. The advantage, that has weighted a lot, is that if
you design it yourself, you are the master of your own destiny: create a
winning team and beat your competition.

From the network operators perspective this means that all new software to the
main network elements for telephony (the same applies to transmission
systems) has to come from the equipment manufacturer. The operator cannot
go to the open market and buy the pieces of software it desires. This has
always been unpleasant to operators because for differentiating themselves on
the market, they are very dependent on equipment manufacturers. Creating the
software takes a lot of effort. Therefore, the equipment manufacturers are
usually not interested and cannot usually afford to tailor make software for a
particular operator only. A particular operator may buy some differentiating
piece of software from a vendor but if it turns out to be important, one can be
sure that every other operator will have it too very soon.

This tension between switching system vendors and operators has shaped the
process of creating new value added system types and new telephony
architectures that the operators have wanted for the purpose of differentiation
on the market. An example is the Intelligent Network Architecture. We will
come back to this later.

Move to Software defined networks
Now the era of Software Defined Networks is emerging. This will mean that
the share of telephony or mobile network specific hardware is shrinking:
instead of integrating lots of control into vendor specific telephony network
boxes, most of almost all of the control software will run on general purpose
hardware in datacenters. How this will impact the structure of the value chain
in networking remains to be seen.

Classification of signaling systems
Signaling in telephone networks can be classified to subscriber signaling and
trunk signaling. The former takes place between a phone and a local exchange
or between a PBX and the local exchange. The latter is used between two
exchanges.

Based on the hardware generation and the type of signals, we talk about
analogue signaling systems such as analogue subscriber signaling or early
analogue trunk signaling systems. The opposite is digital or message based
signaling systems. These can use either binary encoding of signals or data in
messages or textual encoding of information in messages. Binary encoding is

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 12

significantly more compact like we will later show. Its disadvantage is that
binary messages are not easily human readable while textual signaling is easy
to read and modify for the purpose of introducing new services.

Digital, message based signaling systems appeared when first computer
controlled exchanges had been put into service in real networks. This meant
that digital exchanges had to be able to process analogue signaling as well
order to process call that either originated or terminated in analogue systems.

The principle in telephony networks for new systems has historically been: any
new system must be able to interwork with systems that are already in place.

An example analogue trunk signaling system is R2. In a digital network, we
talk about digital R2. The signals in abstract terms look like analogue signals
in digital R2 but they have a straightforward mapping to bits.

Digital trunk signaling that is most common in modern telephone networks is
called SS7 or CCS7, short for Common Channel Signaling System Number 7.
It was specified by the predecessor of ITU-T namely CCITT. The term
“Common channel” means that a common signaling channel is used for the
purpose of carrying telephony signaling related to many simultaneous calls on
many timeslots.

Signaling may be in-band, meaning that the voice channel is used for both
voice and signaling related to the particular call. Signaling may also take place
outside the voice band. In such a case we talk about out-of-band signaling. If
the out-of-band, i.e. a separate signaling channel is used to carry signaling
related to many voice channels, out-of-band is also a common channel
signaling. In SS7, signaling is out-of-band and common channel because one
signaling channel can carry signals related to several hundreds even a few
thousand different simultaneous calls.

When SS7 was created, the grand idea of an Integrated Services Digital
Network or ISDN was introduced. The idea was that all traffic in the ISDN
network would be digital including the traffic on the subscriber line.
Consequently, a digital message based signaling system was needed for
subscriber access. This is the Digital Subscriber Signaling System number 1 or
DSS1. It was specified by the CCITT in Q.931 (layer 2 in Q.920 and Q.921
and layer 3 in Q.930 and Q.931, supplementary services in Q.94x). DSS1
signaling is out-of-band and common channel signaling. On ISDN subscriber
lines, there are separate time-slots or channels for signaling and user’s data or
voice. So, both SS7 and DSS1 are digital, message based, out-of-band and
common channel signaling systems but they are different. One is used for
trunk signaling and the other for subscriber signaling.

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 13

One opposite to the principle of common channel signaling is the idea to have
a dedicated signaling channel for each voice circuit. So, the signaling is out-of-
band but it uses a special signaling channel that can be mapped to a particular
voice channel. Such a system is called Channel Associated Signaling or CAS.
We will come back to this when talking about the supervisory signaling for
R2, which is a trunk signaling system.

