
Searching a Needle in (Linear) Opportunistic Networks

Esa Hyytiä
Aalto University

Finland
esa@netlab.tkk.fi

Suzan Bayhan
University of Helsinki

Finland
bayhan@hiit.fi

Jörg Ott
Aalto University

Finland
jo@netlab.tkk.fi

Jussi Kangasharju
University of Helsinki

Finland
jakangas@cs.helsinki.fi

ABSTRACT
Searching content in mobile opportunistic networks is a diffi-
cult problem due to the dynamically changing topology and
intermittent connections. Moreover, due to the lack of global
view of the network, it is arduous to determine whether the
best response is discovered or search should be spread to
other nodes. A node that has received a search query has
to take two decisions: (i) whether to continue the search
further or stop it at the current node (current search depth)
and, independently of that, (ii) whether to send a response
back or not. As each transmission and extra hop costs in
terms of energy, bandwidth and time, a balance between the
expected value of the response and the costs incurred must
be sought. In order to better understand this inherent trade-
off, we assume a simplified setting where both the query and
response follow the same path. We formulate the problem
of optimal search for the following two cases: a node holds
(i) exactly matching content with some probability, and (ii)
some content partially matching the query. We design static
search in which the search depth is set at query initiation,
dynamic search in which search depth is determined locally
during query forwarding, and learning dynamic search which
leverages the observations to estimate suitability of content
for the query. Additionally, we show how unreliable response
paths affect the optimal search depth and the correspond-
ing search performance. Finally, we investigate the principal
factors affecting the optimal search strategy.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies; C.2.1
[Computer-Communication Networks]: Network Ar-
chitecture and Design —Wireless communication

Keywords
Mobile opportunistic networks, mobile search, mobile cloud
computing, dynamic programming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSWiM’14, September 21–26, 2014, Montreal, QC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3030-5/14/09 ...$15.00.
http://dx.doi.org/10.1145/2641798.2641828 .

Source

Figure 1: Search query travels from a node to an-
other and the path forms a linear trajectory in space.
The response is assumed to follow the same path
backwards.

1. INTRODUCTION
Mobile opportunistic networks, also dubbed Pocket switched

networks [6, 10], are networks in which mobile devices car-
ried by humans can exchange information via short-range
communication interfaces, e.g., Wi-Fi, Bluetooth, when they
come in transmission range of each other and physically
carry the content on their way. Certainly, this operation
mode is vital for cases where the network infrastructure
fails (e.g. after natural disasters), does not exist, or ac-
cess to infrastructure services or even the Internet at large
is blocked [3]. In addition, this communication involves only
the peers in wireless contact, in contrast to the frequently
used cloud-based third party services (e.g. Dropbox) which
may take a long distance detour across the Internet and po-
tentially half-way around the world. Delay-tolerant network-
ing (DTN) [4, 5] defines such a networking paradigm facili-
tating communication without an infrastructure support for
a variety of application scenarios including inter-planetary,
vehicular, underwater, and opportunistic networks.

The wealth of data produced or downloaded by the mo-
bile devices requires efficient search algorithms that can lo-
cate the relevant content quickly and cost-effectively rather
than näıve enquiry of each node upon a contact. Search-
ing content in mobile opportunistic networks is a difficult
problem due to the dynamically changing topology and in-
termittent connections. A question arising in this context
is what are the fundamental determinants of search in mo-
bile opportunistic networks. In this work, we aim to provide
insights on this question by designing static and dynamic
search schemes. We focus on a single query that visits a
node after another along some (natural) path as illustrated
in Fig. 1 (i.e., the query is not replicated). The response
follows the same path backwards. However, the response

path is assumed to be unreliable, e.g., due to mobility dur-
ing the search. More specifically, we assume that searches
terminate relatively quickly (say, order of ten seconds) and
a link backwards exists if the response can be transmitted
shortly (but not necessarily immediately). In other words,
we do not require persistent end-to-end paths.

In practice, the search path can form naturally based on
some path selection criteria such as a similarity metric for
nodes, which reflects positively to the probability of finding
relevant information in the node. Similarly, the actual search
can consist of multiple (independent) linear paths.

In this paper, we consider three types of search strate-
gies: static, dynamic, and learning dynamic search. Re-
garding a node’s value for the issued query, first we assume
that a node either holds a relevant content or not for the
query. Second, we assume that a node may hold some rel-
evant content whose relevance has either uniform or expo-
nential distribution. The former corresponds to the binary
response whereas the latter is the partial response scenario.
We start with static strategies where the search is extended
to a predefined number of nodes n. Then we consider dy-
namic strategies that may stop the search before depth n de-
pending on what has been found so far (and whether some
response has already been sent back). Both of these as-
sume that each node knows the distribution of information
in the nodes (value of response to given search). Our final
search strategy, referred to as the learning strategy, is more
robust and estimates the value distribution dynamically as
the search progresses from a node to another. Although we
assume that response follows the same path as the query,
we model the unreliability of the link between two nodes on
the response path and analyze how it affects the optimal
search. The results in this paper serve two purposes: First,
they enable design of efficient distributed search algorithms.
Second, they provide insight on under what circumstances
searching for content in mobile opportunistic networks is
feasible and present the optimal operating region (in terms
of search depth) for various scenarios.

