
Opportunistic Content Sharing Applications

Jörg Ott
Department of Communications and Networking

Aalto University, Helsinki, Finland
Jorg.Ott@aalto.fi

Jussi Kangasharju
Helsinki Institute for Information Technology

University of Helsinki, Helsinki, Finland
Jussi.Kangasharju@helsinki.fi

ABSTRACT
Opportunistic communication between mobile nodes allows for asyn-
chronous content sharing within groups. Limiting the spread of
information to a geographic area creates an infrastructure-less vari-
ant of digital graffiti, a social network with coupling in space and
limited decoupling in time. Due to its nature, this kind of a commu-
nication network lends itself readily to name-oriented abstractions.
In this paper, we extend our previous work on floating content, ex-
tract its fundamental characteristics, and define a system model and
a simple API with a set of basic programming elements to sup-
port applications in leveraging opportunistic content sharing as a
generic communication facility. We validate our API through ap-
plication examples and show how their communication needs are
mapped to our model. In addition, we also implement our API in
our simulator and demonstrate the feasibility of these kinds of ap-
plications.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network Architec-
ture and Design; D.1 [Programming Techniques]: Miscellaneous

General Terms
Design, Experimentation

Keywords
opportunistic content sharing, application programming interface

1. INTRODUCTION
Location- and context-aware services are popular for mobile users,

in order to find their way around (using, e.g., Google maps and
location-related searches) or to share their whereabouts and re-
lated information with peers in their online social networks (e.g.,
FourSquare, Dopplr). An issue gaining attention is the loss of lo-
cation privacy when location-related inquiries are sent to a server-
based system, be it for tiles of a map, for restaurant recommenda-
tions, or gas station locations, especially when those use the same

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NoM’12, June 11, 2012, Hilton Head Island, SC, USA.
Copyright 2012 ACM 978-1-4503-1291-2/12/06 ...$10.00.

service infrastructure. While some systems have been suggested
for using diverse pseudonyms when talking to server infrastructure
(e.g., [13]) and for using local caching (e.g., [1]), other system de-
signs avoid using a server infrastructure altogether.

One class of such applications provides location-tagged content
sharing as the server-less counterpart of digital graffiti [3]: Exam-
ples include our work on Floating Content [11,15,21], but also hov-
ering information [25], Locus [24], and variants targeted at VANETs
[17, 19]. While varying in operational details and protocols, these
systems share the property that applications post content items des-
tined for nodes in a certain anchor zone that is specified by an ori-
gin location and, e.g., a radius. An item may be associated with a
time-to-live and other parameters. Inside the anchor zone mobile
nodes encountering each other will replicate a content item to keep
it available, outside it may/will be deleted.

At their core, these systems can roughly be considered data-
oriented or information-centric since some nodes publish items us-
ing some identifier to which other nodes can subscribe, thus of-
fering pub/sub-style semantics [12, 14, 16]. While content items
can be tagged with explicit metadata (e.g., names [12, 16] or chan-
nels [18]) they always carry their respective anchor zone as implicit
subscription filters.

In terms of naming, these systems have essentially three kinds
of names for content items. First, at the lowest level, the item is
identified by its origin location and radius, i.e., the name is a phys-
ical location in the real world. Second, our API (see Section 4)
encapsulates these low-level names and presents a label to the ap-
plication. As detailed in Section 4, we create the labels via hashing
over the key properties of the content item. Third, and additional,
application-specific naming is provided by the metadata associated
with a content item. The metadata defines a tuple space which pro-
vides applications a means of filtering content. In this paper, we
do not consider the details of such a tuple space, but concentrate
instead on the first two kinds of names and their mapping.

Applications use the (name-oriented) labels provided by our API,
which “maps” them to the lowest level names, or physical loca-
tions. Conceptually, this is similar to a locator/identifier split, but
with the catch that such a mapping is feasible only when the node
is physically present in the anchor zone of the content item the ap-
plication wants to access. This presents challenges for designing
applications.

