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ABSTRACT
This paper examines shared content editing in opportunistic net-
works. Instead of immutable messages, such as photos or music
files that are often assumed in opportunistic network applications,
we focus on mutable content, such as wiki-pages, that can be edited
by anyone carrying a copy. We show through simulations that mu-
table content can be handled by using revision control mechanisms
(merging), or by simply adopting/discarding versions wholesale.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Store and forward networks

Keywords
Mutable content; opportunistic networking; version control

1. INTRODUCTION
Opportunistic networking has enabled content sharing and dis-

tribution in challenging environments. Whether this content is a
page from a web server [6], picture from a camera or a Twitter
message by the user [2], the content itself is immutable and explic-
itly owned by its creator. Other nodes may consume or forward
the content, but not modify it. However, many popular distributed
applications – such as message boards, discussion forums and wiki
pages – deal with mutable content that many users may edit simul-
taneously. This brings up the problem of maintaining a consistent
content state in the face of possibly conflicting modifications.

In classical distributed applications with mutable content this
problem is typically solved by having a dedicated server act as a
gate keeper to the data, enforcing rules that guarantee consistency
(e.g., a wiki server making sure edits are applied sequentially with-
out conflicts). In opportunistic networks without guaranteed con-
nectivity to infrastructure, disconnected nodes spread around the
environment carry their own copies of the content and may modify
those copies at any time. Since every local modification creates a
new version of the content item (and a new message in the network
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to carry it) the network is quickly congested with messages car-
rying slightly different versions of the same logical content. This
clearly calls for mechanisms to stop the version explosion by en-
suring that every node carries only one copy of each content item,
while still being able to receive modifications made by other nodes.

In this paper we present two main approaches to handling muta-
ble content: adoption, and merging. The first is the simpler model;
when two nodes with different versions of the same content item
meet, they can choose to adopt one of the versions while discard-
ing the other. The second is more complex; the nodes attempt to
generate a new version that includes changes from both the versions
by merging the content items. These mechanisms can be fully auto-
matic, or include user interaction to help in the process. We discuss
each of these in more detail in Section 2 and present analysis of
their performance and behaviour based on simulations in Section 4.

There is a wealth of prior work on opportunistic content dissem-
ination and applications [4]. Recently content or information cen-
tric approach has been applied to opportunistic networks for con-
tent dissemination [1]. However, these approaches build heavily on
the assumption of immutable content, e.g., for security and caching
mechanisms, and are at odds with collaboratively editable content.

There is also a long history of research into collaborative content
editing mechanisms in fixed networks [11]. More recently Commu-
tative Replicated Data Types have been used as a basis for collab-
orative editing systems, including peer-to-peer systems, in mostly
theoretical work [7, 12]. A practical way of enabling collabora-
tive document editing in classical networking scenarios, including
mobile nodes, based on a weakly consistent replication platform is
presented in [8]. While this approach includes direct peer-to-peer
synchronization, it does not assume an opportunistic network and
is rather based on traditional networking scenarios. In contrast, our
work assumes a fully opportunistic and distributed network with
no central repositories and each node having its own authoritative
version of the content.

2. SHARED CONTENT EDITING
Our system assumes independent mobile nodes that form op-

portunistic contacts between each other when within short range
communications (e.g., Wi-Fi). Each node carries copies of content
items, one copy of each item, which it may modify at will by adding
or deleting parts. The copies contain the current content as well as a
full history of previous versions (similarly to software version con-
trol systems). Upon encountering each other, nodes will attempt to
form a consistent view of their two content versions. This corre-
sponds to, e.g., mobile nodes running some opportunistic middle-
ware or Bundle Protocol [10] routers with a shared content editing.

There are two main approaches that can be taken when encoun-
tering a modified version of the content item: 1) adopt (or discard)



the modified version, or 2) attempt to merge the two versions into
a new version that includes the changes contained in both. The
first approach, adoption, will discard messages and therefore the
changes to content contained in them. The second approach, merg-
ing, will retain all the changes, but may result in merge conflicts
where two versions cannot be combined.

We model the modifications to a content item that is represented
by an ordered list of elements. The content can be modified by
removing an element from a given position in the list, or adding
an element to some position. The only requirement for the ele-
ments is to be comparable for equality with other elements. The
elements map into different semantic units in different real appli-
cations. In a wiki, for example, the elements would map to words
of text. Other types of structures for the content items, for example
trees, are possible and require different merge semantics, but they
are out of scope for this work.

