
Reducing Server and Network Load with Shared Buffering

Somaya Arianfar, Pasi Sarolahti, Jörg Ott
Aalto University, Department of Communications and Networking

{Somaya.Arianfar, Pasi.Sarolahti, Jorg.Ott}@aalto.fi

ABSTRACT
Today, content replication methods are common ways of reduc-
ing the network and servers load. Present content replication solu-
tions have different problems, including the need for pre-planning
and management, and they are ineffective in case of sudden traf-
fic spikes. In spite of these problems, content replication methods
are more popular today than ever, simply because of an increas-
ing need for load reduction. In this paper, we propose a shared
buffering model that, unlike current proxy-based content replica-
tion methods, is native to the network and can be used to alleviate
the stress of sudden traffic spikes on servers and the network. We
outline the characteristics of a new transport protocol that uses the
shared buffers to offload the server work to the network or reduce
the pressure on the overloaded links.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design

Keywords
Transport protocols, Resource management, Caching

1. INTRODUCTION
The Internet carries an ever-increasing amount and a wide diver-

sity of traffic types. To keep up with the growing traffic, servers
and network capacity need to be scaled up. The required capacity
is usually determined by the highest expected traffic surge. How-
ever, unpredictable traffic surges may lead to congestion situations
for the network or servers.

Unpredictability is not a rare phenomenon in the Internet. Traffic
surges have happened before and they are happening now, grow-
ing both in number and size [11]. Many such traffic surges occur
when a content item suddenly becomes popular and needs to be
transferred to many clients in the absence of multicast distribution.
Examples of such spikes could be the result of a tweet by someone
with many followers1 or mentions of web sites in the news.

1See: http://www.techradar.com/news/internet/how-stephen-fry-
takes-down-entire-websites-with-a-single-tweet-674170

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSWS’12, December 10, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1780-1/12/12 ...$15.00.

Fixed capacity servers and (access) networks are not able to han-
dle sudden spikes of traffic on their own. One of the main mech-
anisms used to help in such situations is content replication, e.g.,
in the form of CDNs. In the CDN model of content replication,
servers benefit from pre-planned content proxies through CDN agree-
ments [14]. The majority of content providers, however, do not
have CDN agreements. For their servers, sudden surges of traffic
are very rare, but when they happen they may cause long periods of
unavailability. Even servers with CDN agreements are not immune
against the effects of sudden surges of traffic. Periods of server
unavailability may happen as a result of the time it takes for an
overloaded server to switch to less loaded CDN nodes or as a result
of the time that CDN nodes require to adjust their resources [13].
Similar delayed reactions apply to other methods of load reduction
such as cloud infrastructure [13].

More traditional forms of content replication as in network proxy
caches [6] are not targeted at helping servers and thus cannot be
specifically activated and used in case of server overload (servers
won’t even know of their existence). Even in case of network load
reduction, such caching proxies easily loose their efficiency with
increasing request rate and breadth of (unpopular) traffic.

A more fundamental issue regarding many of the content replica-
tion methods is their proneness to violate the end-to-end principle.
Content replication below the application layer or in the form of
transparent proxy caching is not necessarily in line with the end-
to-end argument. Allowing a node in the middle of an end-to-end
connection to send a content item or its subparts to a client causes
issues regarding security, efficiency, and rate adaptation [9].

Despite the problems with different content replication methods,
their usage is pushed even further into the network. A number of
different proposals that treat content replication as a fundamental
part of the network is growing. For example, proposals such as
DECADE [2] or transparent caching for streaming files [9] try to
benefit from in-network storage in a more native way compared
to the overlay-based models discussed above. The new methods,
however, remain application specific and limited.

