
978-1-4673-1239-4/12$31.00 c�2012 IEEE

Predictive Buffering for Streaming Video in 3G Networks

Varun Singh†, Jörg Ott†, Igor D. D. Curcio‡
†Comnet, Aalto University, Espoo, Finland
‡Nokia Research Center, Tampere, Finland

{varun,jo}@comnet.tkk.fi, igor.curcio@nokia.com

Abstract—This paper presents a multimedia streaming ser-
vice in a mobile (3G) environment that, in addition to in-band
congestion signals such as packet losses and delay variations,
receives congestion cues from a Network Coverage Map Service
(NCMS) to make rate-control decisions. The streaming client
routinely queries the NCMS to assess the network conditions
at future locations along its expected path. The streaming
client may ask the streaming server for short-term transmission
bursts to increase pre-buffering when it is approaching areas
with bad network performance to maintain media quality. If
needed, the client may also switch to a different encoding
rate (rate-switching) depending on the severity of expected
congestion. These notifications are scheduled as late as possible,
so that any changes in network conditions and/or changes in
user’s movements can be taken into account (late scheduling).
Using this type of geo-predictive media streaming service we
show that the streaming client can provide pause-less playback
and better quality of experience to the user.

Keywords-Mobile Multimedia Streaming; Geo-prediction;
Media Adaptation; Protocol Design;

I. INTRODUCTION

Consumption of multimedia on mobile devices is in-
creasing; YouTube1 alone accounts for 22% of the mobile
data bandwidth [2]. Moreover, the video streaming services
cannot only be accessed by smartphones and tablets but also
by constrained devices like a feature phones and in-vehicle
entertainment systems. In a 3G network, mobility, fading,
interference, cell loading, handovers and other factors can
affect the throughput available to each user. Generally,
video streaming applications overcome congestion by pre-
buffering content. However, the video will pause if the buffer
runs out and will not resume until a sufficient amount of
video is pre-buffered. Usually, the streaming clients assume
that the congestion will occur only for a few seconds and
pre-buffer fixed amount of media data to overcome it, but
in 3G networks loss in connectivity is unpredictable and
outages can occur for a longer period of time. In these cases
the stream suffers from repeated pausing and re-buffering,
which degrades the perceived quality of the video content.
One alternative would be to increase the size of the pre-
buffer. But if the user skips to another video, then the extra
pre-buffering will be useless. Another alternative would be
to switch the media stream to a lower encoding rate and
switch back later. However, the implementer should bear in

1http://m.youtube.com uses RTSP instead of HTTP for streaming [1]

mind not to change the media rate too often and not to vary
the rate by a large amount as both these actions adversely
affect the user’s quality of experience [3].

Modern mobile networks have been designed to carry
multimedia streams with QoS traffic classes [4], but deploy-
ments of GPRS, 3G and HSDPA networks show that there
are still geographical areas where best-effort traffic classes
are used [5], [6]. These constrained geographical areas may
occur due to fading and interference from large building
structures or closed or inaccessible areas (e.g., tunnels, boats
on lakes or in the archipelago, rural areas).

In this paper, we propose an architecture (Section III)
that enables the streaming client to predictively pre-buffer
multimedia data based on the input from a Network Cover-
age Map Service (NCMS). To provide the streaming client
with coverage notifications, the users share their current
network characteristics and geo-location with the NCMS.
We also describe in detail the signaling between the compo-
nents (Section V), namely, the streaming server, streaming
clients and NCMS. Additionally, we also propose methods
for seeking out areas (lookahead) with poor connectivity
(coverage hole) to schedule either switching to a lower
media encoding rate (rate-switching) for the duration of
poor coverage or increasing the media transmission rate
before entering the area of poor coverage so that adequate
media is buffered to overcome the outage (Section IV). This
predictive method of pre-buffering is orthogonal to existing
methods that react to congestion events by sensing changes
in network characteristics.

II. RELATED WORK

Early papers [7], [8], [9] for congestion control in mul-
timedia over RTP are limited to Internet applications. With
the emergence of 3G networks, congestion control needs to
be reworked because the varying network capacity affects
the video quality [10]. This problem has been the focus for
3GPP in the recent years (e.g. [11], [12]). A streaming client
using Scalable Video Coding [13] and Multiple Description
Coding [14], can prefetch the layers that do not exceed the
currently available channel capacity. However, changing the
rate too often or by too much may adversely affect the
users’ quality of experience [3]. Increasingly, web-services
run variants of HTTP over TCP for media delivery [15],
[16], [17] but TCP can only be used within strict bounds of

network characteristics [18] which may be difficult to adhere
to in a 3G environment.

Service Maps are introduced in [19] and the measurement
based approach is proposed in [20]. CARS [21] evalu-
ates rate-adaptation in a vehicular network and uses signal
strength and throughput at a location as an indicator for con-
gestion. GPS-based congestion control is introduced in [22],
and evaluated in different scenarios [23], [24]. These papers
take signal strength as an influential factor for rate-control
and show that predicting based on signal strength alone is
insufficient. Yet, they do show that using past information
to predict future network characteristics is possible.

Preliminary analysis of a system similar to the one
proposed in this paper is done in [5] but it is based on
simulations, while this paper presents results from real-world
experimentation. [6] also proposes a similar architecture
(bandwidth lookup service) to the one in this paper and uses
real-world traces to evaluate different types of averaging
algorithms for predictive buffering in Dynamic Adaptive
Streaming over HTTP (DASH). While the averaging algo-
rithm is not a focus for this paper, we use K-means [25] and
K-nearest neighbor (K-NN) [26] algorithms to form regions
with similar bandwidth. Additionally, [6] proposes fetching
the bandwidth along a travel route in steps of 100 meters,
which we find limiting. Instead we propose multiple methods
for discovering areas with poor connectivity and show that
not only looking up future bandwidth but also when to
vary the sending rate (prefetch) affects the usefulness of the
service.