A system exclusively based on opportunistic encounters between
mobile nodes yields a “best effort” content sharing paradigm: an
application posting an item won’t know if or how long the item
will stay around and how many other nodes will be reached. This
poses interesting challenges for designing applications on top of
such a system: while plain content sharing may simply remain best
effort—originators (e.g., of ads) might not care too much about

who did or did not get a copy and receivers won’t know what
they missed—other forms of communication are more difficult to
satisfy—such as leaving a note for a person or a group or sending a
request and expecting a response.

In this paper, we focus on the general properties of this commu-
nication paradigm and its use. We do this by defining a common
system model and an API suitable for different kinds of applica-
tions and provide some basics for programming applications. We
aim at keeping the API as simple as possible, yet general enough to
support a variety of applications using this paradigm. We validate
our model through different example applications that use oppor-
tunistic content sharing and show how their widely differing com-
munication requirements can be implemented with our API.

2. BACKGROUND
Communication paradigms can be classified how they are (de)-

coupled in space and time. TCP connections over the Internet are
coupled in time, but decoupled in space, whereas classical MANETs
are coupled in both. Publish/subscribe systems are decoupled in
both. The above opportunistic content sharing systems are coupled
in space, but decoupled in time, making them a separate class of
applications from the existing ones. They bear similarities to pub-
lish/subscribe applications, but because of the coupling in space
(i.e., physical location), are restricted in terms of what network re-
sources they can use. An Internet-based publish/subscribe system
can exploit spatial decoupling and store content anywhere in the
network (subject to being able to retrieve it later).

A fair amount of research effort has recently gone into APIs
for related types of communications. An API for general pub-
lish/subscribe systems has been suggested by Demmer et al. [5].
They mostly discuss well-connected networks and, while mention-
ing delay-tolerant and opportunistic communication, they do not
put much emphasis on the specifics. Systems and API specifically
designed for opportunistic content distribution include, e.g., [8,18],
but they don’t provide much insight on generic applications. A
number of authors address the problem of finding content in op-
portunistic networks [9,10,23], without much consideration of API
issues.

Since surrounding mobile users may be viewed as a cloud of re-
sources to be exploited for computation and retrieval, mechanisms
and languages have been developed for spreading computations
across mobile nodes [20]—somewhat similar to data center oper-
ation with a Map/Reduce approach where a master assigns tasks
to workers—and for declarative programming in such an environ-
ment [26]. The performance when spreading computation requests
in an opportunistic fashion to mobile nodes, including estimating
the number of workers to be assigned to a given task to achieve a
certain success probability, has been studied in [20, 22].

3. SYSTEM MODEL
We choose a simple system model for Floating Content that is

general enough to approximate also the other above opportunistic
content sharing approaches. Node S creates a data item B at a
given location L = (x, y[, z]). B is associated with two radii, r
and a, that define the distance from L in whichB will be replicated
and valid (i.e., will be kept), respectively; and with a lifetime T
after which B will be deleted. Items will also be deleted outside
this anchor zone. The associated metadata, β, supports interest-
based filtering and application-specific features, e.g., security (see
Sec. 8).

The system offers one communication primitive: posting content
into an area from which it may be picked up by other nodes. The

Interaction with
neighbor nodes

Protocol loop Local mgmt
loop

Application
interaction

post()
delete()
select()
get()
watch()
notify()

Application

Figure 1: System model

operation is inherently best-effort and asynchronous: if all nodes
carrying a copy of an item leave the anchor zone, the data item dis-
appears; and there is no upper bound (besides T) within which a
data item might reach other nodes. This single primitive implies
that items can be created and replicated to other nodes, but not be
deleted explicitly on other nodes [15]. Since the system is poten-
tially disconnected, no such guarantees could be given anyway.

Figure 1 shows the conceptual view of a node. A data store con-
tains items from local applications and other nodes. Three largely
independent control loops govern the operation of the data store:

1) The protocol loop is responsible for sharing data items with
neighboring nodes. The functionality includes peer discovery; ne-
gotiating which items to exchange, i.e., determining in which an-
chor zones both nodes are located; prioritizing the items; and ex-
changing them reliably. 2) The local management loop takes care
of deleting items when the node leaves the respective anchor zone
or when the item’s lifetime expires. It also decides which items to
discard if the memory gets full. 3) The application interaction loop
offers the interface for local applications to the data store and is the
focus of this paper.

