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Abstract—TCP and other Internet transport protocols rely on
series of hard-coded initial values for their connection state,
particularly for the congestion control parameters. For example,
recently the initial value of congestion window has been under
much debate, as there is a desire to make TCP more efficient
for common use cases, while not endangering its performance
on scenarios with limited network bandwidth. Our take on this
discussion is that there is no clear single set of initial values that
would work for all cases.

Earlier research has proposed sharing connection and con-
gestion control state among multiple connections over time, but
that approach is limited to sharing connections to a particular
host, which is not sufficient, because services are often distributed
across multiple hosts, and opening multiple connections to the
same host is a rather rare use case. We aim to solve this problem
by proposing the Pathlet Transport Architecture that models
the network paths as a series of pathlets, and uses those as
the basis of initializing and maintaining the various transport
parameters, particularly those related to congestion control. We
analyze our initial instantiation of the PTA architecture using
ns-3 simulations for TCP congestion control parameters, and
show how it improves the communication performance in various
different network scenarios, where single common set of magic
values would fail.

I. INTRODUCTION

Internet congestion control has remained an active research
topic since publication of the classic TCP Congestion Control
paper in 1982 [11]. There have been countless variations
of TCP’s congestion control algorithms, often optimized for
specific environment or specific class of applications (such
as [2], [13], [5], [19], to give a small sample), not to mention
the different ideas on more fundamental congestion control
protocols or architectures, such as XCP and RCP [12], [6].
Despite various research projects, the standard mechanisms
– as specified by the IETF and implemented by various
systems – have remained fairly stable, and many systems still
implement the classic NewReno-based algorithms.

After a decades-long stable state of affairs with TCP’s
congestion control, the IETF is currently working on modi-
fications to some of the basic constants used by TCP. Among
other changes, there is ongoing work to increase TCP’s initial
congestion control to 10 segments, commonly equivalent to
some 15 KB worth of data. This is a fairly substantial
change compared to the earlier situation where connections
commonly start with initial window of 3 segments1. The

1The actual window size depends on the MTU used for communication.

initial congestion window of 10 packets is considered to be
a significant performance improvement, because according
to recent measurement data [7], such window would allow
transfer of most of the current web objects within a single
round-trip time. However, concerns have been raised about
how such mechanism would affect users behind very poor and
highly shared connections that are common in, for example,
developing countries. Therefore, there has been active discus-
sion on finding a more dynamic approach to adapt the initial
congestion window, without considerable success so far.

The initial congestion window is not the only parameter
hard-wired in the current standards track specifications that
is under discussion. Also the retransmission timeout estimate
is bounded by a minimal value of 1000 milliseconds2, which
is considered very long for many current network environ-
ments, even though it might still be appropriate, e.g., for
high-delay wireless links. Also, initially setting the slow-start
threshold (ssthresh) to infinity sometimes results in overshoot
and several packet losses that could be avoided with a more
appropriate setting of ssthresh.

The problem in a world with an increasing variety of
network characteristics is that a single set of magic numbers,
as used in TCP specifications and implementations, does not
fit all possible environments. There will be increasing pressure
on tuning these parameters for particular environments, which
will likely be difficult even for advanced system maintainers,
and a good common set of well-behaving parameters may
sometimes be nearly impossible to find. A better approach
would, therefore, be to develop the transport architecture
towards avoiding any such hard-wired parameters, and instead
applying dynamic methods for finding good initial settings.

In this paper, we propose a framework for automatically
setting appropriate transport protocol and congestion con-
trol parameters already from the beginning of a connection,
without relying on magic constants. We focus on the initial
congestion window, slow-start threshold, and minimum RTO
estimate, which were perhaps most often subject to past
debate. By doing this, we can avoid the normal slow-start
probing of the appropriate sending rate, and better utilize the
available capacity from the outset. As noted above, this is also
quite timely a topic for TCP standardization in the IETF.

We leverage the earlier idea of sharing state between
connections, simultaneously and over time, as proposed by
the Endpoint Congestion Manager [4], and in an IETF docu-

2Some implementations use smaller constants in practice.978-1-4673-2447-2/12/$31.00 c© 2012 IEEE



ment [17]. The idea of these proposals is, that a sender can
initialize its congestion control state based on the recent his-
tory collected from other connections to the same destination.

The problem with the past proposals of connection state
sharing is that it is difficult to pick the correct groups of hosts
that have common path characteristics. Storing separate state
for each host is not feasible even in modern hosts, given the
large numbers of Internet hosts today. Often, several hosts
share the same bottleneck, meaning that it would be useful
and more effective to share a common state between all of
them. A rough approach could be to share state between
hosts that share a common IP address prefix. However, it is
difficult to choose an ideal prefix length, because different
networks come with different sizes, and it is hard to know
where the communication bottlenecks are. Moreover, IP layer
mobility may entirely invalidate such assumptions. And in
case of a wireless cellular terminal the network bottleneck is
likely on the first-hop wireless link, in which case it would be
sensible to share a common congestion control state between
all connections on the wireless terminal. The problem is that
in a generic OS instance (such as in a laptop connected to a
mobile terminal) the operating environment is not known, and
the OS instance cannot determine in advance where the likely
bottleneck is and what the correct granularity of state sharing
would be. Neither can the user be expected to configure
the congestion control behavior on the host every time the
operation environment changes.