III. SYSTEM MODEL

In this section, we introduce the different entities that
make up the Geo-location Assisted Streaming System
(GLASS) architecture and also briefly describe the interac-
tions between the components.

A. Components
Figure 1 shows the GLASS architecture that mainly com-

prises of the following components: the streaming server,
a Network Coverage Map Server (NCMS) and streaming
clients.

Streami
ng*

Server*

Network*
Congestion*
Map*Service*

RTP

Throughput Updates
Look-ahead Request

Available Throughput

RTCP

Streaming*
Client*

Figure 1: Shows the components in the GLASS Architecture. NCMS is
the entity that keeps track of the throughput at each location and sends
throughput recommendations to the streaming client.

The Streaming Server delivers multimedia content to
a media player using RTP/UDP2. It is able to vary the
transmission time of each packet and additionally is also able
to switch between different pre-encoded video files (rate-
switching).

The Streaming Client initiates, receives and plays back
multimedia content from a streaming server. It must also
support media delivery using RTP and advanced features
of audio-video profile, such as early feedback, shorter and
immediate RTCP feedback interval, NACK, etc. Further-
more, the streaming client is able to provide more precise
rate-control based on the input from the Network Coverage
Map Server (NCMS). The client should also be capable of
increasing the available receiver buffer to handle more media
data. In the context of this paper, the streaming client is
running on a GPS-capable mobile device.

The Network Coverage Map Server (NCMS) receives
location specific bandwidth updates from streaming clients
(crowd-sourcing), creates bandwidth maps, sends bandwidth
updates to clients for specific future locations. Unlike the
interaction between the streaming client and server (over
UDP), the streaming client communicates with the NCMS
using HTTP POST and GET messages. The NCMS stores
the location updates in a database and clusters the location
updates based on the bandwidth and GPS accuracy param-
eters.

B. Terminology
Coverage Update: The mobile client measures and re-

ports the operator name, base station ID (BSSID), signal
strength, and GPS information (lat, lon, speed, trajectory).

Bandwidth: We loosely use the term to refer to the
available capacity or end-to-end throughput. However, this
depends on the type of information measured and analyzed
by the streaming client. It can be current media receive rate,
overall system throughput or something else. calculating it

Coverage Holes (T
gap

): Areas where the bandwidth
drops below the current media rate. T

gap

is the duration
of the coverage hole in seconds and depends on the user’s
traveling speed. The streaming client needs to pre-buffer the
difference in the average media rate and available throughput
to continuously play back media during the coverage hole.

C. Concept
The streaming client looks ahead at locations in its vicin-

ity for bad coverage. The range of the lookahead depends
on the speed and current buffering. When the streaming
client discovers a coverage hole (T

gap

), it calculates the
time available to buffer the media content (time-to-outage,
T
tto

) based on the available throughput between its current
position and the location of the coverage hole and the user’s
average vehicular speed. The streaming client attempts to

2In this paper, we focus on RTP for streaming video but nothing in the
architecture prohibits the use of HTTP for streaming.

minimize the T
tto

so that it does not unnecessarily buffer
content if the travel route changes. Furthermore, if there is
insufficient time to buffer the media content, the streaming
client switches the media rate to a lower rate less than
or equal to the throughput available in the coverage hole.
Figure 2 depicts these steps for predictive buffering.

t (in sec)!

BW
 (i

n
kb

ps
)!

Playback Rate!

Time To Outage (Ttto)!

Channel Capacity!

Receiver Rate!
4. Data pre-buffered
due to predictive
feedback!

Initial !
pre-buffering!

Time Duration of Outage (Tgap)!

2 . C o v e r a g e
hole detected! 3. Client schedules

variable transmission rate
or switches to lower rate!

1. Look-ahead for
coverage holes!

5. Client resets to normal
media rate or transmission rate!

Figure 2: Shows how the predictive buffering concept works

D. Signaling
The interaction between the components can be broken

down into the following steps, shown in Figure 3.
• Coverage Updates: Building the coverage map by

getting updates on network conditions from the users.
• Lookahead: Fetching the upcoming network conditions

from the map server.
• Congestion Control: Controlling media transmission

rate based on the coverage map.

Streaming Server! Streaming Client! Network Coverage
Map Server!Client startup…!

[ASYNC] Acquiring Satellite…!
[ASYNC] Current Position known!Media Session Initiated!

RTP Media! Database Lookup!
Finds locations around requested
location. !
If (coverage hole is found) !
then complete hole Info is sent!
else only neighborhood info is
sent!

RTP continues!
(…)!

RTP Session Started!
SRs and RRs will be
scheduled according to
RFC3550+RFC4585!

If (Coverage hole is found)!
then Schedule Predictive Rate Control!
 !

Estimated Capacity Vector

(ECV)!
Varying Transmission
Rate or Rate Switch!

RTP Media!

Stream switched to lower rate!

RTP Media!

Stream switched
back to normal rate!

Database Updates!
Throughput of the Location is
updated by using moving
average of the new value with
older values!

Figure 3: Shows the signaling required to successfully pre-buffer content
using the GLASS architecture

Coverage Map Update: The streaming client measures
the receiver rate at each geo-location and routinely sends this
information to the NCMS. The rate of the updates depends
on the speed of the user and the duration of the measurement.

Lookahead Request: The streaming client routinely re-
quests or subscribes to notifications for areas with poor
connectivity based on its current trajectory, route (if known)
and maximum session media bit rate. The streaming client

sends a GET message with its current GPS information
(current location, speed, trajectory, etc.) to the NCMS. The
NCMS responds with a Coverage Map Info.