In this paper, we propose an approach to reduce the effect of sud-
den traffic surges on servers (and thus implicitly on the network),
especially for providers that cannot afford CDN agreements. We
introduce an end-to-end friendly stream buffering mechanism in
which content replication is a native part of the design rather than
an exception to it. Our design, as we will explain later, essentially
extends the server’s local memory to the network for the purpose
of content replication. We also outline a strawman for a new trans-
port protocol that would interact smoothly with the buffering nodes,
without being constrained to a specific (group of) application(s).
This transport protocol can use the stream buffers to offload the

workload of stressed servers to the network and thereby also assist
in reducing the network load.

2. CONTENT REPLICATION PRINCIPLES
Today’s load reduction mechanisms based on content replication

are external to the IP network. They are targeted at balancing pre-
dictable load, but are neither meant nor effective for alleviating the
effect of sudden traffic spikes. In this paper, we propose a load
reduction mechanism that utilizes active in-band content replica-
tion. Unlike other methods, we target a general-purpose network
service with a focus on reducing the effect of sudden traffic spikes
in short periods of time. Before turning to the details, we discuss
the guiding principles for our design to emphasize those functional
elements that make our proposal different from others.

Proper communication with the content replication nodes on
caching decisions. Proxy caches cannot directly help the servers
in case of overload. Additionally, normal ISP-level caches require
diverse intelligent algorithms to second-guess which data is worth-
while caching. Because there is no clear way of deciding which
traffic to the cache, such autonomous cache algorithms lose their
effectiveness with the increased traffic rate and diversity. In an ef-
fective content replication system, a server should to be able to
communicate with the content replication node at the time of over-
load and specify which content is worth caching so that the repli-
cation system can operate effectively with limited resources.

Minimal extra delay and management overhead. CDNs are
one of the effective ways of reducing the server load. However, the
need for pre-agreement with the CDNs can undermine their benefits
when it comes to unexpected traffic spikes. An effective content
replication and retrieval model needs to be light and fast.

Application independence. As the diversity of applications grows,
so does the diversity in what causes traffic surges and thus their un-
predictability. It would be cumbersome to design and deploy sep-
arate distribution techniques for different kinds of applications and
making all applications use a single protocol (such as HTTP) may
not be workable or efficient either. Therefore, a content replication
and retrieval mechanism needs to be application-independent.

No limitation due to the application level object size. As the
Internet is increasingly used to transfer audio and video, the size
of the files to be replicated also grows. Large files or long media
streams would take a long time to replicate, and live feeds may not
have a known size in advance, so that application-level caching of
entire objects is not applicable. Therefore, the traditional object-
based hit/miss in the cache is not meaningful to an important set
of applications. The content replication and retrieval mechanism
needs to act independent of the application-level object size.

No limitation because of segmentation. Since we no longer
rely on caching complete objects, file segmentation is used for ef-
fective replication [9]. The segmentation process can be quite inef-
ficient and slow depending on the type of the application and seg-
ment size. For example, bigger segments of objects are preferable
for limiting the number of requests that an application sends for an
object, but at the same time bigger segments reduce hit probabil-
ity in the cache and make cache management more difficult. An
effective content replication and retrieval method should thus act
independent from the segmentation process.

Reduce server load using content replication. There are many
techniques today that try to reduce the load and traffic redundancy
below the application layer, e.g., EndRE [1] and packet caching [3].
Such methods mainly focus on reducing the bandwidth usage, but
do not significantly reduce the server work load. End-host based
mechanisms such as EndRE [1] may even add to the server’s work-
load by requiring complex computations. A useful content replica-

tion and retrieval mechanism for the purpose of reducing the server
load should not add but reduce the server load.

No constraints from the underlying networks. Application-
independent content replication sometimes is interpreted as caching
independent object items as packets, e.g., in some caching propos-
als for information-centric networking [4]. While such mechanisms
may reduce the server load, they are bound to the packet as a data
unit and thus cannot easily address dynamic path characteristics
(e.g., MTU sizes, unaligned packet boundaries). A content replica-
tion and retrieval model needs to avoid this limitations.