2.1 Merging
The versioning model is distributed, with each node holding its

own authoritative copy of the content item and its full version his-
tory. When meeting, nodes attempt to synchronize their copies as
follows: 1) If the peer’s version is a direct ancestor of the local ver-
sion, it is ignored. 2) If the peer’s version is a direct descendant of
the local version, the node will adopt the peer’s version. 3) Other-
wise a merge is attempted, which can result either in a conflict or
in a new version that combines the local and peer’s versions.

The merging of the content could be done manually by the user,
but can in many cases be also done algorithmically. There are mul-
tiple approaches to automatic merging, including three-way merge,
weave merge, and patch commutation. Different algorithms have
differences in operation and required input. We focus on the three-
way merge, which is widely used in version control systems.

Three-way merge is calculated using the full version history of
the content being merged. The history can be represented as a di-
rected acyclic graph (DAG), where each vertex corresponds to a
unique version of the content, and edges correspond to changes in
the content. In the case of a modification of the content, there will
be one edge from the old version to the new one. In the case of
a merge, there will be edges from the two parent versions to the
merged version. The DAG is constructed by combining the local
version history with the peer’s version history.

The merge is done by first finding the lowest common ancestor
(LCA) for the two versions in the DAG. The LCA corresponds to
the content version from which the two merged versions branched
off from. The difference between the local version and the LCA,
and the peer’s version and the LCA is calculated, resulting in two
sets of changes (represented as removals and additions to the LCA
content). These two sets of changes are then combined and applied
to the LCA in order to produce the new merged version.

The merge will succeed if all the changes in the two change sets
either apply to different positions in the LCA, or both sets contain
the same change to the same location. A merge conflict occurs
when both change sets contain an addition of a different element
to the same location. Resolving conflicts requires understanding of
the content semantics, and therefore cannot be safely automated.

3. SIMULATIONS
We evaluate the behaviour and performance of the shared con-

tent editing mechanisms through simulations using The ONE sim-
ulator [3] in a range of scenarios. The simulation scenarios and the
content editing model is described in this section, while the results
are presented and analysed in the next section.

3.1 Simulation Scenarios
We consider three scenarios: 1) static and well connected, 2) ran-

dom movement, and 3) realistic trace-based movement. The static
and random movement scenarios are simple and cover the extremes
of mobility found in opportunistic networks. However, due to their
simplicity these scenarios do not represent real-world opportunis-
tic networks well. We therefore include a trace-based movement
model to evaluate the behaviour in a realistic scenario. For the
static scenario we construct a hexagonal grid topology out of 61
nodes so that each node has six neighbors (except along the edges).
We use Modified Random Direction [9] movement model for ran-
dom movement with 60 nodes, 1ms−1 speed, (0, 120)sec pause
time, 1 × 1km area, with 30m radio range over 20000 simulated
seconds. We avoid the widely used Random Waypoint Model due
to its known poor characteristics such as uneven density and failure
to reach a steady state [9, 13]. For the realistic scenario we use the
SMOOTH mobility model for 7 days with parameters derived from
a real trace taken from the KAIST campus [5]1. In all cases we as-
sume that communication delays, link capacities, and node buffers
are insignificant and will not be a bottleneck.

3.2 Content Editing Model
We simulate a pure merging model, and pure adoption model.

We analyse the growth of a content item initially composed of 100
"lines". Every node starts with a copy of the content item and modi-
fies it periodically by inserting 5 random lines in random positions.
In the first two cases the nodes modify the content on average ev-
ery 1000 seconds, while in the third, realistic scenario the nodes
modify the content once per 30240 seconds. For the first two sce-
narios these values are chosen to clearly expose the fundamental
characteristics of the content modification process, while in the last
one they are chosen to reflect a realistic case of a wiki-like page
that is infrequently added to by the users. Both cases result in each
node modifying their local content 20 time over the simulation pe-
riod. For simplicity, we do not consider deletions, noting that a
deletion cannot directly conflict (although they can solve conflicts
by removing conflicting lines).