Examples

Analogue subscriber signaling
In PSTN, subscribers are connected to the local exchange with a pair of copper
wires. Power supply for an analogue phone is provided by the exchange on the
wires and the same pair of wires, called the local loop, is used to carry
signaling and voice. The power supply can be a constant direct current or a DC
voltage. When the phone connects the wires together, a current can go through
on the local loop, the current that returns to the exchange, can be detected and
measured by the exchange. The exchange can change the polarity of the
voltage applied to the local loop. The exchange can also send a special voltage
or current to the phone making the bell on the phone ring.

Electromechanical dialing can be done for example by rotating a disk with
numbers on the perimeter. Disk rotation breaks and reconnects the loop. As a
result, in Finland digit 1 used to correspond to a pulse of some 100ms in length
on the local loop, digit 2 corresponds to two pulses, 9 to nine pulses and finally
zero to 10 pulses. The transfer of those 10 pulses takes about 1 second.

Because dialing with a disk takes such a long time, phones with buttons that
generate tones were invented. Two analogue frequencies are generated, when a
button is pushed, see Figure 2.4.

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 14

© Rka/ML -k2007 Signaling Protocols 2 - 16

DTMF-signals are created with a push
button phone

1 2 3 A

4

7

*

5

8

0

6

9

#

B

C

D

697Hz

770Hz

852Hz

941Hz

1209Hz 1336Hz 1447Hz 1633Hz

Pushing a button creates a continuous signal with 2 frequences

Figure 2.4: A Push button phone

The signaling method that emerges with push button phones is called Dual
Tone Multi-Frequency dialing or DTMF dialing.

In response to user actions, the local exchange sends tones to the user on the
voice band. These include the dialing tone, the ringing tone, the busy tone and
for example the queuing tone. For example, the dialing tone is a continuous
425 Hz audio signal.

For the purpose of receiving DTMF signals, the local exchange needs a
receiver that can be connected to the voice path coming from the dialing user.
Because the cost of a local exchange is largely in the subscriber units (e.g.
70% of the LE cost may be in the line cards), DTMF receivers are not
necessarily built in such a way that one is readily available for any user.
Because dialing is a short period during a call and one subscriber may be
engaged in a call on his or her local loop even less than 1/10 of the time, it
may be better to place the DTMF receivers behind the switching fabric in the
Local Exchange (LE). This way the dialing traffic from the users can be
concentrated to the bank of receivers efficiently and the equipment can be kept
busy a lot of the time. Obviously, the call control software needs to allocate a
DTMF receiver for a user that has taken his or her phone off-hook and release
it when the dialing is finished.

Nowadays, a device for DTMF reception is probably implemented using
Digital Signal Processors. Early, digital exchanges during the 1980’s used
special purpose hardware for DTMF signal detection and identification.

One can use a bunch of copper wires to connect a PBX or a key system to a
local exchange. Due to limitations of the analogue signaling (there are very
few signals the exchange can send to the PBX), in such an arrangement,

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 15

usually Direct-Dialing-In (DDI) is not possible. This means that users of the
PBX are not directly reachable from the public network. In such a case a
switchboard operator is needed to manually switch the incoming calls to the
PBX extensions.

R2 – an example analogue trunk signaling system2
A large number of different analogue trunk signaling systems were developed
by switching systems vendors. During the electromechanical era, the used
hardware determined what kind of signals could be sent and received. For
example in Finland as late as early 1980’s, many switching system vendors
were present on the market (the market was open to competition!) but the
result was that we had more than 70 different analogue signaling system
variants in the PSTN (serving just about 3 million customers).

During this era signaling systems were really specified by the vendors and
international standardization played a weak role. One of the first trunk
signaling methods that became an international standard was R2. The method
was widely used for example in Finland but on the other hand there are
countries that never used it. Many similar signaling methods were used in
other countries. For longest, R2 remained useful for the purpose of PABX
signaling (although initially designed as a trunk signaling system.) With R2,
the vendors could implement Direct-dialing-in (DDI) for PBXs may be the
first time.

Just to give some background on the design assumptions and motivations for
early digital signaling systems, we will take a short look at R2.

Signaling in R2 is broken down into the call establishment signaling or
register signaling (electromechanical switched used to have devices called
registers to process signaling) and supervisory or line signaling. The signals in
these two phases are physically different. For call establishment, multi-
frequency signals on the voice channel are used (a different set of frequencies
and a different logic than in DTMF, so do not mix R2 with DTMF) while for
supervisory signals, digital R2 uses bits in time-slot 16 on the same 2Mbit/s
PCM-line that is used to carry the voice for the call. Call establishment
signaling in R2 ends when the call is in the Ringing state, i.e. when the
terminating local loop has been located and the ringing current is applied to the
called line. Supervisory signaling is responsible for managing the state of the
voice circuits and releasing the call.