Individual or subsets of the above principles have been addressed
in today’s Internet or at a conceptual level in different proposals for
information-centric networking, but we are not aware of a compre-
hensive approach taking all of them explicitly into account.

3. DESIGN COMPONENTS
In most operating systems, including Unix-like OSes and MS

Windows, a common I/O abstraction for files, inter-process com-
munication, and (to some extent) memory access is a byte stream,
reflected in basic system calls, pipes, etc. This abstraction is appli-
cation-independent (the applications add their own interpretation
on top) and useful for dealing with files/streams of (yet) unknown
sizes. A similar abstraction is also offered by the socket API for
TCP: it also uses byte streams to send and receive data to/from the
network. Packet boundaries are only introduced as a necessity of
packet networks, but the exchanged messages and content items
have their own demands on structure and size. Therefore, it is ben-
eficial to be able to buffer and replicate the content in the network
in a same way as they are accessed and sent by the server: as byte
streams without predefined bounds or ends.

We propose adding a (byte) “stream buffering” capability to the
network. Conceptually, this is a memory-based shared buffering
approach that extends the local system memory to the network and
reduces the redundant traffic. Using such shared buffers is invoked
by a server on demand. To be able to prevent over-utilization,
shared buffer usage by individual servers is controlled using an end-
to-end load control architecture based on explicit signaling between
the end hosts and the buffer nodes. We discuss the elements of our
design in the following.

3.1 Stream buffering
Stream buffering is a way for routers to buffer data such that mul-

tiple destinations or connections can re-use the same data. Stream
buffers are the core enablers in offloading transfers with multi-
ple (simultaneous or time-shifted) receivers. Stream buffering has
strong similarities to caching, with a couple of major differences:
stream buffers do not cache application-layer objects or network
packets, but just opaque (pieces of) data streams taken from the
transport payload as identified by an identifier carried in the trans-
port headers. Stream buffers are equipped only with very simple
(and fast) stateless operations for storing and fetching data based on
incoming packets. The additional intelligence comes from the in-
teractions with the sender and the load control architecture, as will
be explained later in this section. The concept of stream buffers is
more similar to shared memory in Unix system than the traditional
web caches of packet-level caches as discussed in some recent re-
search [3]. To support stream buffering, a new transport protocol is
needed, as we will discuss in more detail in the next section.

The basic enabler for shared stream buffering is proper byte stream
identification. With TCP, a byte stream is only meaningful in the
context of an end-to-end flow. End-to-end identification of byte
streams makes it difficult to share the (contents of a) byte streams
across different connections because a flow uses random initial

Stream 2, Page 1

Stream Label (L) Byte
offset (O)

Hash (L+OU)
 OL

Stream 2, Page 2

Stream 1, Page 4

Stream 1, Page 5

64 KB

Figure 1: Stream buffer structure

sequence numbers, several objects (including often variable size
headers) are sent within the same sequence number space, and each
object is implicitly identified within the message exchange.

Therefore, as a primary element of our design we use content-
based stream identifiers to identify different byte streams. Such a
stream identifier could simply be the same as an application level
file name or an specific encoding of that. For example, the iden-
tifier can be built by hashing the URI and content modification
timestamp in HTTP, based on the piece index used in BitTorrent,
or simply calculating a hash over the content.

Stream buffers assume that the transport headers come with a
pair of fields (L, O) identifying the data in the payload of packet.
L is the stream label derived from the byte stream identifier, and
O is the stream offset, similar to a TCP sequence number, except
that it is not random and relative to the beginning of each transmit-
ted content item. Unlike TCP, we assume that 64 bits can be used
for the offset, allowing maximum of 16 EB of data for one label.
Should this not suffice, larger streams can be split and use multiple
labels. These two fields are used for placing the data in the memory
of a stream buffering router or other network intermediary.