A newly created item is inserted into the node’s local data store,
from which the (independent) protocol loop will pick up the item
for replication to other nodes. The application posting the item will
not know when this replication occurs and how many other nodes
will be reached. Items obtained from other nodes show up in the
local data store and can be picked up by local applications while
inside the anchor zone.

In effect, nodes only communicate via the anchor zone of a given
data item, i.e., using physical locations as names. This is concep-
tually similar to a best-effort blackboard to which posts get written
(maybe wiped off), where nodes can view and interact with a lim-
ited portion of the board at a time.

This notion also somewhat resembles (scoped) multicasting in
the Internet, e.g., in the days of the early Mbone, when distributed
state sharing for a class of cooperative conferencing applications—
such as wb [6] and nte [7]—based on application layer framing
(ALF) [4] were developed. While geographic and multicast scop-
ing can be considered conceptually similar, the major differences
are the decoupling in time and the sole reliance on mobile nodes
for communication, which make data item delivery more random
(in terms of loss, ordering, delay) and retransmissions inherently
difficult and thus consistent views harder to achieve.

4. A SIMPLE API
Using the above system model, we present an API plus a set of

parameters to be associated with data items in support of diverse

l ← post ((B, β), (L, r, a, T), 〈l〉)
∅ ← delete (l)

〈(l, β)〉 ← select (β, τ)
((B, β), (L, r, a, T), 〈l〉) ← get (l)

∅ ← watch (β, δ,Δ)
∅ ← notify (〈(l, β)〉)

Table 1: Conceptual system API

types of applications. Firstly, table 1 summarizes the signature of
the basic methods offered by a geo-based data sharing system. In
our API, every data item is associated with a label l valid across
nodes for space-efficient reference; we specify l to be an item iden-
tifier created by a (keyed) hash function over (B, β), (L, r, a, T).
A label is a space-efficient, statistically unique reference to a data
item and serves two purposes: in the exchange protocol, determin-
ing which items to replicate between nodes and, in the application
protocol, referring to one or more “previous” items Bi in an item
B if B is a semantically dependent on Bi. This allows creating
threads of data items.Together, the API, local data store and the
system loops map the labels to the physical names. All this hap-
pens without the application programmer having to worry about it.

post() creates a data item (B, β) for a locationL, radii (r, a), and
expiry time T and inserts it to the local data store. Upon creation,
the system validates that the node is in the anchor zone of the data
item. In addition, a vector of item labels 〈l〉 may be provided to in-
dicate the labels of input items that B depends upon, e.g., because
B carries a reaction to one or more other items. This feature allows
explicitly linking an arbitrary series of items; the interpretation of
linkage is up to the application protocol. Note that such arbitrary
series of items form trees, rooted at the “original” item. It is possi-
ble to merge different branches of the tree, by creating a new item
that depends on the leaves to be merged.

Applications may use the metadata to implement application-
specific functionality, e.g. security features such as signatures (see
section 8).

delete() is a purely local operation and removes a data item from
the local content store, provided that the same application on this
node has created the item before. The deleted data item will not be
replicated upon future encounters with other nodes; but invoking
this method has no bearing on the data stores on other nodes.

select() is a data base-style operation used by an application to
synchronously retrieve a set of labels and associated metadata that
match the metadata pattern specified in the request. The select call
also takes a time parameter τ that specifies how recent the retrieved
objects should have been received by the local data store; i.e., in the
time window [−τ, 0] before the call was issued, so that applications
can iteratively retrieve new items.

get() retrieves the content of a data item and the associated meta-
data for a given label from the data store. Since nodes move, a label
may become invalid between a previous function call, e.g., select(),
and calling get().

watch() registers application interest in incoming data items match-
ing a metadata spec β with the local data store. δ indicates the min-
imal interval between notification calls in response to watch(). Δ
signifies the lifetime of the registration; the latter can also be used
to prolong (Δ > 0) or terminate (Δ = 0) an existing registration.

notify() is a callback-style operation allowing the local data store
to inform an application about the reception of new data items
matching a previously issued watch() by providing a vector of (la-
bel,metadata) pairs. The intervals between notify() calls adhere to
δ, and the system will aggregate notifications. If a data item is

deleted from the local data store before the corresponding notifica-
tion is issued, it won’t be included in the notification vector.