Instead of performing per-destination or per-prefix conges-
tion control, we introduce the concept of congestion control
pathlets, and maintain some congestion control state for dif-
ferent portions of a network path. The state management still
happens in the sending host, and we keep the end-to-end loop
for congestion avoidance and related algorithms. But along
with the normal protocol operation we gather more specific
information about the congestion level at different segments
of the communication path, and store this information for use
by future connections. During the initial connection estab-
lishment, specific pathlet routers record pathlet information
about the connection path together with some hints about the
congestion state at each pathlet. This information is encoded
in normal TCP/IP packets, and a host uses the collected
information to determine an appropriate congestion window.
Instead of maintaining congestion state on per destination, the
hosts keep congestion state per pathlet.

We have borrowed the concept of pathlet from a recent
paper describing a new routing protocol [9]. Although we use
the common concepts with the routing paper, we don’t strictly
follow the terminology and techniques of the earlier paper, but
instead focus on transport and congestion control with rather
different mechanisms. Reader should therefore consider these
two solutions independently from one another.

The pathlet approach to congestion control is particularly
effective in settings where a host needs to simultaneously
communicate with a number of destinations behind path with
heterogeneous characteristics. In such setup any traditional
method of picking the congestion window is not effective,
as we will show later, while the pathlet approach quickly
converges to the correct sending rate. We start by discussing
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Fig. 1. An example instance of the network model.

our pathlet-based congestion control model in more detail,
describe the protocol mechanism and its functionality as part
of the normal TCP/IP operation, and finally report on our
simulation-based evaluation.

II. PATHLET TRANSPORT ARCHITECTURE

We will explain the Pathlet Transport Architecture (PTA)
using an example illustrated in Figure 1. We do not deviate
from the conventional end-to-end principles, and mostly rely
on normal network elements: the control remains at the
sending host based on end-to-end feedback from the receiver
and the network path. As a new component, the architecture
contains Pathlet Routers that can be used alongside the normal
standard IP routers to record more specific information about
the connection path, that can be used for more informed
decisions at the sender.

A. Network operation

In the Pathlet Transport Architecture, the network path be-
tween sender and receiver is split into pathlets, as separated by
Pathlet Routers. Pathlet routers are identified by (statistically)
unique IDs. The identifier format is free: it could be based
on IP addresses or random numbers. A pathlet is uniquely
identified by the ID pair of the pathlet routers at its edges.

The Pathlet Transport Architecture can be incrementally
deployed. In an initial deployment, there may be no pathlet
routers on the connection path, in which case the path consists
of just one pathlet. This is a valid setup, although the perfor-
mance can be expected to be similar to a standard control
block sharing mechanism that maintains a separate state to
each host, as described by the Congestion Manager [4] or
TCP Control Block Interdependence RFC [17]. In some cases
even a single pathlet router aside conventional IP routers can
significantly improve the performance, if it is located near
bottleneck, for example near wireless link. Ultimately, one
envisioned deployment could be to have the network edge
routers operate as pathlet routers, while internal routers could
be standard IP routers.

When a new flow is established (e.g., using a TCP SYN
handshake), each pathlet router adds its identifier to the initial
packet that passes them. When the packet reaches the receiver,
it contains the sequence of pathlet routers that describes the
network path taken to the receiver, which the receiver then
echoes back to the sender. If the receiver does not support the
Pathlet Transport Architecture, the sender falls back to normal
end-host based connection state sharing. In the case of TCP/IP
protocols the pathlet information can be recorded, for example,
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as IPv6 hop-by-hop extension header, or inside a TCP option
that is processed by the pathlet routers (the latter obviously
limits the number of pathlet routers).

The rest of the transport connection operation happens nor-
mally, except when there is congestion. Our model works best
if routers support Explicit Congestion Notification (ECN) [15],
although a variant of pathlet-based congestion control can also
be implemented without ECN, if pathlet router is capable
of tracking packet losses on a flow. When a pathlet router
encounters a “Congestion Experienced” bit in an incoming IP
header, it adds its identification to the packet, if no earlier
pathlet router had done so. This information is echoed back
to the sender, that can now detect not only that there has
been congestion along the path, but also the pathlet on which
congestion was first detected. Thereby, the sender can identify
the bottleneck more accurately and use this information for
the benefit of upcoming network flows that share the same
pathlet.

B. End-host architecture

Figure 2 illustrates how a typical end host architecture is af-
fected by the Pathlet Transport Architecture. The organization
of different components is similar to an implementation with a
host-based destination cache, although the details are different
in the pathlet model. The diagram shows two alternative
designs: (A) presents an incremental approach, where a pathlet
table is added to a normal TCP/IP stack; (B) presents a more
forward looking architecture similar to congestion manager,
where congestion control operations are done by a common
module that the transport protocol specific modules use in
choosing the appropriate transport rate. A transport imple-
mentation continues to have per-socket control block instances
for each active connection, that are used for active protocol
operation and congestion management. The lifespan of the
control block is usually equal to the lifespan of the application
socket, and in many cases these communication sessions are
so short that the normal congestion control operation does not
have time to properly probe the network capacity.