Coverage Map Info: If the user’s travel route is known,
then the NCMS returns precise information along that path,
else it returns the location, bandwidth information for the
locations near the user. In both cases, the NCMS takes
the user’s speed into account when providing (location,
bandwidth) information pairs. For example, the area and
granularity of information will be different for a user who
is walking or driving.

Rate-control: The streaming client needs to inform the
streaming server about the channel capacity so that the server
can transmit media at a higher rate to enable pre-buffering.
If the streaming server is GLASS-aware, the client can
provide it with the complete channel conditions, for which
the client converts the coverage map information (array of
(location, bandwidth) pairs) into temporal information by
using the user’s vehicular speed and distance between future
locations. The temporal representation of the coverage map
information is called Estimated Capacity Vector (ECV)).
Alternatively, if the streaming server is not GLASS-aware
but supports RTSP/2.0 [27], the streaming client can use the
RTSP Speed: header to control the media transmission rate
instead of signaling the complete channel conditions.

IV. LOOKAHEAD AND SCHEDULING

The streaming client fetches the coverage map informa-
tion of the upcoming locations from the NCMS to determine
if there are any coverage holes along the expected traveling
path (See Figure 4). When the streaming client discovers a
coverage hole along its path, it has two options:

Figure 4: Impact of a coverage hole (the red points on the bridge mark
the coverage hole). The streaming client should start buffering just before
the edge of the inner territory to be able to playback without any pauses
in the coverage hole.

• Pre-fetching and buffering the content is the preferred
operation as it would allow the client to maintain the
present media quality. The streaming client estimates if
it can increase the transmission rate from the server so
that it could receive and buffer enough content before

B
W

 (i
n

kb
ps

)!

Playback rate
is the same as
sending rate!

Channel Capacity!

Coverage hole
detected!

time (s)!

Rate Switching!

Receiver Rate!

(a)

B
W

 (i
n

kb
ps

)!

Playback Rate!
Constant bit rate
video!

Channel Capacity!

Coverage hole
detected!

Early scheduling!

time (s)!Buffer-fill for early scheduling!

Receiver Rate!

(b)

B
W

 (i
n

kb
ps

)!

Playback Rate!
Constant bit rate
video!

Channel Capacity!

Coverage hole
detected!

Late scheduling!

time (s)!Buffer-fill for late scheduling!

Receiver Rate!

(c)

Figure 5: shows the methods of adaptive streaming a) rate-switching, b) early scheduling of buffering, and c) late scheduling of buffering.

reaching the coverage hole (i.e., for T
tto

seconds) to
continue uninterrupted playout throughout the coverage
hole. This calculation accounts for the expected capac-
ity along its path to the hole based upon the information
received from the NCMS (and its local observations).

• Switching to a lower encoding rate is the fallback if
the expected network capacity does not allow raising
the transmission rate. This may be peered with pre-
buffering: the streaming client may determine the max-
imum sustainable rate for the upcoming coverage hole
and then adjust the transmission rate from the server so
that this target can be maintained.

Irrespective of coverage holes, the the streaming client
also appropriately schedules the increase and decrease of the
transmission rate or rate-switching depending on predicted
and observed instant capacity variations; but this type of
rate control is not the focus of this paper. In the following
subsections we discuss possible solutions for lookahead and
scheduling to achieve the above goals.

A. Methods of Lookahead

Known travel route: If the vehicle is using a turn-by-
turn navigation system then the streaming client may be
aware of the route the user is going take and pre-fetch the
media content based on the available bandwidth (from the
NCMS) along the route. Therefore, the client can identify
the coverage holes at the beginning of the journey and by
taking the vehicular speed into account, the streaming client
can schedule points at which the media transmission rate
can be increased (or switched to a lower encoding rate) and
reset. Moreover, the streaming client can routinely query the
NCMS for any changes in bandwidth along the travel route.

Area lookahead: Typically, the travel route is not known
to the streaming client and in this case it should explore
the area around it for coverage holes. In this case, the
streaming client sends a ‘lookahead request’ to the NCMS
with a location, radius and average vehicular speed. The
location can be the user’s current location or a future
location and the radius is the area around that location. Using
this mechanism the client routinely queries the NCMS for
upcoming locations for detecting coverage.

The NCMS responds to the ‘lookahead request’ with

the ‘Coverage Map Info’. NCMS samples the neighbor-
hood locations based on the vehicular speed and creates
the throughput vector for the locations in that area. If a
coverage hole is detected, the NCMS provides the additional
information even if it exceeds the requested radius.

Coverage hole subscription: After the streaming client
has obtained the ‘Coverage Map Info’ for its upcoming path,
it will not query this area again on its own unless its path
changes. Yet, the NCMS server may have updates about
changes along the predicted path and needs to notify the
streaming client about those. Therefore, any path query by
a client is treated as an implicit subscription for updates
(using long poll or can be implemented using websockets).
The subscription is valid until the streaming client passes by
that point or if the route changes (or by timeout).

B. Moment of Detection

When to increase the transmission rate or switch to a
lower rate depends on how much in advance a coverage
hole is detected.

Late Detection and Rate-switching: The streaming client
detects the coverage hole a few seconds before entering
it. The client in this case has just enough time to switch
the media rate to a lower encoding rate. To make sure that
there is no disruption the NCMS provides the lowest and the
average bandwidth in the coverage hole. Figure 5(a) shows
rate-switching due to late detection.

Early Detection and Early Scheduling: The streaming
client detects the upcoming coverage hole well in advance;
i.e., there is sufficient time and available bandwidth to
increase the transmission rate of the media stream to com-
pensate the reduction in the coverage hole.

The client may then increase the receiver buffer size to
accommodate more media packets. The drawback of this
scheme is that if the client starts to buffer very early and
the user ends the playback or does not pass through the
coverage hole (because of changing travel routes) then the
media data is unnecessarily buffered. Figure 5(b) shows the
early detection and slight increase in transmission rate to
overcome the coverage hole.