5. ITEM-BASED PROGRAMMING
Many practical issues for opportunistic content sharing-based

communication can/must be resolved at the application level. Be-
low we sketch some properties that stem from our choice of the
system model and API and that are automatically available to any
applications using the API. Applications can use the item metadata
β to implement additional features. However, all applications must
accept the probabilistic best-effort nature of the system’s operation.
Nodes in a anchor zone may meet in arbitrary order and they may
not meet at all. Obviously, creation times of items paired with a se-
quence of encounters determine how data items spread, i.e., which
node receives which items and in which order.

5.1 Ordering and Threads
Data items may be created in response to other data items, yield-

ing threads. In an asynchronous multi-sender multicast system, this
raises the issue of ordering at a receiver node. Because we cannot
guarantee that all nodes will ultimately receive all the items, a no-
tion of a total order does not exist. Therefore, we borrow from
the concept of causal ordering [2] that suggests including a “vec-
tor time” (made up from individual nodes’ sequence numbers) to
indicate the causal relation between items in a distributed manner.
Since an anchor zone is an open system—nodes may arrive and
depart at any time—and because unrelated data items may exist in
an area, we cannot have a finite vector of sequence numbers. In-
stead, the predecessorsBi of an itemBn, i.e., those items that were
received and have influenced Bn, are explicitly identified in an un-
ordered set: {Bi} → Bn.

If all Bi share a single common root, e.g., B0, the creation of
dependent items yields a directed graph rooted at B0: nodes hav-
ing seen different sets of predecessors when creating new items,Bn

andB′
n, generate branches in a dependency tree, whereas items cre-

ated with predecessors from several branches yield merging points.
The set {Bi} is supplied by the application and may thus be

condensed as appropriate (see section 5.3).

5.2 Anchor Zone and Expiry
When a newly created item is linked to a previous, we require

the anchor zones of the two items to be identical. If this was not the
case, responses could “wander off” from the original request loca-
tion and spread arbitrarily as nodes move over time, which would
make it impossible for a node to collect them. Our choice guar-
antees that a set of nodes connected (e.g., in a mesh) in an anchor
zone will be able to interact in a consistent manner.

The choice of the expiry time is up to the application. For a new
item (B′, β′), the expiry time T ′ may be T ′ = T so that all state
related to the original item disappears at the same time. Choosing
T ′ > T , e.g., with the same relative time-to-live, would allow ap-
plications to construct a sliding window over a set of items.1 In
the latter case, however, predecessor vectors may include item la-
bels no longer available. It is up to the application to ensure that
the necessary state gets carried over, e.g., by generating items that
subsume earlier ones, and removing the stale labels from the vector.

5.3 Subsuming Items
To support applications in which a node is responsible for a piece

of state that gets updated as per items from other nodes, we allow

1There is nothing preventing the choice of T ′ < T , although we
do not have a good example where this would be desirable.

a node to issue an item subsuming earlier ones, provided that the
same node issued the subsumed items (see also section 8). Sub-
suming means that the newly created item replaces the content of
the subsumed ones; this could be done by overriding the previous
content or aggregating data of the input items. This will not affect
item replication but is solely meant as an indication to the applica-
tion and therefore be handled entirely at the application layer. An
application should delete subsumed items from the local data store
and only replicate the subsuming item.

As a special case, we allow any node to subsume any item, pro-
vided that it includes the entire predecessor items (including meta-
data) in a newly created item, i.e., adding redundancy to the system.
One special case of subsuming is open to any node for any item.
An application may include the entire predecessor items (including
metadata) in a newly created one and thereby add redundancy to
the system.

The degree of redundancy (how many and which previous items)
can be tailored to meet the reliability demands of the application,
for example, using the expiry time window mechanism (section
5.2).

5.4 Consistency Considerations
With the above tools, we can turn our attention to consistency for

applications. Due to the disconnected and asynchronous operation,
no general guarantees can be made for availability or delivery of
any individual item B.