In contrast to often short lived sockets, the pathlet table
collects information of the different pathlets for longer term
purposes. During connection establishment, a new socket first
resolves the pathlet(s) used, and then uses the corresponding
information from the pathlet table to initialize its protocol
parameters appropriately. In this way, no magic numbers for
parameters such as initial congestion window size or retrans-
mission timeout are needed. The diagram also shows that input
from multiple pathlets may be used when determining the

socket state, because typically an end-to-end path used for
connection consists of multiple pathlets.

After setting the initial parameters, the socket moves to
normal operation. During the normal operation, however, the
transport implementation collects data from the pathlets, and
updates the appropriate pathlet entries in the pathlet table, to
be used by future connections that share the pathlets.

The pathlet table contains at least the following parameters
per pathlet:

• Safe congestion window (SAFE CWND): Congestion
window that is determined to be safe to be used as an ini-
tial congestion window for the current pathlet. This can be
based on recent observations of congestion signals from
the pathlet, and we describe one algorithm for doing this
shortly. This parameter should be picked conservatively
to avoid excess traffic bursts to the network.

• Safe slow-start threshold (SAFE SSTHRESH): Slow-
start threshold (ssthresh) that is appropriate for pathlet.
Choosing an appropriate ssthresh helps avoiding slow-
start overshoot that may result in several lost packets at
the end of the initial slow start phase. This is particu-
larly important with bigger initial congestion windows.
This parameter is also based on the observations on
congestion signals, but rather than being conservative
like SAFE CWND, SAFE SSTHRESH should be set to
be large enough, because too small ssthresh limits the
connection startup performance.

• Shortest and average round-trip time (MIN RTT,
AVG RTT): The shortest round-trip time measured for
connections with the particular pathlet involved. The
initial and minimal RTO can be set based on these values,
to improve the efficiency of timer-based recoveries.

• Maximum transmit unit (MAX MTU): The largest
MTU that has been seen on the pathlet. Remembering
this information can speed up the MTU discovery for
new connections.

In the remainder of the paper we mostly focus on
SAFE CWND, because it has been a timely discussion topic in
the research and standardization community, and appropriate
choice of initial congestion window can be expected to result
in most significant performance gains.

C. Some examples

We now briefly walk through the basic operation of the
pathlet-based congestion control model, based on the setup
illustrated in Figure 1. We pick a couple of communication
scenarios from this setup under closer investigation, as illus-
trated in Figures 3 and 4. For the sake of the example, we’ll
assume that the sending hosts have gathered data from earlier
connections over the network.

With the first scenario, we point out that the pathlet routing
architecture can be useful even in limited incremental deploy-
ments, with majority of the network equipment consisting of
standard routers without PTA support. In Figure 3, a wireless
provider has placed a pathlet router (B) in front of a slow
wireless 2G link (as still common in many rural areas), but
all other routers are standard network routers. The bandwidths
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for such links are generally less than 100 kbps, and a small
congestion window would be sufficient to fill up the link
capacity. When the TCP SYN packet passes it, pathlet router
B adds its identification to the pathlet header before passing it
to the receiver. The receiver then echoes this information back
to the sender. In practice the pathlet router labels are at least
32-bit statistically unique numbers.

Upon receiving the SYN-ACK segment the TCP sender
reviews the state it has about pathlets EB and BJ. The state
contains “safe congestion window” (SAFE CWND), deter-
mined statistically from past connections over these pathlets
and “minimum round-trip time” (MIN RTT), among other
possible parameters. The pathlet table reveals that pathlet BJ
has the smallest value for SAFE CWND and the largest value
for MIN RTT. Therefore, it uses the information from pathlet
BJ to set the initial congestion window and retransmission
timeout estimate. For a 2G link the congestion window is
likely small, while the RTO estimate is long enough to
avoid spurious timeouts. The congestion window estimate for
pathlet BJ remains small, because pathlet router limits the
transmission rate by marking its identifier to the Congested
Pathlet field whenever the rate of incoming packets exceeds
its capacity to process then. Note that an initial window of
10 segments would overshoot the cellular link capacity quite
severely. If server E, on the other hand, would send data to
receiver H behind a faster DSL link (see Fig. 1), it would
notice a different pathlet router, and apply different congestion
control state for the TCP connection.

Sometimes congestion occurs in the middle of network.
Such situation can be detected when multiple pathlet routers
are on the path. In the scenario shown in Figure 4 the sender
first learns that the connection consists of pathlets GD, DA,
and AH. If the network is under congestion on pathlet DA, the
routers will add congestion notifications on IP headers, and the
next pathlet router will mark the pathlet as congested pathlet.
In this situation, the sender will apply the reduced congestion
window to all subsequent connections traversing pathlet DA,
unless the connection traverses a pathlet with even smaller
capacity (e.g., the 2G wireless link in the previous example).

III. PROTOCOL OPERATION

The Pathlet Transport Architecture operation consists of two
distinct phases: the pathlet discovery to identify which pathlets
are traversed by a transport connection being opened; and data
collection, which happens during the normal communication

and is used to adjust the pathlet-specific data. For the data col-
lection phase, we focus on the congestion control parameters
(congestion window and slow-start threshold), even though the
Pathlet Transport Architecture could be used similarly to adjust
different RTT-based timers such as retransmission timeout, or
remembering the maximum transmission unit on the path.