Early Detection but Late Scheduling: The streaming
client detects the upcoming coverage hole well in advance

but the client schedules the increase of the transmission rate
such that the extra available bandwidth over the scheduled
period (T

tto

) is able to compensate for the missing band-
width in the coverage hole. Inside the coverage hole, the
streaming client reduces the transmission rate to the average
or minimum rate of the coverage hole.

Figure 5(c) shows the late scheduling and the increase
in buffering. The size of the extra buffer in early and late
scheduling is the same; however, late scheduling reduces the
chance of unnecessary buffering due to travel path changes,
but relies more on the prediction accuracy.

V. PROTOCOL DESIGN AND IMPLEMENTATION

A. Protocol
The streaming client interacts with the NCMS over HTTP

and with the streaming server using RTCP extensions. We
use HTTP, RESTful APIs and JSON due to their conve-
nience in development. However, these messages can be
encoded in binary 32-bit word format (like TCP’s header
format) to reduce signaling overhead.

Coverage Map Update: The streaming client sends a
POST message with geolocation (latitude, longitude), speed,
average receiver rate and loss rate at that location or in
the past five seconds, and time when the updated was
created (utime). The streaming client should also include the
authentication hash, which it received during login. NCMS
will respond with either a ‘No Error’, ‘Missing Parameter’,
‘Invalid Hash’ or ‘Unable to update’. In the case of lack
of connectivity the streaming client holds on to the update
messages and sends it later as a JSON dictionary when the
connectivity is restored.
Sample Single Coverage Map Update:

https://<servername>/backend/update.json?id=<hash>

&latlon=60.16865,24.82348&s=7kmph&rr=1300&lossrate=0.0

&m=drive&utime=1314952356&op=Elisa&typ=3G&probe=false

Sample JSON Response:

{"err":"No error"}

We assume that the NCMS is able to group or cluster
nearby geographical points that have similar throughput. We
also assume that the NCMS is able to split existing clusters
into smaller groups if points with lower or higher throughput
appear in the same geographical cluster. The design and
implementation of the NCMS is outside the of scope of this
paper.

Lookahead Request and Coverage Map Info: The
streaming client routinely queries the NCMS for future
locations. It is similar to how a user explores a map in
multiplayer games (also called fog of war). The streaming
client issues one or more lookahead requests, each looka-
head request is sent as an HTTP GET request and contains
location, expected media rate, vehicular speed and a range
around the requested location.

The NCMS uses the location as a central point and fetches
points from the coverage database within the requested

range. The NCMS may additionally reduce the set of lo-
cations to a smaller set. For example, if the user is moving
at a higher speed, it may filter-out locations with a small
impact range. If the NCMS finds a coverage hole (an area
where throughput is less than the requested media rate), it
also includes the area around the coverage hole, even if it
exceeds the requested range.

The NCMS responds to the lookahead request with the
‘Coverage Map Info’ which is a JSON dictionary of points
with locations and their radius, throughput and the NCMS
confidence in the measurement. It also flags the report if it
found a coverage hole.

Sample Lookahead Request:
https://<servername>/backend/lookahead.json?

id=<hash>&latlon=60.16444,24.92099&range=500m

&m=drive&s=7kmph&mrate=1000kbps

Sample Coverage Map Info (JSON encoding):
{"user":7, "coverage_flag":0, "Coverage Map Info":[

{"latlon":"60.16474,24.9121", "radius":"35m", "mode":

"drive", "throughput":"1375 kbps", "confidence":"low"},
{"latlon":"60.16445,24.91591", "radius":"95m", "mode":

"drive", "throughput":"1290 kbps", "confidence":"high"},
{...}], "err":"No error"}

On finding the coverage holes, the streaming client uses
Google Map’s Direction API [28] for calculating the route
to the coverage hole. The direction API provides the total
length, duration to arrive at the location, and the individual
‘legs’ of the route. If the Direction API is unavailable
then the client approximates the route as the straight line
(geodesic) between current location and the location of
the coverage hole. The points in the lookahead that lie
approximately along the straight path form the waypoint
markers to the coverage hole.

Sample Direction Request:
https://maps.googleapis.com/maps/api/directions/json?

origin=60.16444,24.92099&destination=60.16445,24.91591

&sensor=true&mode=walking

If the streaming client detects that it is on the route to the
coverage hole, the client schedules the pre-buffering using
Algorithm 1. The client sends the Estimated Capacity Vector
(ECV) for adjusting the transmission rate or Temporal Max-
imum Media Stream Bit rate Request (TMMBR) [RFC5104]
for switching to a different encoding rate.

B. When to schedule the ECV?

First, the streaming client matches the locations received
in the Direction API to the (location, range, throughput)
tuples received in the Coverage Map Info. Second, the
streaming client calculates the minimum time required to
pre-buffer the media based on the travel route. The streaming
client does this by calculating the time required to travel
between each waypoint (distance

speed

vehicular

) and multiplying it
by the throughput between those points. The transmission
rate is throttled at the point where the calculated pre-buffer

Algorithm 1 Scheduling the ECV or TMMBR at the
streaming client
Require: Streaming knows:

1. Location and range of Coverage hole.
2. Waypoints: Route from current location to coverage hole.

Ensure: Streaming client has the throughput data for all waypoints. Else
issue lookaheads for those legs of the route.