Rest of this paper is organized as follows. First, in Sec-
tion 2 we briefly review the related work. Then, Section 3
introduces our model and notation. The different search
strategies are analyzed in Section 4, followed by a perfor-
mance evaluation in Section 5, and a discussion in Section 6.
Section 7 concludes the paper.

2. RELATED WORK
In a broad context, we can consider every forwarding al-

gorithm in a DTN as a search scheme for a specific target
node. We exclude broadcast algorithms as they aim to reach
each and every node. In content search, first the searched
content is mapped to some node(s) that have a high likeli-
hood of holding this particular content. Next, nodes upon
encounters forward the query with the aim of reaching the
specified destination(s) that matches the mapping between
content and the node profile. For example, seeker-assisted
search (SAS) [2] vaguely maps a content to the nodes of
a particular community which is a group of nodes sharing
common interests. Hui et al. [6], design Haggle – a content
sharing scheme, by leveraging the node’s self-declared inter-
ests to locate the contents that might fall in the interest of
the node. In Haggle, each content and node have some at-
tributes that are manually defined. These attributes provide
the basis of mapping between a content and its target nodes.

See also the Bubble forwarding algorithm [7], which tries to
exploit the social structures when making the forwarding
decisions.

Any rational search scheme should direct the search to-
wards the nodes that have higher likelihood of holding the
searched item. This forwarding decision can exploit various
characteristics of the network, e.g., the community struc-
ture, content and node relevance. For example, SAS [2]
exploits the homophily principle, tendency to associate and
interact with similar others, and directs the search towards
the nodes of the same community as this content might have
been searched and be readily available at a node in this com-
munity. SAS expands the search to the other parts of the
network, although there is a lower probability of matching
there, to avoid searching only in a particular part of the
network. In Haggle, nodes exchange contents at each en-
counter so that contents are constantly pushed towards the
nodes with some interests for this content rather than an
explicit search. In this paper, similar to SAS, we consider a
pull-based search scheme in which a node issues a query for
finding a specific content.

Another challenge in opportunistic search is deciding when
to stop the spreading of the search query. As nodes operate
distributedly, the completion of search cannot be signalled
immediately to the other parts of the network. Hence, each
node should decide on forwarding or terminating the spread.
An early termination may result in search getting no re-
sponses whereas late termination leads to over-consumption
of the resources, e.g., battery. Pitkänen et al. [9] define a ter-
mination logic in which each node using the observed degree
of itself estimates the number of nodes the query might have
been received by and the number of possible responses gener-
ated by these nodes. The query is terminated if the estimate
is above some threshold. Under transmission bandwidth and
storage capacity constraints, RAPID [1] replicates the mes-
sages to the node’s contact in decreasing order of message
utilities such as expected delivery delay and deadline vio-
lation level. In this manner, messages yielding higher cost
compared to their utilities are terminated based on the ben-
efit and cost evaluation at each node. Setting time-to-live
(TTL) for a query is another way of limiting the spread as
a message is dropped after the expiry of its TTL. However,
determining the optimal TTL is not straightforward as it
depends on various network dynamics including the traffic
load and content availability. Our solution is similar to [1]
in the sense that each node evaluates the expected utility of
the next hop and the increased cost due to involving it. This
decision can be intricate depending on the degree of informa-
tion available to the decision maker. In this work, different
than the listed approaches, we find the optimal depth - the
hop distance from the searching node - to stop the search
under various settings.

Search, although having similarities with opportunistic
forwarding, is more complicated due to its birectional na-
ture, i.e., the discovered content or other responses have to
be forwarded back to the searching node. What is more,
treating search as a twofold process, e.g. query forwarding
and response forwarding, may lead to a sub-optimal per-
formance or even hinder the search success. For instance,
search message eventually discovering some related content,
might already be too far from the searching node that the
response is obsolete or too difficult to route back. There-
fore, the response path should also be taken into account

Source Query

Response γ

1

1 2 n

Figure 2: Linear network, where a query travels to
the right and a possible response(s) to the left.

explicitly. In this work, we assume that the response mes-
sages follow the path of the query backwards. In our basic
model, we assume that this path exists for the duration of
the search, but numerically we also investigate what happens
if the path back to the searching node becomes unreliable.

3. MODEL AND NOTATION
As already mentioned, searching content in an opportunis-

tic wireless network is not trivial. Therefore, we resort to
analyze a simplified setting to understand how much an op-
timal search scheme can save. In particular, we consider a
search in a linear network, where the basic action at each
node is to decide if the search should continue further, or if
we are satisfied with the content found so far. More specifi-
cally, our model is as follows.

• We assume a linear network, where the source node is
located at the origin and there are an infinite number of
nodes along the positive x-axis, see Fig. 2. Please note
that this linear model is a logical abstraction rather
than a physical interpretation (cf. Fig. 1), however un-
der our assumption of no replication for query mes-
sages, every query will follow such a linear path.

• A query travels on the forward path, where the loss
probability is assumed to be zero. (A node meets an-
other node within a reasonable time with a high prob-
ability).

• A possible response travels in the opposite direction
on the backward path and the response can be deliv-
ered to the previous node in the chain with a fixed
probability of γ (during the search). In the ideal case,
γ = 1. However, in practice, depending on the con-
nectedness of the network, there are many reasons for
γ < 0, including that a node may have carried the
search request away or that a previous hop may have
gotten out of range.