Consider a single anchor zone of an item B0. As nodes may en-
ter and leave an area arbitrarily2, we first consider a stable group
of n nodes that stay inside an anchor zone sufficiently long. In a
non-congested system with sufficient node density, each of the n
nodes should be able to obtain a copy of B0 after a random delay.
As corollary, if any two nodes X and Y remain inside the anchor
zone, they should eventually obtain all items in this area. By defini-
tion (section 5.2), this includes B0 and all its descendants Bi, i.e.,
direct or indirect responses to B0 or subsuming items—as long as
each item’s residual lifetime upon creation is sufficiently large to
reach X and Y .3 We can also look at the system from an item’s
point of view. As nodes may post responses to items or subsume
old items, we obtain chains and trees of items dependent on each
other. To obtain a complete view of the state and history of the
item, we need to obtain all these dependent items as well. Our as-
sumption about the content area of linked items being equal to the
original items (see Section 5.2), implies that the whole history of
the item is available in the same anchor zone (but with potentially
different expiry times T). Again, assuming a sufficient node den-
sity and sufficiently long expiry times, all copies of the item in the
anchor zone will have received all the new, dependent items, thus
leading to eventual consistency. It is up to the application proto-
col to prevent or deal with state inconsistencies arising from nodes
receiving items in different orders and responding to different sub-
sets.

Because of the probabilistic nature of the system, attaining even-
tual consistency is the best case scenario. In reality, items may dis-
appear because of too low node densities, too short expiry times,
etc.; nodes may arrive late and see only part of the state or leave
early. This implies that, in general, applications cannot assume any
kind of consistency and need to deal with nodes seeing (different
snapshots of) different branches of the directed item dependency
graph. Application protocols may support the best-effort operation

2Entering and leaving an anchor zone is somewhat similar to join-
ing and leaving a multicast group, with a multicast service featuring
losses, highly variable delays, and asymmetric paths.
3This suggests using the sliding window approach above.

by a number of mechanisms, such as 1) including by earlier items
redundantly in new ones, 2) idempotent posts of full state (rather
than deltas), 3) defining commutative and independent operations,
as we will show next by example.

6. APPLICATIONS
As noted above, we consider the existing work [3, 17, 19, 21, 24,

25], as instances of the same opportunistic content sharing para-
digm. Each particular system has its own protocol and local man-
agement loops (Fig. 1), but their respective properties allow sup-
porting our API. These systems suggest diverse application scenar-
ios, mostly based on one-to-many content sharing without much
elaboration on more sophisticated interactions. We now present
different application examples, partly inspired by the above, and
show how their communication needs can be satisfied by our sim-
ple API.

Graffiti: The simplest application is essentially digital graffiti,
where some users post items and others read them. Each item is
self-contained, with no dependencies between items. The applica-
tion calls post to create new items and reading happens with select
and get. Note that the operation is fully pull-based. Since all items
are stand-alone, there is no need for ordering, subsuming, and con-
sistency functions.

Collaborative sensing is a variant of graffiti: Consider a fully
distributed sensing application, e.g., mapping of WLAN access
points. Devices post information about discovered APs, e.g., MAC
address, SSID, signal strength, etc., and implicitly their own loca-
tion, using an anchor zone radius well exceeding the AP coverage.
select and get allow nearby nodes to learn about WLANs (possibly
filtered by SSID as metadata); by combining origin information
from different items, they can infer an AP’s approximate location.
An application uses watch to ask for a notify when it gets close to
certain APs. While items from different nodes are independent and
no ordering or dependencies exist, a device may subsume its pre-
viously posted items with new readings, and different devices may
repeat other items for robustness.

Regional chat: In a chat application users post messages and
set appropriate filters with watch, e.g., matching their pseudonyms.
When new messages appear, notify will be triggered and the appli-
cation can offer the user to post replies. Since all communications
are targeted to specific users, select and get are not needed because
notify will ensure that the application gets a chance to react to new
messages. Chat would use pointers to predecessors to show de-
pendencies and likely include a limited number of previous items
redundantly in new posts. Different threads would start from dif-
ferent roots and form different dependency graphs.