1: {Merge the waypoints from the route and the NCMS to create a
consistent throughput map of points. For legs or locations with no
bandwidth information assume the throughput in the vicinity as an
approximation. If the approximation is incorrect, it will not help the
current user but the next user who travels the same route.}

2: T
gap

= 2⇥radius

hole

speed

vehicle

3: Buffer
extra

= (rate
media

�thoughput

hole

)
8 ⇥ T

gap

KB
4: N = num of points(route)
5: X �1, offset 0, ecv

t

[N � 1] T

gap

6: for i = N � 2 to 0 do
7: {we are traversing the route backwards from a location (N-2) before

the coverage hole (N-1, N) to the current location (0)}
8: ecv

t

[i] geodist(route[i].location,route[i+1].location)
speed

vehicle

9: {for geodesic distance calculation, we use Haversine Formula}
10: ecv

b

[i] route[i].throughput�rate

media

8 ⇥ ecv

t

[i]
11: b b+ ecv

b

[i]
12: if X �1 and b > Buffer

extra

then
13: X i

14: else
15: if X > �1 then
16: offset offset + ecv

t

[i]
17: end if
18: end if
19: end for
20: if X 6= �1 then
21: j 0.
22: for i = X to N � 1 do
23: {N because we want to reduce the transmission rate during the

coverage hole or completely pause it. N to N-1 is the diameter
of the coverage hole}

24: ecv[j].time offset+ ecv

t

[i]
25: ecv[j].throughput route[i].throughput
26: j j + 1
27: end for
28: else
29: send TMMBR before the edge of the hole or try to recursively reset

old scheduling points.
30: end if

is sufficient to compensate for the deficit of the coverage
hole.

If the path does not allow sufficient pre-buffer then
a TMMBR is scheduled near the edge of the coverage
hole. If the average vehicular speed of the user changes
dramatically (e.g. the user goes from walking to public
transport), then the ECV needs to be recalculated, mere
scaling (�

scale

= speed

old

speed

new

) will not work because the time
duration of the throttling may be insufficient to pre-buffer
the deficit from the coverage hole.

If another coverage hole is detected then the streaming
client calculates if there is sufficient time between the holes
to pre-buffer content. If it is possible to pre-buffer content
between the two coverage holes then the streaming client
sends the ECV for the coverage hole after passing through
the first coverage hole. If the time to pre-buffer is insufficient

then the streaming client should calculate if there is enough
time between now and the scheduling of the first ECV to pre-
buffer for the new coverage hole. This is done recursively
starting from the newest coverage hole to oldest and using
the Direction API between each coverage hole. If it is
possible then an updated ECV is sent to the streaming
server covering all the congestion spots. If it is not possible
to reschedule the previous ECVs then the steaming client
switches to lower encoding rates (using TMMBR) for the
coverage holes that it is unable to pre-buffer content.

C. Implementation
We developed an adaptive multimedia streaming system

using open-source libraries, including Gstreamer3, x2644

and JRTPLIB5. It can encode and decode files, so that we
can use it both as streaming server and client.

Whenever the location changes, a system service provides
the streaming client with GPS updates. The streaming client
measures its receiver rate every few seconds or on location
change and sends updates to the NCMS. If the coverage is
limited, the streaming client stores these updates in a file
and sends them when the connectivity is better.

We built a minimalistic NCMS using a web-framework
and PostgreSQL6. NCMS and the media server run on a
single Linux server (Ubuntu 10.10). For our evaluation,
NCMS uses a K-means [25] and K-NN [26] clustering
algorithms to group nearby points with similar bandwidth
(±25%) and the NCMS reports the average values of the
latest group.7 The streaming server uses the “Football” video
sequence pre-encoded in five media rates (64, 128, 256, 512,
768 and 1000 kbps) using the x264 encoder. All the media
files are 265 seconds long, 30 FPS and a GOP=16. We use
a small group of pictures (GOP) so that the stream can be
switched at 1 second timescales.

D. Micro-benchmarks
To test the system before using it for real-world exper-

iments, we simulate the 3G link variation using the RLC
traces defined in [29]. We assign locations along a path with
the throughput from the traces. To add some variation be-
tween each successive run, we multiply the channel capacity
at those locations with a random value, uniformly distributed
in [0.5; 1.5]. For these experiments, we also implement a
link simulation module that simulates a user moving along
a geographical path and reads the associated throughput and
loss rate from the RLC file. The link simulation module
uses Dummynet [30] to control the link characteristics and
shares only its current location with the streaming client to
communicate with the NCMS. To clarify, only the travel

3http://gstreamer.freedesktop.org/
4http://www.videolan.org/developers/x264.html
5http://research.edm.uhasselt.be/⇠jori/jrtplib/documentation/
6http://www.postgresql.org/
7The NCMS and its parameters are outside the scope of the paper.

path and the 3G link characteristics are simulated while the
rest of the system (NCMS, streaming client and server) is
the same as the one deployed.

We evaluate the performance of the following schemes:
1) No adaptation: The streaming client sends normal

RTCP receiver reports but the streaming server neither
adapts nor performs any rate-switching. In this case,
bit-error or congestion-induced packet loss will cause
buffer under-runs and lead to poor video quality and
low user experience.

2) Omniscient adaptation: The streaming server is
aware of the exact end-to-end channel capacity and
performs the perfect rate-adaptation.

3) Rate-Switching using GLASS: The streaming client
performs short lookahead request and is only able to
detect coverage holes moments before the user arrives
at the location. In this case, the streaming client sends
a TMMBR message (with lowest coverage hole bit
rate) before entering the coverage hole and another
one after the coverage hole (to reset the bit rate). The
streaming server reacts by switching the media stream
to the closest available media rate.

4) Late scheduling using GLASS: The streaming client
performs lookahead requests and tries to detect cov-
erage holes much before the user arrives at those
locations. To reduce the impact of changing routes,
the streaming client uses the late scheduling proposed
in Algorithm 1.