• For each query, each node i has a response which value
is described by i.i.d. random variables denoted by Vi.
Note that Vi = 0 corresponds to“nothing useful”. This
value can be interpreted as the ranking or relevance of
the response similar to ranked search results returned
by a search engine.

• We let m denote the total number of transmissions
when the search has completed, and d the highest val-
ued response that is returned back to the source. A
possibly failed transmission on the return path is also
included in m.

• Each transmission costs e (say energy & time), which
is assumed to be the same for both the query and re-
sponse for simplicity. In practice, responses might have
a higher cost if they return a lot of data (e.g., music,
photos, ...)

• If a search is terminated after n hops and nothing use-
ful has been found, there is no need to send a response
back to the source, n = m, and the transmission costs
are ne.

• As the metric we consider the net profit of a search,
i.e., the utility, which is the value of the response minus
the expenses,

U := d−m · e. (1)

• Node i along the search path must choose its action
from the following four options:

1. Stop the search

2. Stop the search and send a response back to the
source

3. Continue the search to Node i+ 1

4. Continue the search to Node i + 1 and also send
a response back to the source

• The optimal search algorithm α chooses dynamically
the action that maximizes the utility given by (1).

We note that our problem is related to the optimal stop-
ping problem in the routing at DTNs, see, e.g., [8] and [12].
However, there is a fundamental difference because in our
setting there are multiple ways to “stop”: one can simply
stop and give up, or stop and send a response back to the
searching node (which costs more in terms of energy and
time). Moreover, it is possible to send a response while still
proceeding further with the search. The search forwarding
algorithm must take all these different options and the ear-
lier observations into account when making the decisions.

4. OPTIMAL SEARCH STRATEGIES
In this section, we will analyze the optimal search strate-

gies. We consider static strategies, where the search distance
is defined at the start, and dynamic strategies, where the ac-
tions may depend on what has been found so far, and if some
responses have already been sent. The dynamic strategies
may also learn the value distribution during the search.

4.1 Bernoulli distribution
Let us start with the binary case where a node either has

the complete response to the query, or no relevant informa-
tion at all. That is, the value of the response from node i
obeys Bernoulli distribution Vi ∼ Bernoulli(p), where p de-
notes the probability that a node has the searched content.
We refer to p as the content availability, and q denotes the
probability of the opposite case, q = 1 − p. Moreover, the
links on the return path can be unreliable (γ < 1), and at
most one response is sent per query.

4.1.1 Static strategy
A static search strategy is defined by a fixed depth n, i.e.,

each search will check the first n nodes and then return the
highest response found. The number of transmissions on the
return path is rn =

∑n
i=1 iγ

i−1(1− γ) + nγn, which gives

rn =

1− γn

1− γ , when 0 < γ < 1,

n, when γ = 1.
(2)

(a) Static strategy (b) Dynamic strategy (c) Learning strategy

(i
)

N
o

m
o
b
il
it

y
,
γ

=
1

(i
i)

L
o
w

m
o
b
il
it

y
,
γ

=
0
.7

Figure 3: Optimal max. search depth n∗ in Bernoulli case (vmax = 1) with (a) the static strategy, (b) dynamic
strategy and (c) learning strategy (which does not know p a priori). The top row corresponds to the ideal
case with γ= 1, whereas on the bottom row the return path is unreliable and γ= 0.7.

The total number of transmissions is m = n + rn, and the
response reaches the searching node with probability of γn.
The expected search result with depth n is

Rn = E[max{V1, .., Vn}] · γn

= (0 · qn + 1 · (1− qn)) γn

= (1− qn)γn. (3)

Thus, the expected utility under n hop search is

Un = Rn − (n+ rn)e.

which reduces to

Un = (1− qn)γn − (n+ rn)e, (4)

and with γ = 1,

Un = 1− qn − 2ne. (5)

The optimal static policy is obtained by finding the depth
n that maximizes the expected utility:

n∗ = arg max
n∈N

Un. (6)

We note that this is clearly a non-optimal strategy: if Node
1 already has the searched content it is useless to search any
further. Nonetheless, we consider this simple strategy first
and later compare how far it is from the optimal.

Case γ = 1.
Let us first assume the ideal case with γ = 1. Note that

if p < 2e, then the optimal search depth n is zero, i.e., it is

not worth initiating a search at all. The optimal (integer-
valued) search depth n is found by studying the gain from
expanding the search by one step, i.e, ∆U(n) = Un+1 −Un:

∆U(n) =
(
1− qn+1 − 2(n+ 1)e

)
−(1− qn − 2ne) = pqn−2e.

The gain becomes negative at the optimal search depth, giv-
ing

n∗ =

⌈
log(2e/p)

log q

⌉
. (p > 2e) (7)

The optimal search depth n∗ is illustrated in Fig. 3(a.i).
In the upper left “triangle”, where p < 2e, we have n∗ = 0,
i.e., the value of the searched information is too low to justify
a search. Note also that when p→ 1, i.e., when the content
becomes highly available, the optimal search depth is n∗ = 1
for any fixed transmission cost e < p/2. This is due to the
fact that the content is always found at the first node, and
still continuing the search further would just waste energy
and time. Indeed, this inability to dynamically stop the
search is the Achilles heel of all static search strategies.