A. Pathlet discovery

The PTA uses a new “Pathlet header” for collecting infor-
mation about the network path during the initial discovery
phase, and also later during the connection. For the rest of this
paper, we assume that pathlet header is a new kind of IPv6
extension header3. In principle the same information could
also be sent as a IPv4 header option, but those are known
to involve serious deployment problems [14]. We believe that
the new IPv6 equipment handles unknown extension headers
properly, and will avoid the problems the legacy equipment has
sometimes had with unknown IPv4 options. Another possible
method could be to use TCP options, but that would only help
TCP, and the 40-byte TCP option space is under contention
by quite a few proposed TCP enhancements.

The Pathlet header is illustrated in Figure 5. The header
can be divided into a common section, a pathlet discovery
section, and a pathlet data section. The common section is a
standard IPv6 extension header including the “Next Header”
(NH) and Length fields. In addition, the header contains the
number of slots reserved for pathlet identifiers during the
pathlet discovery phase. If pathlet discovery is not ongoing,
the value of “Slots” is zero, and the pathlet discovery section is
omitted. “Rsvd” stands for 8-bits reserved for future extensions
(and to align the pathlet identifiers on 32-bit boundaries).
Each of the pathlet ID fields contains a 32-bit pathlet router
identity, or zero, if the particular slot is empty. The sender is
responsible for allocating the space for pathlet header4. It sets
“Slots” to a large enough value such that majority of paths
can be expected to be covered (see discussion of expected
path lengths in Sec. V-B), and initializes the pathlet IDs with
zeros. The “Congested Pathlet” field indicates the first pathlet
router that detected congestion. The pathlet data section can
be used for collecting also other pathlet data, and we leave
the other potential uses for future work.

There are two versions of the Pathlet header that are
identically formatted: the main Pathlet header is sent by the
transport sender towards the receiver. When the receiver gets
a Pathlet header, it copies the content of the Pathlet header
into the first packet that goes back to the sender, as “Pathlet
Echo” header with different header type. Intermediate pathlet
routers do not process the “Pathlet Echo” header. In the case
of bi-directional communication, a single packet can therefore
have both the “Pathlet” header and the “Pathlet Echo” header.

As a packet with pathlet header passes a pathlet router, and
has “Slots” value larger than zero, the pathlet router adds its
identifier to the first free slot in the pathlet discovery section.
If all slots are full before the packet reaches the receiver, the

3Yes, we believe that IPv6 will see eventual deployment, finally!
4Expanding headers in the middle of packet may be difficult in on-path

processing.
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remaining pathlet routers simply pass the packet forward. In
such case the remaining network path is treated as a black box,
like in normal end-to-end transport session. While this may be
a source of inaccuracy, it does not prevent the pathlet-based
algorithms from working. Depending on the density of pathlet
routers, the value of N might place a limit on the efficiency
of this method. We envisage, in a future full deployment,
to have pathlet routers at the edge routers between AS’es,
and are not very concerned about this limit. The sender can
also dynamically choose the number of slots based on the
available space in packet, and based on past information about
the expected maximum number of pathlet routers.

We also considered an alternative method for the pathlet
discovery section, that would only contain one pathlet router
identifier, and a hop count field, that is incremented by the
sender for each subsequent packet until all pathlet routers have
been discovered, similarly to the operation of the traceroute
tool. This would save header space, and would not have upper
limit to the number of pathlet routers on a path, but would
require sending multiple packets for pathlet discovery (and a
stable route during data collection). Given that one of our key
motivations is to find appropriate initial values for congestion
control parameters, this seems an unacceptable constraint.

Pathlet discovery is done in the beginning of a transport
connection, but it can (and should) also be initiated during
the connection either periodically, or based on some hint or
trigger, to detect path changes. For example, if a mobile host
knows that a hand-off has occurred, it must initiate pathlet
discovery. When the other end notices from the Pathlet header
that pathlet discovery has been initiated, it should take it as
a strong hint to initiate the pathlet (re)discovery on its own
for the opposite direction, because path changes usually affect
both communication directions. Because the pathlet discovery
header may take a significant amount of space, it can be done
as a separate probe packet without transport payload, similar
to zero-window probes in TCP.

B. Data collection

After it has been confirmed that the two ends of the
connection support the Pathlet Transport Architecture, for
example, through a successful pathlet discovery, the sender
includes the pathlet header with pathlet data section in every
outgoing packet. Because enhancing congestion control has
been the main initial motivation in PTA, in the following we
focus on collecting the congestion information along the path.

The intermediate routers between the pathlet routers can
signal congestion by setting the ECN bits in the packet header.

These routers can be normal IP routers without awareness
of pathlets. When a pathlet router detects congestion on an
incoming packet, it adds its identity to the Congested Pathlet
field in the pathlet header, if this field has not been used
by an earlier pathlet router. In other words, the Congested
Pathlet field indicates the pathlet router at the end of the first
pathlet where congestion was detected. If pathlet router itself
is congested, i.e., it cannot push packets on the outgoing link
at high enough rate, the congestion is considered to occur
on the uplink pathlet, and the pathlet router can signal it by
simply placing an ECN Congestion Established mark on the
packet. There is also a special case when congestion occurs
on the pathlet between the last pathlet router and the receiver.
In this case the receiver marks a special End-of-Path code to
the Congested Pathlet field, if it detects an ECN mark. As
the pathlet header reaches the receiver, and subsequently is
echoed back to the sender, the sender learns which pathlet
was congested. Based on this information, the sender can do
adjustments in its pathlet table, using the algorithms described
below, in addition to following the normal rate reduction
algorithms, such as reducing the TCP’s congestion window.