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250Th
ro

ug
hp

ut
 (k

bp
s)

a) No Adaptation

3G Link
Receiver Rate

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250Th
ro

ug
hp

ut
 (k

bp
s)

time (s)

c) Rate Switching

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250

b) Omniscient

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250
time (s)

d) Late Scheduling

Figure 6: Comparison of the receiver rate to the 3G link rate (based
on RLC traces [29]. a) receiver rate when the streaming server provides
no adaptation, b) rate-switching when the streaming server is fully aware
of the network characteristics and is therefore able to adapt the sending
rate perfectly, c) rate-switching when the streaming-client relies on short
lookaheads, and d) pre-emptive buffering to overcome the coverage holes.
In all the cases, the streaming client initiates the session with a 1Mbps
media stream.

We use the following metrics to compare the above
schemes: Packet Loss Rate (PLR), average receiving rate,
average Peak Signal-to-Noise Ratio (PSNR of the Y-
component). Figure 6 compares the receiver rate using each

mechanism (in black) to the 3G link throughput (in green).
In Figure 6(a) the streaming client does not adapt to the
changing channel capacity and produces a low quality of
experience (PSNR

avg

= 17) while (b) produces the best
possible using rate-switching (PSNR

avg

= 41.1). Using
recommendations from the NCMS, the streaming client
performs comparable to the omniscient scenario in terms of
PSNR; rate-switching (PSNR

avg

= 39.3) or pre-buffering
(PSNR

avg

= 39.1). However, the average media rates are
widely different (See Table I).

Table I: Comparison of performance metrics of adaptation mechanism over
10 independent runs

Method RR

avg

PSNR

avg

�

PSNR

PLR
No adaptation 645.4 19.48 2.55 17.02

Omniscient 700.2 41.1 0.49 0.0
Rate-switching 579.4 39.3 1.89 0.0
Late scheduling 713.1 39.1 1.57 0.0

VI. REAL-WORLD TRACES

We collect throughput traces of the Helsinki metropolitan
area by traveling on the regional transport service (Buses,
Trams) and by walking around the Helsinki city-center and
the university area (Otaniemi). The media server streams
a constant bit rate video of 2Mbps to a Nokia N900. The
N900 receives the stream over its 3G interface and uses
the internal GPS module for location tracking. The 3G
provider advertises connectivity up to 2Mbps. The streaming
clients send coverage map updates to the NCMS so that the
NCMS is able to monitor the available throughput in these
regions. In total, the NCMS collected over 400,000 updates
over a month of operation (about 40-50 bus-trips). For 6
geographical areas, the NCMS received more than 10,000
updates (Otaniemi, Helsinki City Center) while on average
each geographical had about 10 to 100 updates. Figure 7
shows the average throughput per location in an around
the university (Otaniemi). This map can be interpreted as
a vector the streaming client would receive on performing a
lookahead.

Figure 7: Throughput traces around Otaniemi (University Area).

VII. PERFORMANCE EVALUATION

After the NCMS has gathered the throughput traces, we
conduct simulated experiments of users traveling at different
vehicular speeds through the Helsinki region. The simulation
setup is exactly the same as the one used for the micro-
benchmarks, but instead, we use the actual traces from the
individual trips around the city to simulate the scenarios.
Each simulation is run 10 times and measures the Average
PSNR, loss rate and sending rate. The channel characteristics
are roughly the same for each run, but the coverage map
information reported by the NCMS may change because the
streaming clients report their coverage along the route during
each run.

We evaluate the performance of the information received
in the lookahead requests from the NCMS. We consider
two scenarios, traces with low variability in vehicular speed
(driving down the highway, walking) and traces with high
variability in vehicular speed (driving in stop-go-stop-type
of traffic). The real-world traces (Figure 8) reveal that
throughput can vary dramatically over several days.

 0

 500

 1000

 1500

 2000

 2500

 3000

60.187902,24.828374

60.186355,24.826504

60.174801,24.800772

60.175371,24.70583

60.175371,24.70583

60.163694,24.79771

60.161182,24.760993

60.161997,24.748103

60.165134,24.732384

60.162382,24.801506

60.185611,24.825956

60.162604,24.774443

60.159163,24.785112

60.1827,24.795065

60.186201,24.823197

th
ro

ug
hp

ut
 (k

bp
s)

locations (lat,lon)

Intermediate Quartile Range

Figure 8: Example of the maximum, minimum and average of the Inter
Quartile Range (IQR = ±1�) throughput along a route over several days.
The average number of data points per location is 475. Note: the traces are
not gathered all the time at the locations but only when passing through
the area. The throughput may bear correlation to time of day but we have
insufficient information to make the correlation.

A. Low Variability in Connectivity
In this case, the user’s vehicular speed is kept constant and

the simulator moves the user smoothly through the locations
on the route. Consequently, the streaming client is more
confident about the information it receives in the lookahead
and does not need to query the NCMS often for updates.

In this scenario, there are intermittent gaps in cover-
age but overall the throughput at most locations is above
the required media rate. The omniscient scenario provides
the best rate-adaptation but since it is unable pre-buffer,
the PSNR (PSNR

avg

= 43) is lower than that of late
scheduling (PSNR

avg

= 48). Alternatively, performing no
adaptation causes frequent re-buffering and packet discards
which is reflected in the low PSNR (PSNR

avg

= 27). Rate-
switching using small lookahead requests has comparable
PSNR (PSNR

avg

= 42.75) to Omniscient (PSNR
avg

=

43.12) and has no packet losses. Rate-switching avoids all
drops by switching to values lower than the average or min-
imum reported throughput. Late scheduling outperforms the
rest of the schemes in terms of PSNR (PSNR

avg

= 48.43)
because it predictively pre-buffers content and does not have
to rate-switch. This is largely due to the low density of
coverage holes and good connectivity between them.