Case 0 < γ < 1.
Let us next consider unreliable return paths. The con-

dition remains the same, i.e., at the optimal depth n we
have Un+1 − Un ≤ 0. Unfortunately, in this case we cannot
express n∗ in closed form. However, we can determine the
critical transmission cost e∗n,

e∗n =
γn(qn + γ − γqn+1 − 1)

1 + γn

which is the smallest transmission cost for which the optimal
search depth is n∗ = n. Conversely,

n∗ = arg min
n

{n | e∗n < e} .

Fig. 3(a.ii) depicts the optimal static search depth when the
return path is unreliable and each link backward exists with
the probability of γ = 0.7.

4.1.2 Dynamic strategy
Let us next consider search strategies that adjust the search

depth dynamically as the search progresses. In the Bernoulli
case, the obvious dynamic search strategy searches at most
n nodes (the max. depth) and terminates immediately if
the content is found. Hence, e.g., with the probability of
p, the first node has the content and the total number of
transmissions is 2 (out of which, the latter is successful with
probability of γ).

Note that the expected value of the content found (but
not necessarily successfully returned) is the same as with
the static strategy, E[maxi Vi] = 1 − qn. However, the
search may terminate earlier, which (i) saves in the num-
ber of transmissions and also (ii) improves the probability
of successfully returning a response.

Case γ = 1.
Let us again start with the ideal case with γ = 1. Then

the mean number of transmissions is

Nn = (2p+ 4qp+ . . .+ 2nqn−1p) + nqn =
2− qn(2 + np)

p
.

The expected response reaching the source node is given by
(3). Hence, the mean utility is

Un := 1− qn − 2− qn(2 + np)

p
· e

=
p− 2e− (p− e(2 + np))qn

p
.

The gain from including one more hop, Un+1−Un, becomes
negative at the optimal maximum depth n∗. Solving this
gives the exact solution for the optimal maximum search
depth n∗,

n∗ =

⌈
1

e
− 1

p

⌉
− 1. (8)

Solving for e gives the critical transmission cost,

e∗n =
p

(n+ 1)p+ 1
.

The optimal search depth with the dynamic strategy is illus-
trated in Fig. 3(b.i). Note that the maximum search depth
(but not the mean) with the dynamic strategy is always
greater than or equal to the search depth with the static
strategy. Moreover, the equicontour lines are strictly in-
creasing functions of the availability p due to the fact that
this strategy is able to stop the search dynamically. In pass-
ing we note that if we are required to return also a null an-
swer with the Bernoulli case, then the optimal search depth
becomes ∞ if p > 2e, and otherwise it is zero.

Case 0 < γ < 1.
The forward path remains identical and we can condition

on the number of hops travelled before the searched content

Transmission cost e=0.1

Availability p=0.5

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Loss probability on return path, H1-ΓL

S
e
a
rc

h
d
e
p
th

n
*

Unreliable return path

Figure 4: The optimal dynamic search depth with
fixed e = 0.1 and p = 0.5 as a function of 1−γ.

is found. The probability that the content is found at the
ith hop is qi−1p, and thus the mean value of the response is

Rn =

n∑
i=1

qi−1p · γi =
(1− q)(1− (qγ)n)γ

1− qγ .

For the cost we need to determine the mean number of hops.
To this end, we condition also on the number of transmis-
sions on the return path (out of which the last one may have
failed). Let i denote the number of hops the query travels,
i.e., the length of the forward path, and j the number of
transmissions on the return path. Then the mean number
of transmissions is given by

Nn =

n∑
i=1

qi−1p ·

(
i+

i∑
j=1

jγj−1(1− γ) + iγi
)

+ nqn,

where the last term corresponds to a search that did not
find the content. Subtracting eNn from Rn gives the mean
utility Un. Subsequently, for the difference ∆U(n) = Un+1−
Un we obtain

∆U(n) =

(
pγ1+n −

(
1 +

p
(
1− γn+1

)
1− γ

)
e

)
qn.

Similarly as before, determining the root of ∆U(n) gives the
optimal search depth. After some manipulation, we get

n∗ =

⌈
log

(
e(1− γ + p)

p(1− γ + e)

)
/ log γ

⌉
− 1.

Alternatively, solving for e gives the critical transmission
cost,

e∗n =
p(1− γ)γ1+n

p (1− γ1+n) + 1− γ ,

which was the minimum transmission cost at which n∗ = n.
Fig. 3(b.ii) illustrates the optimal search depth n∗ as a

function of the availability p and transmission cost e for
fixed γ = 0.7. The curves appear as scaled down versions of
Fig. 3(b.i).

In Fig. 4, we have fixed e = 0.1 and p = 0.5, and vary
1 − γ that corresponds to the loss probability on the links
of the return path. We notice that n∗ decreases to 1 as the
loss probability increases, i.e., when the return path becomes
uncertain. As the intuition suggests, under a high mobility,
long paths become fragile and should be avoided, and only
the neighboring node(s) should be involved in the search.

4.1.3 Learning dynamic strategies
All earlier strategies, both static and dynamic, have made

the crucial assumption that the value distribution (defining
the value of information per node for the query) is known
a priori. In practice this may not be the case, even though
one can envision that empirical distribution have been ob-
tained based on past encounters. In this section, we take
the Bayesian approach and refine our estimate of the value
distribution as the search progresses further. For simplicity
of notation, we assume Bernoulli case with unknown infor-
mation availability p, but note that the approach itself can
be generalized to other value distributions.