Local auction: On a flea market users post about the (real-
world) items they sell. Buyers use select to find items of interest
and get for more information about an item. They can also watch
for new items coming on sale as a passive search and then react to a
notify. In either case, a user can post a reply, e.g., a bid for an item.
The seller uses watch and notify to collect the bids and can post
messages about ending the auction. Item dependencies only exist
between item offers, bids, and auction closures, which can be mod-
eled using predecessors; item offers may be updated (subsuming
earlier ones) indicating the currently highest bid received. Buyers
closer to a seller may have better chances to win—as bids from fur-
ther away get delayed or lost—but this just reflects real life. Here, a
central node (seller) collects state information (bids) from the net-
work: we have multiple sources and one sink as in some classes of
wireless sensor networks, which thus could also be supported by
our model.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60

C
D

F
: f

ra
ct

io
n

of
 n

od
es

Time (min)

Time to acquisition
Time in anchor zone

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

: f
ra

ct
io

n
of

 n
od

es

Fraction of content items

Coverage (all)
Coverage (60s)

Coverage (180s)
Coverage (300s)

Figure 2: Time to item acquisition (left), fraction of nodes en-
tering an anchor zone getting an item (right)

7. A NOTE ON PERFORMANCE
In the past [11,15,21], we have conducted extensive performance

evaluations of floating content-like systems, and do not re-iterate
the findings here. One unexplored aspect so far has been inves-
tigating how well nodes can interact within an anchor zone using
floating content (our prior work focused on how well items would
float). This includes the acquisition time of new items upon enter-
ing an anchor zone and how many nodes passing through the area
obtain an item.

For an initial evaluation, we choose the medium size scenario,
M50(500m, 500m) described in [21]: 252 nodes with 50 m ra-
dio range moving as pedestrian (160), cars (80), and trams (12)
through a 4.5×3.4 km area of downtown Helsinki between prede-
fined points of interests. Nodes use 2 Mbit/s net data rate, have
50 MB buffer, and post items of 100 KB–1 MB size once per hour
with an anchor zone size of r = a = 500m, T = 1h, prioritize
items inversely to their total resource consumption (size ×T × r)
for replication (as defined by the STF scheme in [21]), and delete
items outside the anchor zone only when they encounter another
node. More than 90% of the items float on average for their life-
time in this scenario. About 60% of all nodes entering an anchor
zone receive a copy of an item before they leave again. The 40% of
missed items are largely due to nodes within an anchor zone shortly
after item creation so that there was no time for the item to reach
those.

Figure 2 (left) shows, the CDF of the time to acquire a item
and the time spent in the anchor zone. Most nodes receive the
item within a few minutes of entering the anchor zone, while the
sojourn time is usually much longer. This provides room for (re-
peated) item-based interactions. Figure 2 (right), depicts the CCDF
of the nodes getting an item, depending on sojourn time. The X axis
shows the fraction of data items acquired out of the total number of
items a node could get. For longer sojourn times, on the order of
a few minutes, most nodes receive most items from the area, but
nodes staying only a short time may miss a large number of items.
This suggests that environments in which nodes don’t just move in
and out quickly (such as flea markets, squares, bars, etc.) should
offer good coverage to most nodes.

Contrasting these results to our application scenarios in Sec-
tion 6, acquisition times on the order of a few minutes seem ap-
propriate for them. Naturally, for chat-like applications, this may
be on the long side, but in general, all the example applications
seem feasible with these kinds of acquisition times. Obviously, this
may affect future applications, and anyone designing applications
for floating content, should design them around these constraints.

For application-specific evaluation, we use as example the local
auction: We use the same setup as above and place five sellers as
stationary nodes in different popular spots in Helsinki. They gen-
erate 1–4 offers per hour with Tttl = 1h with anchor zone sizes of

Node Bids rcvd value bids rcvd value
1 5.3 .73 .96 39 .70 .92
2 10.1 .61 .88 142 .53 .88
3 3.1 .56 .89 67 .53 .83
4 11.8 .76 .94 149 .58 .90
5 0.5 .14 .50 6 .10 .55

Table 2: Sample auction application performance

200m and 500m. An offer is 100 KB–1 MB in size (e.g., includes
an image). Pedestrians may bid on the offer (cars and trams will as-
sist in floating but won’t place bids): they bid with a 5% probabil-
ity when receiving the offer or another bid. Each bidder increases
the bid she receives by one unit and includes the complete original
message, growing its size by 1 KB. We run simulations with ten
different random seeds for 12 hours and calculate the mean of how
many bids are placed and the fraction received (rcvd) by the seller
and how close the value of the bid gets to the maximum offered
(value). Table 2 summarizes the results for 4 offers per hour; the
performance is similar with smaller loads, except that more bids are
generated for the 500m anchor zones, an indication of congestion.