Table II: Bus ride with good 3G coverage

Method SR

avg

PSNR

avg

�

PSNR

PLR
No adaptation 865 27.48 4.55 6.6

Omniscient 929 43.12 1.9 0.33
Rate-switching 881 42.75 2.21 0.0
Late scheduling 1014 48.43 0.18 0.0

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250Th
ro

ug
hp

ut
 (k

bp
s)

a) No Adaptation

3G Link
Receiver Rate

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250Th
ro

ug
hp

ut
 (k

bp
s)

time (s)

c) Rate Switching

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250

b) Omniscient

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250
time (s)

d) Late Scheduling

Figure 9: Variation of receiver rate to 3G link capacity based on a) no
adaptation b) Omniscient c) Rate-switching d) Late scheduling when there
are few coverage holes and good connectivity between them.

Table II compares the results for the different schemes and
Figure 9 shows the sending/receiver rate variation to channel
throughput for one out of 10 runs. Late scheduling shows
an increase in sending rate before arriving at a coverage
hole, which shows that the streaming client pre-buffers
content that it would normally lose during the coverage
hole. Whenever the sending rate is much lower or far above
the throughput (figures 9(c) and (d)) this is because the
throughput reported by NCMS has not converged to the
current values.

B. High Variability in Connectivity
In this case, the user’s vehicular speed is variable between

locations and it frequently stops and moves. Consequently,
the streaming client is not very confident about the informa-
tion it receives in the lookahead and sometimes re-queries
the NCMS for updates. Due to the variability in the user’s
movements, both omniscient and late scheduling mecha-
nisms are unable to avoid losses (0.21% and 0.19%, respec-
tively). Rate-switching is again able to avoid all losses by
choosing rate-switching to values lower than the minimum
throughput in the coverage hole and therefore has lower
average PSNR (PSNR

avg

= 43). While late scheduling

(PSNR
avg

= 45) and Omniscient (PSNR
avg

= 46) have
higher PSNR, both the mechanisms can use NACKs to fetch
missing packets (the NACKs are sent just once and only
for I-frames) and the NACKs also contribute to the higher
sending rate. The variability in user’s motion also causes the
streaming client to use an additional 9kbps for re-querying
the NCMS and sending the updated ECVs to the streaming
server.

Table III: Bus ride with poor or variable 3G coverage

Method SR

avg

PSNR

avg

�

PSNR

PLR
No adaptation 948.6 23.12 5.2 5.3

Omniscient 970.9 45.23 0.58 0.21
Rate-switching 901.8 43.46 0.46 0.0
Late scheduling 1047.1 46.37 1.707 0.19

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250Th
ro

ug
hp

ut
 (k

bp
s)

a) No Adaptation

3G Link
Receiver Rate

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250Th
ro

ug
hp

ut
 (k

bp
s)

time (s)

c) Rate Switching

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250

b) Omniscient

 0
 500

 1000
 1500
 2000

 0 50 100 150 200 250
time (s)

d) Late Scheduling

Figure 10: Variation of receiver rate to 3G link capacity based on a) no
adaptation b) Omniscient c) Rate-switching d) Late scheduling when there
is variability in user’s motion mainly due to stop-go-stop type of vehicular
traffic.

Table III compares the results for the different schemes
and Figure 10 shows the sending/receiver rate variation to
channel throughput for one out of 10 runs. In Figure 10, late
scheduling shows variability in sending rate this is because
the throughput reported by NCMS to the streaming client
are updated by re-queries or the NCMS has values different
from the current throughput.

To summarize, the streaming client may prefer pre-
buffering using late scheduling when the lookahead requests
reveal rather stable network conditions for throughputs
greater than the requested media bit rate. Consequently, for
locations with frequent throughput variations the streaming
client may prefer to perform rate-switching. If the NCMS
reported values in the lookahead are different from the
current conditions observed by the streaming client then the
streaming client may choose to ignore the information in the
lookahead requests and perform reactive rate-control.

C. Comparison between Early and Late Scheduling
NCMS

ratio

is the ratio of the NCMS recommended
throughput and the current throughput. A value greater that

one indicates that the NCMS recommended value is higher
than the actual and the streaming client may experience
losses due to over-utilization. While a value lower than
one indicates that the NCMS will under-utilize the link and
would require more time to pre-buffer content than actually
is needed. The best performance would only be possible if
the actual end-to-end throughput is reported by the streaming
clients and that the available throughput does not change in
the interim.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

NCMSratio

Omniscient
Late Scheduling

Early Scheduling

(a) after t=1h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

NCMSratio

(b) after t=8h

Figure 11: The distribution of locations based on NCMS

ratio

=
NCMS recommended throughput

ActualThroughput

after a) one hour, b) after 8 hours. The
plot shows that the NCMS reports lower throughput when the streaming
client’s use Early Scheduling compared to Late Scheduling.

Figure 11 shows that the NCMS under-utilizes the avail-
able throughput in many area when using early scheduling
because the streaming clients schedule the increase in send-
ing rate much too early (upon detection) and are therefore
not exploring the available throughput. Alternatively, in late
scheduling the streaming client requests the increase in
sending rate closer to the coverage hole, thus exploring
the available throughput at the edges of the coverage hole.
Therefore, in the case of late scheduling, the NCMS nearly
always has a good NCMS

ratio

near the coverage hole
and poor NCMS

ratio

at other places where the available
throughput is higher than the maximum bit rate (1Mbps).

To summarize, the throughput information received from
an NCMS lookahead should be used as a recommendation
(indicator) and not as a directive by the streaming client.
If possible, the streaming client should report not only
the received media rate (by the multimedia flow) but also
monitor system level throughput.

VIII. CONCLUSIONS

We presented a mechanism enabling a media streaming
client to proactively react to upcoming capacity limitations
in wireless access networks. The streaming client uses hints
provided by a network coverage map service (which could
apply crowd sourcing to gather the respective coverage and
capacity information). These hints are sent to the streaming
server so that the client can pre-buffer and, if needed, switch
to a different media rate.