A priori we assume that p is uniformly distributed on
(0, 1). As the source node does not have an answer, we
consider that initially one node has been checked and found
out not to have a valid response. Suppose that in state i we
have checked i nodes and none of them had a valid response.
The Bayes formula gives the conditional pdf for p,

f(p | i) =
P{i | p} · f(p)∫ 1

0
P{i | p} · f(p) dp

,

where P{i | p} = qi and1 f(p) = 1, giving

f(p | i) =
qi∫ 1

0
qi dp

= (i+ 1)qi.

Subsequently, the expected value of p = 1−q after i negative
observations is

p̂i =
1

i+ 2
.

Case γ = 1.
Let wi denote the expected final outcome from state i

with optimal strategy, i.e., we have already checked i + 1
nodes (including oneself) without luck. Then the search
strategy bases its action on the assumption that p̂i is the
probability that the ith node has the searched content (i.e.,
on the condition that none of the previous nodes had it).
Recursively this gives

wi = max

{
−ie, 1

i+ 3
(1− 2e(i+ 1)) +

i+ 2

i+ 3
wi+1

}
, (9)

where the first case corresponds to terminating the search
after i transmissions, and the second case corresponds to
continuing the search to the (i+ 1)th node. This otherwise
infinite recursion can be constrained by noting that there is
no use to continue if the possible gain is less than what it
takes to return an answer back to the source, i.e., when

(i+ 2)e ≥ 1 ⇒ i ≥ 1

e
− 2.

That is, for states i ≥ 1/e − 2, we have wi = −ie. The
learning search strategy, based on the Bayesian thinking,
thus continues the search as long as the second option in (9)
is greater than −ie.

In particular, for the maximum search depth n∗ we have
wn∗ > wn∗+1 = −(n + 1)e. Consequently, letting ∆U(n)
denote the gain from continueing the search exactly one step

1Note that the approach allows an arbitrary a priori distri-
bution for the availability, which can be in practice based
on, e.g., earlier similar queries.

further,

∆U(n) :=
1

n+ 3
(1− 2e(n+ 1)) +

n+ 2

n+ 3
(−(n+ 1)e) + ne

=
1− 2e(2 + e)

n+ 3
,

we need to find n for which ∆U(n) becomes negative. There-
fore,

n∗ =

⌈
1

2e

⌉
− 2. (e < 0.25) (10)

Comparing (10) to (8), we note that both behave according
to ∝ e−1. The knowledge of the availability of the content,
p, affects the factor of e−1 term and the constant term. The
optimal search depth with the learning strategy is illustrated
in Fig. 3(c.i). Note the independence to the availability p,
which this strategy does not know.

Case 0 < γ < 1.
Similarly as with the two earlier cases, we can consider

unreliable return path also in this case. In particular, we
assume that parameter γ is stationary and has been deter-
mined when the search is triggered (γ depends on mobility,
not on the content searched). Due to space constraints, here
we simply give the results. The expected gain in utility from
depth n to n+ 1 is

∆U(n) =
γ1+n − 2e(2 + n)

3 + n
.

In this case, n∗, corresponding to the root of ∆U(n), cannot
be expressed in closed form, but one needs to find k = 2 +n
that satisfies (cf. Lambert W function)

γk

k
= 2γe.

However, for the critical transmission cost we have explicitly

e∗n =
γ1+n

2(2 + n)
,

which holds also for γ = 1. We note that as γ decreases,
the critical transmission costs decrease by factor of γn+1 for
each n.

Fig. 3(c.ii) illustrates the optimal search depth n∗ as a
function of the transmission cost e for fixed γ = 0.7.

4.2 Partial information
Next we assume that some nodes may be able to provide

partial answers to a query, i.e., responses that are good but
not complete. For example, recent but not current infor-
mation about football results could be considered as good
but not complete answer to a query. For simplicity, in this
section we assume ideal return paths with γ = 1. As exam-
ple cases, we assume that value of the response from a node
obeys either uniform or exponential distribution, for which
we derive the optimal static strategies.

4.2.1 Uniform distribution
Suppose first that Vi ∼ U(0, vmax), i.e., nodes may have

partial answers to the query measured by the value. Value
vmax corresponds to a complete answer. The CDF of the
maximum value among n samples is

P{max
i
Vi < x} = P{V < x}n = (x/vmax)n.

Subsequently, the expected value of the response is

E[max
i
Vi] =

n

n+ 1
vmax,

and the utility reduces to

Un =
n

n+ 1
vmax − 2ne. (11)

Similarly as in the previous case, one can determine the
optimal static search depth n∗. Let q denote the ratio of the
maximum value of the response to unit transmission cost,
β = vmax/e. Then it follows that

n∗ =

⌈√
1 + 2β − 3

2

⌉
. (β > 4).

4.2.2 Exponential distribution
Next we assume that Vi ∼ Exp(λ). In this case, the

expected value of the response from an arbitrary node is
E[Vi] = 1/λ, and CDF of the maximum value is

P{max
i
Vi < x} = (1− e−λx)n.

It follows that the expected value of the query is

E[max
i
Vi] =

H(n)

λ
,

where H(n) denotes the nth harmonic number,

H(n) = 1/1 + 1/2 + . . .+ 1/n.