We model destructive and non-destructive conflict resolution for
merging. In the destructive case the node selects the full set of
changes for each conflict from one of the versions and discards the
changes from the other. We further assume that the users always
make consistent choices, i.e., given the same conflict all users al-
ways solve it the same way. We do not consider the case where
users cannot choose consistently, either by having different users
choosing differently (e.g., "edit wars") or by users changing their
choice over time. In particular, we assume that the conflict is solved
by taking the larger of the conflicting change-sets, or in the case
of same sized sets picking arbitrarily but consistently. In the non-
destructive case the node retains all the changes from both versions
by choosing to apply the full change-set from the first version fol-
lowed by the second version. The order is again consistent, with all
nodes applying the changes in the same order.

For the adoption model we consider two decision making criteria
when choosing which one of two versions to take and which to dis-
card: 1) choosing the version with latest changes, or 2) the longest
content item.

4. RESULTS AND ANALYSIS
This section presents the results of the simulations and their anal-

ysis. First the characteristics of a pure merge strategy are studied

1All parameters are taken from the cited paper.
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Figure 1: Length of content over time for merging strategies.
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Figure 2: Length of content over time for adoption strategies (merge strategies as reference cases).

in the various scenarios. Then the performance of the pure merge
strategy is compared with the simple adoption strategies.

4.1 Merging Strategy
We first examine the growth of a content item when applying a

pure merging strategy. Figure 1 shows the contribution of the merg-
ing mechanism to the mean length of the content over time in the
three different scenarios. The impact of the nodes modifying their
local content items has been subtracted out of the average length
leaving only the impact of changes merged from other nodes. The
results are shown for both destructive and preserving merge strate-
gies with the ability to resolve conflicts of various sizes, along with
the case where no conflict resolution is done.

In the static, well connected scenario on the left of the figure,
it can be seen that all the strategies with any conflict resolution
perform equally well; they all achieve practically optimal perfor-
mance where every node sees every change. This is expected since
the changes propagate quickly between the nodes and the likeli-
hood of a conflicting changes is small since the nodes have an up to
date view of the global changes. However, the propagation of the
changes still takes some time and it is still possible that conflicts
are introduced. This can be seen from the behaviour of the case
where no conflict resolution is possible, where the performance is
worse compared to the other cases. As can be seen from the differ-
ence in the graphs, the impact of even a small number of unsolv-
able conflict cases is significant. This is due to the speed at which
the conflicting versions propagate in a well connected scenario. In
theory a single conflict could split the node population into two
halves carrying conflicting versions and thus being unable to merge
changes from each other, effectively splitting the merging rate in
half. In practice the impact is not quite that drastic since the popu-
lation is unlikely to be split in two equal halves (one of the conflict-
ing changes will be made slightly earlier and thus propagate more
widely). Fortunately this effect can be countered with the ability
to solve even a single conflict at a time, resulting in near optimal
performance. Whether the conflict resolution preserves or discards

changes is insignificant, since the number and size of conflicts is so
small that it has trivial impact on the overall performance.

Middle of Figure 1 shows the Modified Random Movement sce-
nario where nodes are not well connected, but instead move ran-
domly and attempt to merge their content versions when meeting.
In this scenario the changes made by nodes must propagate to other
nodes through a series of contacts and merges. Further, the changes
must propagate along a chain of nodes not carrying versions with
unsolvable conflicts. Essentially the reach of a change is limited to
the set of nodes with non-conflicting versions, and by the epidemic
propagation within that set. Due to the simulation setup, once an
unsolvable conflict is introduced, it will remain forever and there-
fore the sets of nodes that can potentially merge a given change
decreases over time until reaching zero once all the nodes are car-
rying conflicting versions. In practice such conflicts could disap-
pear through subsequent modifications where one or both of the
conflicting changes are deleted from later versions, but that effect
is not modelled in this work.

The resulting behaviour in the content length increase in the
MRD case differs significantly from the well connected case. In
all cases the rate of content increase goes towards zero, meaning
that eventually no changes from peers are merged into the content
Most of the length growth happens early, after which the growth
rapidly ends. The limit is dependent on the number of conflicts that
can be solved. When no conflicts can be solved, the limit is only
about 15% above the original length of the content. If the nodes
have the ability to solve conflicts, the limit increases up to 160%
of the original content length within the simulation period. This is
natural since the limit is reached when all live version of the con-
tent are conflicting with each other. Conflict solving slows down
the rate at which the versions become conflicting, therefore extend-
ing the time during which merging can occur and thus increasing
the limit that the content length can reach.