We find that the floating concept approach works reasonably well
(unless the node picks a too little frequented position as node 5): the
majority of bids are received and they get close to the maximum bid
sent. Since this is not eBay but rather a way for a seller to reach
out to more potential buyers, probabilistic operation fulfills its task.
Also, a smaller anchor zone size appears preferable: bidders are
not so far away so that their bids are more likely to reach the seller;
since the sellers stationary, their messages will float even with such
a small anchor zone size.

8. SECURITY
We deliberately exclude security features because different types

of applications might have widely differing requirements, ranging
from no security features at all, to authenticated or encrypted items.
Therefore, we leave security up to the applications and outside our
API and basic system model. An application can use the metadata
β to include digital signatures or information (algorithm, key ref)
about how an item B is encrypted. Key management is also be-
yond the scope of the API. In a similar vein, we leave lower level
security to the protocol loop, putting minimal requirements on the
underlying “network”. If a protocol loop (or link layer) supports
security this can be leveraged, but sensitive applications would not
rely on hop-by-hop security in the first place.

What seems contradictory to the trends in infrastructure networks,
where security should be integral, appears quite suitable in our
case because the location dependency of posting and responding to
items has two nice properties: 1) The requirement to be inside an
anchor zone when posting an item, which is validated by all entities
asked to replicate the item, limits the region a node can do damage
to at any given time, especially when prioritizing items for repli-
cation inversely proportional to their total resource consumption,
i.e., anchor zone size, lifetime, and data volume, as e.g., suggested
in [21]. 2) Applications using the API may often post items whose
content has local relevance so that its validity could be verified by
a user receiving an item (“Is there really free beer?”). These may
suffice for many applications while the option remains to build ad-
ditional security on top.

As an example, consider the case of subsuming existing items as
per section 5.3. Implementing this in a secure manner requires an
application to sign all posted items with a private key, e.g., of a self-
signed certificate. The signature and certificate are included in the
item metadata β and if the originator of an item wants to subsume

it, this can easily be verified by any node by checking the signature
of the new item. Even if an attacker could intercept items and re-
place the signature and the key, it would need to catch all copies
of a replicated item and, for a label generated with a keyed hash,
the label of the item would no longer match. The originator could
even delegate the power to subsume to other devices, by including
a certificate in the metadata. While this is not a means for authenti-
cating the content, it allows nodes to verify that the subsuming was
done by an authorized node.

9. CONCLUSION
We introduced a system model and minimal API for applica-

tions to take advantage of opportunistic content sharing paradigms
as realized by Floating Content and showed how to build more so-
phisticated application logic on top. Our examples hint that such an
API is sufficient to meet the demands of quite diverse applications.
They serve as initial validation, but also give us confidence into its
ability to support more complex applications. Our evaluation re-
sults show the general feasibility of floating content applications
and demonstrate that our API is able to meet their demands.

Acknowledgments
This work was supported by the Academy of Finland in the RES-
MAN project (grant no. 134363), and by TEKES as part of the Fu-
ture Internet program of TIVIT (Finnish Strategic Centre for Sci-
ence, Technology and Innovation in the field of ICT).

10. REFERENCES
[1] S. Amini, J. Lindqvist, J. Hong, J. Lin, E. Toch, and

N. Sadeh. Caché: Caching Location-Enhanced Content to
Improve User Privacy. In Proc. ACM MobiSys, 2011.

[2] K. P. Birman and T. A. Joseph. Reliable communication in
the presence of failures. ACM Transactions on Computer
Systems, 5(1):47–76, February 1987.

[3] S. Carter, E. Churchill, L. Denoue, and J. Helfman. Digital
graffiti: public annotation of multimedia content. In
Conference on Human Factors in Computing Systems, pages
1207–1210, 2004.

[4] D. D. Clark and D. L. Tennenhouse. Architectural
Considerations for a new Generation of Protocols. In
Proceedings of ACM SIGCOMM, 1990.