Our objective is to maximize the expected utility,

Un =
H(n)

λ
− 2ne, (12)

Considering again the difference Un+1 − Un = 1
λ(n+1)

− 2e

yields the optimal search depth,

n∗ =

⌈
1

2λe

⌉
− 1. (1/λ > 2e) (13)

4.2.3 General case
In the previous section, we considered static strategies

when the value of the content had a continuous distribution.
In such a case, a search will never find the complete answer,
but has to settle with something that is hopefully sufficiently
high. The static strategy suits well to such scenario. Next we
will assume a finite set of values and determine the optimal
dynamic search strategy using dynamic programming. Thus,
the decisions may depend also on what has been found so
far. Moreover, we allow multiple responses which make more
sense in this case, where even a better response can be found
later.

We let z = (m,n, d, b) denote the state of the search
when the query reaches node n, where

• m is the number of transmissions so far

• n is the distance to the source (in hops)

• d is the highest valued response already sent towards
the source (by an earlier node)

• b is the highest valued response that node n could send,
b = max{V1, . . . , Vn}

We can write at state z = (m,n, d, b) the (expected) final
utility for each action (see the model), and choose the best
among them,

w(m,n, d, b) = max{a1, a2, a3, a4},

where aj denotes the (expected) final utility with action j,
a1 = d−m · e,
a2 = b− (m+ n) · e,
a3 = E[w(m+ 1, n+ 1, d,max{b, Vn+1})],
a4 = E[w(m+ n+ 1, n+ 1, b,max{b, Vn+1})],

where
a1 → stop the search,
a2 → stop the search and send a response back,
a3 → continue the search further,
a4 → continue the search, but also send a response back.

The optimal action in state z is given by arg maxj{aj}.
Clearly the actions 2 and 4 make no sense when d = b, i.e.,
when no better response than already delivered is available.
The evaluation of the above equations directly leads to an
infinite recursion as both a3 and a4 are defined in terms of
w(z). However, we can exclude both actions when n and
m become too large by a simple observation. Namely, one
should not forward a query if even the maximum value of the
response, denoted by vmax, from the next node is not worth
the trouble of forwarding and sending back the response,
i.e., if

vmax − (m+ n+ 2)e ≤ max{a1, a2}, for a3, and

vmax − (m+ 2n+ 2)e ≤ max{a1, a2}, for a4.

With these, the recursion becomes finite and the optimal
actions can be determined for any state. Unfortunately, the
number of states still explodes when e → 0, which narrows
the usability of the dynamic programming approach at this
limit. On the other hand, when e→ 0 and Vi obey a discrete
distribution, the optimal strategy can neglect the transmis-
sion costs.

5. PERFORMANCE EVALUATION
We now evaluate the performance of the developed search

strategies with several numerical examples. We start with
the Bernoulli case, where a node either has the complete
information (e.g. a particular file) to a query or nothing, and
then continue with the more complicated scenarios where
also partial information exists.

5.1 Bernoulli: Search of a specific content
In our first example, we assume that a node either has the

(complete) answer to a query, or nothing, i.e., the Bernoulli
case. We compare the learning strategy (see Section 4.1.3)
that determines the content availability p during the search
to the optimal dynamic strategy that (miraculously) already
knows the correct value of p. Our numerical results show
that the difference in the performance is typically minimal.
In other words, the learning search strategy works very well
across many values of p and one only has to know the trans-
mission cost e.

Fig. 5 (left) illustrates the maximum search depth n∗ with
the learning strategy (bold green line) and the optimal dy-
namic strategies that know the probability p of a node hav-
ing the searched content, when p = {10%, 20%, 50%}. Note

p
=50
%p

=20
%

p=10%

Learning

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

5

10

15

20

Transmission cost e

S
e

a
rc

h
d

e
p

th
n
*

Dynamic strategies, V~ BernoulliHpL

p
=50
%

p
=
2
0
%

p
=

1
0
%

Learning strategy is depicted

with dashed lines

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.0

0.2

0.4

0.6

0.8

1.0

Transmission cost e

E
x
p

e
c
te

d
u

ti
li
ty

Dynamic strategies, V~ BernoulliHpL

p=50%

p
=
20
%

p
=

1
0
%

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.0

0.1

0.2

0.3

0.4

0.5

Transmission cost e

U
D

yn
a
m

ic
-
U

S
ta

tic

Static vs. Dynamic strategy, V~ BernoulliHpL

Figure 5: Left: The learning strategy unaware of p vs. dynamic strategies that know p exactly. Middle:
Mean utility with the learning and dynamic strategies. Right: Decrease in utility if static strategy instead
of the dynamic. (γ= 1)

that the maximum search depth with the learning strategy
is independent of p (by design) and essentially depends only
on the ratio of the value of the searched information (nor-
malized to one here) to the unit transmission cost e. We
see that the learning strategy is an educated compromise,
as expected.

Fig. 5 (middle) illustrates the resulting performance, i.e.,
the mean utility of a search as a function of the transmis-
sion cost e in the three cases, p = {10%, 20%, 50%}. The
dashed lines correspond to the performance with the learn-
ing strategy, and the solid lines to strategy that is aware
of the correct value of p. We notice that the difference is
negligible as soon as p < 50%, or e < 0.25. In particular,
when p is smaller than 50%, a typical search involves sev-
eral nodes before the content is found, and during this time
a good estimate for p becomes available, which explains the
observed good performance of the learning strategy.