In R2, for each signal two frequencies out of six possible are used in both
directions for trunk signaling. This gives 15 physically different signals. The
physical signals, however, have two logical interpretations depending on the

2 This section is recommended reading but will not appear in the exam.

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 16

call state. A certain pair of frequencies in the forward direction for example
can be an address signal and transfer a dialed digit. In the backward direction,
for example, a certain pair of frequencies means: “send next digit”.

In R2, each signal is acknowledged: the sender keeps sending until it detects
the pair of frequencies that was expected as the response in the backward
direction. When the receiver detects a new pair of frequencies, it starts to send
an Ack for the new signal. When the receiver detects that the sender is no
longer sending, it also stops sending the Ack. This principle is called
compelled signaling.

In R2 sending one signal takes a few tens of milliseconds. Because the voice
band on the voice circuit is used for signaling, after the call has been
established this mode of signaling cannot continue for the duration of the call.

For line signaling purposes, timeslot 16 on a PCM line is sub-multiplexed
between the 30 voice time-slots on the same PCM. A certain bit combination
on the sub-multiplexed signaling channel is a telephony signal with a certain
meaning. Which bit combinations are used for what purpose identifies a
particular CAS system.

Limitations of analogue signaling systems
Signaling is the language that user devices and network nodes talk in order to
implement services for end users. Operators are always looking for ways to
differentiate themselves on the market from other operators. It is widely
believed that the “users pay for the services” and thus signaling is a
precondition for differentiation.

The need for differentiation is natural, because the alternative business
strategies according to Michael Porter include: differentiation, cost
competition and niche strategies. Economies of scale rule cost competition.
Cost competition is almost the same as price competition – an impossible
business strategy for most of the players in the market. This is because there
can almost certainly be only a single leader in a market. Differentiation is
much nicer because if the market can be segmented in a reasonable manner,
there can be several winners with this strategy. Niche strategy on the other
hand is usually only for small players.

In the light of operator differentiation, CAS and analogue signaling have
serious limitations. Because of the limited set of signals and slow speed of
signaling, only a limited set of subscriber services can be implemented using
these signaling systems. Typically, in these systems once the call has been
established, the set of possible signals is even further limited. This means that
the capability to do much of anything with an established call except tear the
call down is next to nothing (polarity reversal in analogue subscriber signaling

 S38.3115 Signaling Protocols – Lecture Notes lecture 2

©Raimo Kantola (2015) 17

was used to wake up the register in electromechanical exchanges in special
cases).

Perhaps, the most significant, architectural limitation in CAS signaling is that
signaling, although we have defined it to be the transfer of control information,
is not possible without a voice circuit first being reserved. There are, however,
situations where reserving a voice circuit is inconvenient. Two examples of
this are: (1) location updates for mobile users and (2) a subscriber service
called “Call Back When Free” or “Call Completion to Busy Subscriber”. The
latter is activated by the caller A when the callee B is busy. After the
activation, A goes on-hook. The idea is that the callee B’s exchange will store
this request and when B becomes free, it sends a signal to caller A’s exchange
– hopefully without reserving a voice circuit for this purpose. Then caller A’s
exchange can first alert A and without A having to redial, the exchange will try
to establish the call again to B. The result is that the call will be established in
the same direction as originally intended from A to B and consequently
charged to A without any cost to B. Also, it is seen important that the
availability (non-busy condition) of A is established before B is alerted.

When one looks at the architecture of a signaling system, the first thing to
understand is how signaling and voice circuit are tied together. The most
flexible signaling systems treat voice circuits as resources and the identity of
the FSM for signaling is completely independent of the identity of the possible
voice circuit. In traditional systems this was not true.

So, for digital signaling, the operators viewed the following as desirable:

• A large set of signals so that all service related information can be
expressed.

• One code for a particular semantics: unlike e.g. in R2, in digital
signaling systems, an information item encoded in a certain way
always means the same thing.

• Ability to continue signaling throughout the call until tear-down
• Independence of signaling from the allocation of voice circuits (this

was adopted for example for DSS1 but only partially for SS7). The
result is that for example mobility could be supported.