The above-described protocol is capable of indicating a sin-
gle congested pathlet per packet. This is sufficient, because in
an end-to-end congestion control mechanism the transmission
rate converges to the slowest bottleneck on the path. In other
words, the sender gets most up-to-date information from the
pathlet that is the bottleneck on its path. For pathlets that do
not generate congestion signals the sender may not have recent
capacity information. It is possible that bottleneck shifts over
time to another pathlet because of changing traffic patterns,
but the sender can notice this from changed Congested Pathlet
field.

As stated in Section II, it is possible that there are no
pathlet routers on a connection path. In this case the path
is modeled as a single pathlet by the sender. The protocol
mechanisms and related algorithms work correctly also in that
case, although without performance advantages compared to
traditional control block sharing methods.

C. The pathlet update algorithm

The Pathlet Transport Architecture decouples the proto-
col mechanism from the algorithms for using the pathlet
information applied at the sender. We envisage that various
advanced algorithms, or even aspects of machine learning,
could be developed as later research based on the pathlet
information. Below we outline a simple algorithm for setting
the SAFE CWND as an initial proposal. As will be shown in
Section IV, even this simple algorithm can achieve noticeable
performance improvements.

As illustrated in Figure 2, the sending operating system
maintains a Pathlet Table, that contains some state for each
pathlet known (recall that pathlets are identified by a pair of
pathlet router identifiers), as described in Section II.

The basic algorithm follows TCP’s congestion control prin-
ciples and operates as follows.

1) For every pathlet P that is known to the host S, the host
maintains a state for SAFE CWNDP estimation. The



sender also maintains a count of congestion indications
for each pathlet.

2) The source updates the SAFE CWNDP value once per
time period T. Setting of T should be proportional to
the typical RTT’s over the particular pathlet. For our
experimentations, we simply take the average RTT for
the flows using pathlet P, and use that for time period
T. The sender also remembers the congestion control
values for the past N periods. The values for different
periods are indicated by SAFE CWNDi

P , for period i.
The current period is period number 0. For each update
the host uses its information of per flow flight size that
is identified with FlightSizeF .

3) When a Pathlet Echo header contains a “Congested
Pathlet” indication, the sender increments the conges-
tion indication counter for the current period for that
particular pathlet.

4) At the end of each period the related values are then
updated as follows:

a) If there were no congestion signs during the
last N periods, the SAFE CWNDP is up-
dated. The updated value for SAFE CWNDP is
MAXF,i(FlightSizeF , SAFE CWNDi

P ) for all i ∈
[0..N ] and for all F ∈ [ flows using P in recent N
periods].

b) If a congestion sign is observed,
SAFE CWNDP is set to MIN(SAFE CWNDP ,
MINF ((FlightSizeF )/2)) for all F ∈ [recent
congested flows using P].

D. Selecting initial congestion window

Instead of using fixed setting for initial congestion window,
a new TCP connection can use the information in Pathlet table
for choosing an appropriate safe setting for the congestion
window. In this case the initial congestion window is chosen
according to the following steps.

1) Set ICW (initial congestion window) to MAX INT
(largest possible integer value).

2) For each pathlet P that this flow passes based
on the pathlet discovery algorithm, check the
SAFE CWNDP state in the pathlet table.

a) Set the ICW to MIN(ICW, SAFE CWNDP ).
3) If ICW is still equal to MAX INT at the end of this

process, it means that the pathlet table did not have data
about the needed pathlets. In this case the congestion
window could either be initialized to a fixed values in a
traditional way, or some external information could be
used to set it, as discussed in Section V.

The initial congestion window is shared between all flows
started over the bottleneck pathlet within a round-trip time.
The sender can distribute the initial window evenly, or prior-
itize between flows.

It may happen that a particular host does not send any
data over an earlier used pathlet for a longer time period.
The problem after such longer idle period is, whether the
pathlet capacity estimation is valid anymore. A simple con-
servative approach would be to follow a method similar to

TCP’s congestion window validation [10], where the window
estimate slowly decays over time. The downside is that doing
so may weaken the ability to start at a (still) ideal rate from
the beginning of the connection. Therefore, some advanced
heuristics might be in place to predict the likely capacity on
longer term intervals. We leave such heuristics for future work.

IV. EVALUATION

We have evaluated the Pathlet Transport Architecture and a
few different settings of fixed initial congestion window (ICW)
with a set of ns-3 simulations. As we have discussed earlier,
the protocol mechanism in PTA is independent from the ICW
setting or any other algorithm used in the sender. However,
for demonstrating the PTA performance and benefits of its
extensive information sharing we focus on initial window. The
other parameters benefit TCP in different ways; for example,
the MAX MTU parameter helps path MTU discovery, which
is not easily demonstrated by simulations.

The simulations use the topology shown in Figure 6, in
which the bottleneck links are the last links next to the
router that connects to the receiver groups. Each groups of
receiver are connected to the source through slightly different
bottleneck links, with bandwidths of 100 Mbps, 4 Mbps, and
43 Kbps. Each of these bottleneck links are shared among
the receivers from same group. The rest of the links have
bandwidth of 1 Gbps. The propagation delays and queue sizes
for these links are as shown in the diagram. The Maximum
Transmit Unit for each of the links is 1500 bytes. In each
simulation scenario, the flows are between a few sources and
many receivers that share the same bottleneck links.