The MRD scenario also reveals differences in the destructive and
preserving merge strategies. As expected, the change preserving
merges lead to longer content lengths than the destructive merges
that discard changes. The content preserving merge performs com-



paratively better when larger conflicts can be resolved. This is natu-
ral since the larger the solvable conflict, larger the number of solved
conflicts and more changes are preserved by the preserving resolu-
tion mechanism and discarded by the destructive resolution.

The more realistic SMOOTH-KAIST scenario is presented in the
right of Figure 1. The movement model results in clusters of high
connectivity with some flights between the clusters. This corre-
sponds to a hybrid between a well connected case (approximated
in this work with the static scenario) and the fully opportunistic
case (approximated by MRD). This is also reflected in the results;
there is a significant difference in performance between the case
with no conflict resolution and the case where a single conflict
merges can be solved. This can be explained with the reasoning
presented in the case of the static scenario, where inside the well
connected clusters the introduction of unsolvable merge conflicts
has a large impact and being able to solve even a small number of
conflicts has disproportionately large positive impact on the per-
formance. However, like the fully random scenario being able to
solve larger conflicts improves the performance of the system. As
the size of the solvable conflict increases, performance of the sys-
tem approaches a steady state; in this case about 14 additional lines
per hour, while the optimal rate is about 35 lines per hour. This
corresponds to about 40% of the optimum performance where ev-
ery node would receive every change. This behaviour is due to the
clusters generated by the scenario being largely isolated, causing
versions inside the clusters to remain non-conflicting, but versions
in different clusters diverging and having little cross pollination of
changes between them.

4.2 Adoption Strategy
Figure 2 shows the performance of adoption strategies as com-

pared to the previously presented merge strategies. Two decision
making approaches are shown; preferring the version with larger
content and the preferring the version with more recent changes.

In the static, well connected scenario both adoption strategies
perform identically; better than merging with no conflict resolution,
but failing to reach the optimal performance of merge strategies
with conflict resolution. Adoption strategies do not reach optimum
performance since they discard changes in cases where a merging
strategy is able to combine them. In particular, any change made to
an old version will lose out to changes made to newer versions. As
can be seen from the graph, the impact of this effect is not large in
the well connected case where the new versions propagate quickly
to the whole network.

In the MRD scenario, middle of Figure 2, the difference in the
fundamental behaviour of the merging and adoption strategies can
be seen clearly. While the merging strategies lead to aggressive
growth early on, the growth quickly stops and the content length
reaches a limit as unsolvable conflicts accumulate in the network.
Adoption strategies on the other hand cannot lead to conflicts and
therefore perform at a steady rate over time. It can be seen that early
on the merging strategies are clearly superior to adoption strate-
gies in distributing changes to the content, but eventually the adop-
tion mechanisms overtake the stalling merging mechanisms. This
indicates that in disconnected scenarios with random movement,
simple version adoption strategies are superior to merging with or
without conflict resolution.

While adoption based strategies eventually outperform merging
strategies in random scenarios, in the more realistic SMOOTH-
KAIST the situation is again reversed. While adoption strategies
significantly outperform merging with no conflict resolution mech-
anisms, when conflict resolution capability is added merging con-
sistently and significantly outperforms adoption. However, since

merging with conflict resolution requires user interaction while adop-
tion strategies do not, and since adoption strategies still perform
relatively well, they are also viable in realistic scenarios.

5. CONCLUSIONS
In this paper we presented the problem of shared content editing

in opportunistic networks and presented approaches for enabling it.
These approaches include both merging of the content items and
wholesale adoption of newer versions of the content. We evaluated
these approaches in a range of scenarios from static to fully random
movement, including a realistic trace-based model.

The results show that in a realistic scenario simple adoption based
strategies perform surprisingly well, but that merging strategies are
still superior if user intervention to solve small merge conflicts is
possible. However, implementing a real shared content editing sys-
tem and applications for opportunistic networks presents many fur-
ther challenges, especially in the area of user interaction with the
merging process.

Many aspects of the problem can be further studied, including
the impact of delayed or aggregated merge conflict solving tasks,
strategies that combine both merging and adoption, and many opti-
mizations are possible including heuristics for making better choices
on which versions to adopt and automatic merge conflict resolu-
tion when the content semantics are known (e.g., merging message
boards based on timestamps). These are left for further study.
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