[5] M. Demmer, K. Fall, T. Koponen, and S. Shenker. Towards a
Modern Communications API. In Proc. ACM HotNets, 2007.

[6] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang.
A reliable multicast framework for light-weight sessions and
application level framing. In Proc. ACM SIGCOMM, 1995.

[7] M. Handley and J. Crowcroft. Network Text Editor (NTE): A
scalable shared text editor for the Mbone. In Proc. ACM
SIGCOMM, 1997.

[8] O. R. Helgason, E. A. Yavuz, S. T. Kouyoumdjieva,
L. Pajevic, and G. Karlsson. A Mobile Peer-to-Peer System
for Opportunistic Content-Centric Networking. In Proc.
ACM MobiHeld, 2010.

[9] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap:
Social-based forwarding in delay tolerant networks. In Proc.
of ACM MobiHoc, 2008.

[10] P. Hui, J. Leguay, J. Crowcroft, J. Scott, T. Friedman, and
V. Conan. Osmosis in Pocket Switched Networks. In
ChinaCom, 2006.

[11] E. Hyytiä, J. Virtamo, P. Lassila, J. Kangasharju, and J. Ott.
When does content float? characterizing availability of

anchored information in opportunistic content sharing. In
IEEE Infocom, Shanghai, China, Apr. 2011.

[12] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,
N. H. Briggs, and R. L. Braynard. Networking Named
Content. In Proc. ACM CoNEXT, 2009.

[13] S. Jaiswal and A. Nandi. Trust No One: A Decentralized
Matching Service for Privacy in Location Based Services. In
Proc. ACM MobiHeld workshop, 2010.

[14] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and
P. Nikander. LIPSIN: Line Speed Publish/Subscribe
Inter-Networking. In Proc. ACM SIGCOMM, 2009.

[15] J. Kangasharju, J. Ott, and O. Karkulahti. Floating Content:
Information Availability in Urban Environments. In Proc. of
IEEE Percom 2010, Work in Progress session, March 2010.

[16] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.
Kim, S. Shenker, and I. Stoica. A data-oriented (and beyond)
network architecture. In Proc. ACM SIGCOMM, 2007.

[17] E. Koukoumidis, L.-S. Peh, and M. Martonosi. RegReS:
Adaptively Maintaining a Target Density of Regional
Services in Opportunistic Vehicular Networks. In Proc. IEEE
PerCom, 2011.

[18] V. Lenders, M. May, G. Karlsson, and C. Wacha. Wireless ad
hoc podcasting. ACM/SIGMOBILE Mobile Comp. and
Comm. Rev., 12(1), 2008.

[19] B. Liu, B. Khorashadi, D. Ghosal, C.-N. Chuah, and
M. Zhang. Assessing the VANET’s local information storage
capability under different traffic mobility. In Proc. IEEE
Infocom, 2010.

[20] D. E. Murray, E. Yoneki, J. Crowcroft, and S. Hand. The
Case for Crowd Computing. In Proc. of MobiHeld, 2010.

[21] J. Ott, E. Hyytiä, P. Lassila, T. Vaegs, and J. Kangasharju.
Floating Content: Information Sharing in Urban Areas. In
IEEE Percom, 2011.

[22] A. Passarella, M. Kumar, M. Conti, and E. Borgia.
Minimum-Delay Service Provisioning in Opportunistic
Networks. IEEE Transactions on Parallel and Distributed
Systems, August 2011.

[23] M. Pitkänen, T. Kärkkäinen, J. Greifenberg, and J. Ott.
Searching for Content in Mobile DTNs. In Proc. of IEEE
PerCom, 2009.

[24] N. Thompson, R. Crepaldi, and R. Kravets. Locus: A
location-based data overlay for disruption- tolerant networks.
In Proc. ACM CHANTS, 2010.

[25] A. Villalba Castro, G. Di Marzo Serugendo, and
D. Konstantas. Hovering information: Self- organizing
information that finds its own storage. Tech. Rep.
BBKCS707, Birkbeck College, 2007.

[26] E. Yoneki, I. Baltopoulos, and J. Crowcroft. D3N:
Programming Distributed Computation in Pocket Switched
Networks. In Proc. ACM MobiHeld, 2009.