We mainly compare initial windows of 3 and 10 packets to
the initial window determined by the PTA5. Initial window of
3 packets is the common size based on the IETF standard [3],
assuming packet size of 1500 bytes. Initial window of 10
packets, on the other hand, is the value proposed recently to be
used by TCP implementations [7] (and as already implemented
in Linux).

The boxes denote pathlet routers, i.e., the connections
between the senders and receivers consist of 4 pathlets. The
routers support ECN, and we apply Random Early Detection
mechanism (RED) [8] to place the ECN Congestion Estab-
lished bits in packets. The minimum marking threshold in RED
is 10 % of the outgoing link queue size, and the maximum
threshold is 30 % of the queue size.

We use two different traffic profiles in our simulations,
simply calling them traffic profile 1 and traffic profile 2. Traffic
profile 1 follows a Pareto model with a long tail for short
flows (Pareto mean 40 KB, shape 1.5), as motivated by other
studies on increasing initial congestion window size [1], [7].
The size distribution is shown in Fig. 7. Traffic profile 2 has
longer flows (Pareto mean 200 KB, shape 1.5), as shown
in Fig. 8. The latter profile emphasizes the effect of larger
initial congestion window, because for short flows the initial
congestion window does not always have significant effect.
Flows arrive in the network based on Poisson distribution. The

5The RFC specifies initial window in bytes, we speak of packets for
convenience.
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Fig. 6. The simulation topology

inter-arrival times between different flows are exponentially
distributed. We vary the mean interarrival parameter to test
different traffic intensities, and in most of the following graphs
the mean interarrival time is shown on the x-axis of the graphs.
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A. Flow completion time

Since the main motivation for increasing the initial conges-
tion window (ICW) has been to improve the flow completion
times (FCT), we start our evaluations by investigating the FCT.
For this scenario, we chose to test the case when the receivers
of traffic profile 1 are behind the 4 Mbps link and they
experience average RTT of 135 ms. In this case if the flow-
interarrival time is bigger than 300 ms we consider the network
to be not congested at all, while when the flow-interarrival time
is reduced to 20 ms some signs of congestion are observed at
the bottleneck link. As can be seen in Fig. 9, when there is not
much congestion in the network, initial window of 3 packets
does not utilize the network at full capacity and therefore uses
more round-trip times to complete the transfer, and therefore
in worse flow completion time performance. The benefit of
larger initial congestion window can be seen from the graph.

When the congestion in the network increases, larger initial
window is not necessarily better anymore. Figure 10 shows a
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Fig. 9. CDF of flow completion times (FCT) without experiencing congestion
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Fig. 10. CDF of flow completion times (FCT) with congested bottleneck

scenario with similar parameters as 9, but with increased load
on the bottleneck link. As a result of increased congestion and
retransmissions, there is no significant advantage in choosing
a higher initial congestion window – in fact it can be harmful.
However, because TCP can adapt to the correct rate with
its own congestion control mechanisms, for long flows the
relative difference is less noticeable, even if the higher initial
window causes a sudden peak of congestion in the beginning
of connection.

After showing the simple effect of increasing the initial
window sizes we now focus on the effect of using the Pathlet
Transport Architecture. One of the main motivations for the
PTA-based method is its adaptability to different network con-
ditions, because of its extensive information over different time
periods and different flows. Figures 9 and 10 show that PTA-
based method results in good flow completion times in both
uncongested and congested cases. When there is congestion,
PTA-based method behaves similarly to fixed initial congestion
window setting of 3 packets, while in non-congested cases
its performance is similar to the higher congestion window
values. The two graphs show that PTA-based method is indeed
able to adapt to different traffic loads dynamically, without a
fixed initial congestion window setting.

We next take a look at a scenario where a server has clients
from multiple different networks with wide range of different
bottlenecks, as illustrated in Fig. 6. We believe this can be a
realistic setting even today: while many customers are gaining
bandwidth in their office and home network connections, there
continues to be slow wireless cellular connections that are
used to access the same data. The 43 Kbps bottleneck in
our simulation setting is roughly similar to the 2G cellular
networks that are still in use in developing countries, or
in rural areas without 3G or 4G coverage. We execute the
simulations with various flow interarrival times (as shown in x-
axis) to investigate the effects of different levels of congestion.
The shorter the flow-interarrival gets, the more traffic and
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congestion is created on each link.
Figure 11 shows the flow completion times over the very

slow bottleneck, and Figure 12 shows the completion times
over a high-speed bottleneck. The main observation is that
PTA is able to find the right initial window size in both cases,
while no fixed initial window value works perfectly for both
cases. With a slow bottleneck like ours, even the standard
initial window size of three packets may result in congestion.
In these cases PTA-based method ended up starting from initial
window of 1 or 2, based on the earlier pathlet feedback.
For fast bottleneck initial window of 3 is clearly ineffective,
and PTA-based method running on the same server can adapt
to that adequately. Note that due to the high bandwidth in
Figure 12, most of the graph covers a non-congested region
and the effects of congestion start to be visible only in the
right side of the graph.