We find that the information provided by the NCMS is
suitable for both predictive rate-switching and pre-buffering
and helped in avoiding almost all packet losses in the

scenarios we investigated, noticeably increasing video qual-
ity. While these results are promising, they are only a
first step: flash crowd effects resulting from many clients
approaching and/or creating a coverage hole at the same
time require further study. Similarly, the performance impact
for a more encompassing geographical coverage and more
diverse network connectivity deserves further investigation.

Beyond this, two areas appear particularly interesting:
combining these prediction mechanisms with RTP-based
congestion control and applying this very mechanism to
HTTP-based (instead of RTP) streaming. Finally, a scalable
and trustworthy crowd-sourcing architecture, e.g., imple-
mented as an operator service, is an obvious prerequisite
for real-world deployments.

REFERENCES

[1] Google Code, “YouTube Data API.” [Online]. Available:
http://code.google.com/apis/youtube/2.0/reference.html

[2] Allot MobileTrends, “Global Mobile Broadband Traffic Re-
port,” Allot Communications, Tech Report, July 2011.

[3] M. Zink, O. Künzel, J. Schmitt, and R. Steinmetz, “Subjective
Impression of Variations in Layer Encoded Videos,” in Proc.
of IWQoS, 2003.

[4] 3GPP TS 23.107, “Quality of Service (QoS) concept and
architecture.”

[5] I. Curcio, V. Vadakital, and M. Hannuksela, “Geo-predictive
Real-time Media Delivery in Mobile Environment,” in Proc.
of Mobile video delivery, oct 2010.

[6] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen,
“Bitrate and video quality planning for mobile streaming
scenarios using a GPS-based bandwidth lookup service,” in
Proc. of ICME, july 2011.

[7] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end
rate-based congestion control mechanism for realtime streams
in the Internet,” in Proc. of INFOCOM, mar 1999.

[8] S. Cen, C. Pu, and J. Walpole, “Flow and congestion con-
trol for internet media streaming applications,” in Proc. of
Multimedia Computing and Networking, 1998.

[9] H. Kanakia, P. Mishra, and A. Reibman, “An adaptive con-
gestion control scheme for real-time packet video transport,”
ACM SIGCOMM CCR, vol. 23, no. 4, 1993.

[10] A. Diaz, P. Merino, L. Panizo, and A. Recio, “Evaluating
video streaming over GPRS/UMTS networks: A practical
case,” in Proc. of IEEE VTC, 2007.

[11] 3GPP TS 26.234, “Transparent end-to-end Packet-switched
Streaming Service (PSS); Protocols and codecs,” 2007.

[12] 3GPP TS 26.346, “Multimedia Broadcast/Multicast Service
(MBMS); Protocols and codecs,” 2007.

[13] T. Schierl, Y. Sanchez de la Fuente, R. Globisch, C. Hellge,
and T. Wiegand, “Priority-based Media Delivery using SVC
with RTP and HTTP streaming,” in Proc. of Multimedia Tools
and Applications, 2010.

[14] C. Krasic, J. Walpole, and W. Feng, “Quality-adaptive Media
Streaming by Priority Drop,” in Proc. of ACM NOSSDAV,
2003.

[15] C. D. S. Akhshabi, A. Begen, “An Experimental Evaluation
of Rate-Adaptation Algorithms in Adaptive Streaming over
HTTP,” in Proc. of ACM MMSys, Jan 2011.

[16] L. D. Cicco and S. Mascolo, “An Experimental Investigation
of the Akamai Adaptive Video Streaming,” HCI in Work and
Learning, Jan 2010.

[17] R. Kuschnig, I. Kofler, and H. Hellwagner, “An Evaluation
of TCP-based Rate-Control Algorithms for Adaptive Internet
Streaming of H.264/SVC,” in Proc. of ACM MMSys, 2010.

[18] E. Brosh, S. A. Baset, D. Rubenstein, and H. Schulzrinne,
“The Delay-Friendliness of TCP,” in Proc. of ACM SIGMET-
RICS, 2008.

[19] D. Kutscher and J. Ott, “Service Maps for Heterogeneous
Network Environments,” in Proc. of MDM., May 2006.

[20] P. Aravinda, K. Acharya, A. Sharma, E. Belding,
K. Almeroth, and K. Papagiannaki, “Congestion-Aware
Rate Adaptation in Wireless Networks: A Measurement-
Driven Approach,” in Proc. of IEEE SECON, 2008.

[21] P. Shankar, T. Nadeem, J. Rosca, and L. Iftode, “CARS:
Context-Aware Rate Selection for Vehicular Networks,” in
Proc. of IEEE ICNP, 2008.

[22] J. Yao, S. Kanhere, and M. Hassan, “An empirical study of
bandwidth predictability in mobile computing,” in Proc. of
ACM WiNTECH, 2008.

[23] ——, “Geo-intelligent Traffic Scheduling For Multi-Homed
On-Board Networks,” in Proc. of ACM MobiArch, 2009.

[24] ——, “Quality improvement of mobile video using geo-
intelligent rate adaptation,” in Proc. of IEEE WCNC, 2010.

[25] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, and A. Y. Wu, “A local search approximation
algorithm for k-means clustering,” in Proc. of SCG, 2002.

[26] G. S. Iwerks, H. Samet, and K. Smith, “Continuous K-
nearest neighbor queries for continuously moving points with
updates,” in Proc. of VLDB, 2003.

[27] Schulzrinne, H., Rao, A., Lanphier, R., Westerlund, M.,
and M. Stiemerling, “RTSP 2.0,” 2011, (Work in progress).
[Online]. Available: draft-ietf-mmusic-rfc2326bis

[28] Google Code, “Google Maps API.” [Online].
Available: http://code.google.com/apis/maps/documentation/
webservices/index.html

[29] 3GPP R1-081955, “LTE Link Level Throughput Data for SA4
Evaluation Framework.” May 2008.

[30] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM
SIGCOMM CCR, Jan 2010.