Static policy, included merely for comparison, cannot be
expected to perform well. Fig. 5 (right) shows the differ-
ence in the expected utility when compared to the dynamic
strategy. We note that the difference is considerable when
the absolute values vary from zero to one.

Next we consider the performance penalty in terms of the
mean utility Un due to an unreliable return path charac-
terized by the parameter γ. Fig. 6 illustrates the equivalue
contours of the utility in the ideal case with γ = 1 (solid
lines) against the setting where γ = 0.7 (dashes lines). We
can observe that the performance deteriorates when links
become unreliable (e.g., due to mobility), but, at least with
γ = 0.7, the performance loss is reasonable given the search
algorithm takes γ into account. This suggests that a well ex-
ecuted search makes sense also in low to moderate mobility
scenarios corresponding to γ = 0.7.

5.2 Partial information: Continuous case
Let us then consider the case where nodes can provide

good but incomplete answers to a query. We study the static
search strategies where the search depth is fixed to n. That
is, the query is forwarded to the distance of n, and then the
best response found is returned along the same path back
to the source (with γ = 1). The utility of such a search was
max{V1, . . . , Vn}−2ne. We consider the following two value
distributions discussed already in Section 4.2:

• Uniformly distributed values, Vi ∼ U(0, 1)

• Exponentially distributed values, Vi ∼ Exp(2)

Note that E[Vi] = 0.5 in both cases.

Do not

search

U=
0

U=
0.2

U=
0.5

U=0.8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

Availability p

T
ra

n
s
m

is
s
io

n
c
o
s
t

e

Optimal depth: Γ=0.7 vs. Γ=1.0

Figure 6: Equivalue curves for the utility Un∗ with
the dynamic strategy when γ= 1 (solid lines) and
γ= 0.7 (dashed lines).

Fig. 7 (left) depicts the optimal search depth n∗ as the
function of the unit transmission cost e. We can see that
as e → 0, the optimal search depth goes again to infinity,
as expected. With exponential distribution, the value of the
response is not limited and the optimal search depth n∗ is
somewhat higher than with the uniform distribution. We
also note that as e > 1/4, i.e., when 2e > E[V1], the cost of
a transmission is too expensive and one should search only
the “own pockets”, n∗ = 0.

Fig. 7 (right) depicts the mean utility with the optimal
search strategies. We can see that with the finite valued
distribution, Vi ∼ U(0, 1), the utility converges to 1 as the
transmission cost goes to zero, e→ 0. In contrast, with Vi ∼
Exp(2) the utility is unbounded in this limit. In general, the
shapes are similar to the Bernoulli cases depicted in Fig. 5.

5.3 Dynamic strategy with partial information
Finally, we assume that a response to a query may have

four different values: no information (0), related (1), good
response (2) and a perfect answer (3). In particular, we
assume discrete values Vi ∼ U(0, 3), i.e., Vi obtains val-
ues 0, 1, 2, 3 uniformly in random. As explained in Sec-
tion 4.1.2, in this case we can determine the optimal dy-
namic search strategy (Dynamic). This is a sophisticated
strategy that may return also with partial information. As
reference strategies, we consider also the static strategy that
searches always n nodes and returns the maximum response

U
H0

,1
L

E
xp
H2
L

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

2

4

6

8

10

Transmission cost e

S
e
a
rc

h
d
e
p
th

n

Optimal static search distance

UH0,1L

E
xp
H2
L

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Transmission cost e

U
ti
lit

y

Performance w� the optimal search depth n
*

Figure 7: Optimal search depth n∗ with static strategies for two continuous value distributions.

D
ynam

ic

D
yn

a
m

ic
-

0

Static

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Transmission cost e

S
e
a
rc

h
d
e
p
th

n
*

Optimal static & dynamic policies

Dynam
icStatic

Estimated

Dynamic-0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Transmission cost e

U
ti
lit

y

Performance w� optimal search strategies

Figure 8: Optimal dynamic vs. static strategy with a discrete Vi ∼ U(0,3).

found (even if zero value), and the Dynamic-0 strategy that
returns immediately if the perfect answer has been found
(Vi = 3) and does not send a response at all if nothing use-
ful was found.

Fig. 8(left) illustrates the resulting optimal strategies. On
the x-axis is the transmission cost e, and the y-axis corre-
sponds to the maximum search depth n∗. Note that with the
optimal dynamic strategy, this depth n∗ is sought (at least)
if all earlier n∗ − 1 nodes had no information, i.e., if Vi = 0,
i = 1, . . . , (n − 1). We can see that the dynamic strategies
cover a wider distance than the static one (when needed), as
expected. Fig. 8(right) depicts the resulting performance in
terms of the mean utility per search. We can observe that
the dynamic search makes sense even when e is a bit higher.
The absolute gain is about the same for a quite large range
of unit transmission costs e. At the limit when e → 0, all
schemes will search until the best possible response (Vi = 3)
is found, i.e., at the limit e → 0 all curves converge to 3.
As e increases, the mean performance behaves as a convex
function, until at some point n∗ → 0.