Figure 13 shows the 100 Mbps bottleneck link under a
more severe congestion. There is no benefit of larger initial
window, and in fact, the large initial window can be harmful
and increase the unpredictability, as can be seen on the right
end of the graph with highest traffic intensity. PTA adapts well
also in this scenario. The graph shows that ICW 10 performs
irregularly: on light load it slightly outperforms PTA, but is
harmful for performance when load increases. The slightly
improved performance of ICW 10 in this case comes at the
expense of heavy buffer load, as will be explained shortly in
Section IV-C, and may therefore be harmful for other users of
network.

As noted earlier, the fact that many of the flows are shorter
than the initial window, especially in the case of initial
window of 10 packets, mitigates the effects of the initial
window selection, because many of the flows do not have
that many packets to send. Figure 14 illustrates this effect on
the 100 Mbps bottleneck case. As the flow size increases, the
relative benefit becomes bigger.

B. Goodput

The flow completion time of a flow depends, of course,
on the size distribution of flows. Therefore we next illustrate
some results in terms of ICW size and goodput, i.e., file size
divided by the flow completion time. This better shows the
performance differences in bytes per second, which was not
so easily perceived from the graphs above.

As a starting point we will show the average ICW size
that PTA model achieves under various conditions. Figure 15
illustrates the average window size that our PTA-based method
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achieves with different traffic profiles. As can be seen in the
figure, the PTA-based method adjusts the ICW size based on
the congestion on the link. Traffic profile 2 with longer flows
naturally causes more load on the network than traffic profile
1 with shorter flows. The graph shows how this difference is
reflected in the initial window selection made by the PTA.

Figures 16 and 17 show that with low levels of congestion,
different initial window sizes results in different performance,
but as the congestion increases the performance differences
vanish. The graphs, again, show that initial window of 10
packets is better for high-speed links, while initial window
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of 3 packets works for low-speed links. PTA is better in both
cases, because on high-speed links it can pick even higher
values than 10, and in the low-speed case it stays at initial
window of 1 or 2 packets.

If the reader wonders about the difference of goodput to the
nominal link bandwidth, it is good to note that goodput covers
the whole duration of TCP connection, including initial SYN
handshake. Especially with short flows and longer relative
round-trip time, this results in lower calculated goodput,
because during initial handshake no data is transmitted.
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with 100 Mbps bottleneck
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with 43 Kbps bottleneck

The above results were based on traffic profile 1, that
contains many short files. Figures 18 and 19 show a similar
scenario, but with traffic profile 2 with higher mean file size.
We can see the significant difference on the goodput for the
100 Mbps bottleneck, and how PTA is significantly better. For
the 43 Kbps link the file size does not have noticeable effect.

C. Drop rate and queue length

In order to better understand the reasons in the above
presented performance differences, we now investigate the
packet loss rate (due to congestion), and the development of
the queue length in the bottleneck routers.

Figure 20 shows the devastating effect of overly large initial
congestion window in the slow wireless link, when it comes
to number packet losses. These results are well in line with
the earlier goodput graph, and show the correlation between
the drop rate and goodput. PTA does not reduce the average
queue length (Fig. 21), but fewer packet losses mean that the
queue length is less variable and queuing delays more constant
with PTA.

Figures 22 and 23 show the similar metrics for 100 Mbps
bottleneck link. Congestion effects are shown only at the right
side of the graphs. The initial window of 10 packets causes a
significant number of packet losses and highly variable queue
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Fig. 18. Average goodput with Multiple TCP flows of traffic profile 2 between
servers and clients with 100 Mbps bottleneck
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Fig. 19. Average goodput with Multiple TCP flows of traffic profile 2 between
servers and clients with 43 Kbps bottleneck
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Fig. 21. Average bottleneck queue size with 100 TCP flows between servers
and clients with 43 Kbps bottleneck

size when the bottleneck becomes congested. These results,
too, are in clear correlation with the earlier goodput plots.

D. Fairness towards other flows

Finally, we investigate how increasing the congestion win-
dow affects on other flows that are using the standard initial
congestion window of 3 packets. It can be expected that under
congestion the more aggressive flows consume bandwidth
from the conservative flows, and Figure 24 quantifies what
this means on a bottleneck link of 4 Mbps (as shown in the
topology in Fig. 6). The figure plots the average performance
of 200 KB flows that apply initial congestion window of 3
packets, while there are a second set of traffic profile 1 flows,
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with either initial window of 10 packets, or applying PTA.
The flow interarrival time of the second set of flows varies as
shown on x-axis.

Because of its adaptive nature, PTA is not as harmful to
the long conservative flows as fixed initial window setting of
10 packets. At the right end of the draft the performance of
the long flows unavoidably collapses because of the extreme
congestion, but in that case there is little that any choice of
initial congestion window can help.

V. DISCUSSION

A number of aspects of our architecture proposal warrant
further discussions.

A. Path changes and multipath operation

Internet paths may be asymmetric. PTA deals with this by
performing independent pathlet discovery in each direction.

Moreover, network paths may change. In some cases, such
as node mobility, one of the hosts may become aware of such
a change by local means and initiate a pathlet rediscovery.
As noted above, the receiver of a rediscovery should initiate
one in the opposite direction as well. If a discovery yielded
a full pathlet router section a host should consider initiating

a rediscovery with a larger number of pathlet ID slots in the
Pathlet header. Hosts should also watch out for other cues of
path changes to initiate a rediscovery: They should store the
complete pathlet router information from the last discovery
and take congestion indications from unknown pathlet routers
as an indication for a route change and they also should treat
drastic changes in path characteristics as such a hint.

The PTA may be used to support multipath TCP
(MPTCP) [18], which allows splitting a logical TCP con-
nection across multiple sub-connections utilizing potentially
disjoint paths. MPTCP uses a modified TCP SYN/ACK hand-
shake to open each sub-connection, which in turn could benefit
from pathlet (re)discovery to determine up front which paths
share joint bottlenecks. This could serve as input to the path
selection and packet scheduling in MPTCP.

Finally, in spite of all pathlet state sharing, the pathlet table
of a host will be empty at boot time (and so some magic
numbers would still be needed. However, pathlet data could
be provisioned (e.g., from an DSL access pathlet router via
DHCP) for local environments and might even be shared
among users for the wire area: for example, search engines
might gather pathlet data while crawling and supplement
responses with pathlet data potentially relevant to the querier.
Alternatively, mediated crowd-sourcing systems for sharing
could be envisioned, but these are mainly optimizations for
the first few connections.

B. Header overhead

Analysis over an AS-level topology shows that the mean
AS-level path length is 3.77 [9]. If we assume one pathlet
router per AS and maximum of 6 AS’es, this would result
PTA causing an additional header overhead of 32 bytes by
average for packets that include pathlet discovery section, that
is usually present only in the beginning of a connection, and
8 bytes for packets that only contain the pathlet data section.
Of course, it could be possible that some domains do not
deploy pathlet routers at all, or that other domains have more
than one pathlet router in its AS’es. We consider this header
overhead reasonable, for example comparing to the various
TCP extensions currently in use.

C. Interoperability with non-ECN routers

From the pathlet router’s perspective, ECN support at inter-
mediate routers allows an easy stateless operation. If ECN is
not supported, i.e., packets are dropped to signal congestion,
the pathlet router would need to track flow state in order to
detect three consecutive duplicate TCP ACKs corresponding a
data flow in order to declare congestion. While this is possible
in principle, it will significantly add to the complexity of a
pathlet router design. Therefore, in the case of a confirmed
lost packet without the relevant pathlet information, a sender
needs to assume that congestion may have occurred on any of
the used pathlets, and do its adjustments accordingly.

D. Scalability

When ECN is supported on the path, pathlet routers do not
need to store per-flow state. The main processing expense is



to add router’s own identification to the packets with pathlet
discovery section, i.e., usually TCP SYNs. Therefore we do
not believe that a DoS attempt injecting large amounts of
pathlet discovery packets would be a significant concern for
the system. A pathlet router could also skip processing of
pathlet discovery packets and just forward the packet, if it
becomes under extreme load.

VI. RELATED WORK

There has been some previous work to dynamically select
the initial congestion window, such as Quick-Start [16]. How-
ever, Quick-Start requires use of IP options, and participation
by every router along the path to be effective. This combi-
nation makes it very hard to deploy. On the other hand, the
Pathlet Transport Architecture works together with standard
(preferably ECN-capable) routers, and can be incrementally
deployed by eventually adding the pathlet routers on critical
places and doing the necessary end host modifications.

There are also some more fundamental proposals for a
new congestion control architecture, such as XCP [12] and
RCP [6]. However, like Quick-Start, these require changes
to protocol header structures, and consecutively, collaboration
from all intermediate routers, therefore being difficult to
deploy. The PTA-based congestion control mechanism keeps
history over time and over different flows that share the same
pathlet while each pathlet can contain many routers that do not
know anything about the PTA model. Thus, in the PTA-based
method the inital rate estimation can be done without direct
inquiry from every single router on the path.

The earlier aggregated congestion control approaches that
we know of view the network as a black box that is estimated
by a single set of congestion control parameters. The novelty in
PTA is that it explicitly aims to pinpoint the bottleneck portion
of the path and use that for the benefit of the congestion control
heuristics. We are not aware of congestion control schemes,
that would at the same time identify these bottlenecks, but still
adhere to the normal end-to-end principles. Although, with
protocols such as good old TCP this information might not
be that useful, but we believe that knowing the congestion
location can be helpful in the design of better rate control
mechanisms. Investing the design of new rate control mecha-
nisms remains as part of our future work.

VII. CONCLUSIONS

We have introduced the Pathlet Transport Architecture that
splits the connection path into segments, called pathlets, as
identified by a new kind of pathlet routers. Pathlets allow more
specific information about the connection path, for example
to implement more accurate congestion control based on
aggregated pathlet information. PTA still follows the stan-
dard congestion control principles, and the normal transport
protocol practices. The PTA architecture can be incrementally
deployed, and it works together with standard Internet routers.

Along with our PTA evaluation, we also showed that the
choice of a correct initial congestion window is not an easy
one. While large initial window improves performance in
many cases, there are always regions where more conservative

selections would have been more appropriate. PTA makes this
choice on behalf of the system designer, by leveraging the
collected network information.

The Pathlet Transport Architecture could be the first step
towards a world of more adaptive protocol stacks, that use
the information from previous interactions to make better
decisions for current connections. The pathlet information
could be exchanged among multiple hosts, or provisioned by
network operators, to assists hosts in making better informed
decisions about protocol parameters. We will investigate these
ideas as future work.
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