6. DISCUSSION
In our model, we focused on the actions that a single query

takes along the search path. However, in a mobile oppor-
tunistic network, rather than a single linear path, the search
(with replicated queries) can be represented as a union of
several paths. Search along multiple paths may implicate
two points: (i) the average distance to valuable response
is likely to get shorter, (ii) each decision (i.e., to forward

or not, to respond or not) is based on partial information,
i.e., on what has happened along its path, whereas the state
of the other search path is unknown and can only be es-
timated. For the former, we plan to explore the average
distance, i.e., the hop count, from the searching node that
the search should be expanded for the most efficient search.
In this work, we have provided the optimal hop count using
the theoretical formalism along with several simplifications.
In our future work, we would like to focus on a more re-
laxed scenario, e.g., realistic mobility models, and discover
the optimal hop count by the help of simulations. For the
latter, each node on the search path can use its observations
of the network as in [9] (e.g., the number of nodes that has
received the search packet and possibility of a response) to
predict the state of the search, e.g., utility.

Note that a static strategy with a multiple concurrent
search paths (returning a response at the end of each path)
has the same cost as in the case of a single path. Thus, also
in this case one needs to solve max {V1, . . . , Vn1+...+nk} −
2ne. Obviously, if P{Vi = 0} is non-negligible, declining
from returning a response with a zero value improves the
performance with multiple search paths more than with a
single (longer) search path. The mean response time also
becomes shorter due to the parallel operation. In any case,
the analysis of multipath search needs further investigations.

Additionally, we plan to study models with unequal trans-
missions costs; efwd for query and eback for the response.
For longer paths, we need to consider also alternative re-
turn paths that may take “shortcuts” as the response knows
which nodes were the closest to the origin initially.

7. CONCLUSIONS
Forwarding packets in a meaningful manner in oppor-

tunistic networks is not an easy task. The basic routing
schemes such as the plain flooding and the spray and wait
algorithm [11] try to solve the one directional problem of
sending information from a source to a particular destina-
tion. In our case, the setting is significantly more challeng-
ing because (i) we do not know who has the information,
and (ii) the searched content must be delivered back to the
searching node. The important contribution of this paper is
the analytical treatment of the “self-guiding” search process
in wireless ad-hoc networks, where the query takes actions
based on its a priori information and the observations made
during the search. In many cases, we were able to character-
ize the optimal search strategy that maximizes the expected
utility. Despite of the shortcomings of our simplified mod-
els, we believe that the similar principles as studied in this
paper can be also applied in practice in a more complete
setting. In our future work, we will include to the model
more realism by adding the option to replicate the query,
where the additional challenge comes from the distributed
decision making.

Acknowledgements
This work was supported by the Academy of Finland in the
PDP project (grant no. 260014).

8. REFERENCES
[1] Aruna Balasubramanian, Brian Levine, and Arun

Venkataramani. DTN routing as a resource allocation
problem. ACM SIGCOMM Computer Communication
Review, 37(4):373–384, 2007.

[2] Suzan Bayhan, Esa Hyytiä, Jussi Kangasharju, and
Jörg Ott. Seeker-assisted information search in mobile
clouds. In Proc. of the Second ACM SIGCOMM
Workshop on Mobile Cloud Computing, MCC ’13,
2013.

[3] Alberto Dainotti, Claudio Squarcella, Emile Aben,
Kimberly C Claffy, Marco Chiesa, Michele Russo, and
Antonio Pescapé. Analysis of country-wide internet
outages caused by censorship. In Proc. of the ACM

SIGCOMM conference on Internet measurement,
pages 1–18, 2011.

[4] K. Fall and S. Farrell. DTN: an architectural
retrospective. IEEE Journal on Selected Areas in
Communications, 26(5):828–836, June 2008.

[5] Kevin Fall. A delay-tolerant network architecture for
challenged internets. In Proc. of conference on
Applications, technologies, architectures, and protocols
for computer communications, pages 27–34, 2003.

[6] Pan Hui, Augustin Chaintreau, James Scott, Richard
Gass, Jon Crowcroft, and Christophe Diot. Pocket
switched networks and the consequences of human
mobility in conference environments. In ACM
SIGCOMM Workshop on Delay Tolerant Networking,
2005.

[7] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble
Rap: Social-based forwarding in delay tolerant
networks. In Proc. of ACM MobiHoc ’08, pages
241–250, 2008.

[8] Cong Liu and Jie Wu. An optimal probabilistic
forwarding protocol in delay tolerant networks. In
Proc. of ACM MobiHoc ’09, pages 105–114. ACM,
2009.

[9] Mikko Pitkänen, Teemu Karkkainen, Janico
Greifenberg, and Jörg Ott. Searching for content in
mobile DTNs. In Proc. of IEEE Pervasive Computing
and Communications (PerCom), 2009.

[10] Nishanth Sastry, D Manjunath, Karen Sollins, and
Jon Crowcroft. Data delivery properties of human
contact networks. IEEE Transactions on Mobile
Computing, 10(6):868–880, 2011.

[11] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and
Cauligi S. Raghavendra. Spray and wait: An efficient
routing scheme for intermittently connected mobile
networks. In Proceedings of the 2005 ACM SIGCOMM
Workshop on Delay-tolerant Networking, pages
252–259, 2005.

[12] Ying Zhu, Bin Xu, Xinghua Shi, and Yu Wang. A
survey of social-based routing in delay tolerant
networks: Positive and negative social effects. IEEE
Communications Surveys Tutorials, 15(1):387–401,
First 2013.