The memory of a stream buffer is organized as a hash table, that
stores memory pages of B bytes. The choice of B is an implemen-
tation detail for the buffer and could be optimized for the file size
distribution; as an example, we use 64 KB as the page size, because
it allows easy operations with 16 bits addressing the data within the
page. The page size does not need to be standardized, and different
buffer nodes may choose different page sizes independently.

As shown in Figure. 1, when a packet arrives at a stream buffer, it
chooses the memory page as Hash(L+OU) and offset within page
from OL, the lower part of offset based on the page length (e.g.,
the lowest 16 bits). With 64-bit offsets, OU therefore stands for the
upper 48 bits of the offset. Then the transport payload is copied
to this position in the memory. Note that, at this point, we do not
apply any special heuristics for deciding about cache insertion or
replacement policies: any new packet can be accepted and replace
an old one if they are both assigned to the same location in memory.

A set of new arriving bytes could replace buffered ones, if
Hash(Lnew + OU) points to a page that has already been used
by another stream. We note that each page contains the necessary
meta-data about the stream including the stream identifier to which
the page belongs and the valid byte range. Erasing a complete page
and updating its meta data occurs with the arrival of the first bytes
of a new stream to that page. Events such as packet loss or packet
reordering may cause unused “holes” to appear in the stream buffer.

Therefore the page-specific meta-data keeps track of ranges of valid
bytes in each page.

3.2 Store-me Bits
Our shared buffering model allows for identifying and organiz-

ing streams of bytes at the transport level. It is known that only a
fraction of the traffic that enters a content replication node is go-
ing to be transmitted repeatedly [7]. In our case, the volume of
the bytes that arrive at a buffering node could easily be in the or-
der of gigabits per second. In such situations, the efficiency of
the replication system may easily suffer if the buffering nodes end
up filling their memory with content that won’t be accessed again
while stored. To alleviate this problem we propose using the stream
buffers in combination with store-me bits in the packet headers.

A server that is sending the same byte stream repeatedly within a
short period of time, is the first entity to notice the potential redun-
dancy at the stream (transport) level. At the server, these redundant
transfers incur load and, e.g., in case of a flash crowd, may lead to
temporary overload. Therefore, the server itself can assist buffer-
ing nodes in deciding which streams of byte are worth buffering
by giving corresponding hints: the server sets store-me bits in the
transport headers during its overload period.2 The stream buffering
nodes on the path from the server to different clients will only con-
sider buffering those bytes that are marked with the store-me bit.
In this way, the amount of traffic that the buffering node has to deal
with is reduced to a small proportion of what could have entered
the memory otherwise.

Servers sending store-me bits will instantiate state in buffering
nodes and thus consume resources. Buffering nodes may apply
local admission and replication policies when seeing new packets
with store-me bits set. Stored data is available in the buffer for a
limited time, to avoid delivery of out-dated content. We consider
the shared buffer mainly as a short-term storage used to relieve load
spikes, with lifetimes on the order of minutes rather than hours.

3.3 Load Control Architecture
Putting a server into a position to allocate downstream resources

obviously raises the issue that every server could simply set the
store-me bits for every stream, which would lead to buffer pollution
and the buffering nodes would be back to second-guessing which
streams to store. Therefore, we need a mechanism that penalizes
for excess store-me requests and gives incentives for the senders to
be selective about when to send them. In the following we outline
such load control architecture, loosely inspired by Explicit Conges-
tion Notification and the Re-feedback architecture [5].

In addition to the store-me bit, the packets contain an “overload”
bit that is always initialized to zero by the sender. If the rate of
incoming store-me bits at a stream buffer exceeds an threshold be-
yond which the buffer node considers itself overloaded by the store-
me requests, it sets the overload bit in the packet. The state of the
overload bit is echoed back in an “overload echo” to the sender in
the packets flowing to the reverse direction. As the sender receives
overload echoes, it reduces its allowed rate of outgoing store-me
bits, similarly as TCP reduces the congestion window in response
to congestion notifications.

In addition, there can be a policer near the sender (e.g., run by a
network operator) that monitors the overload echoes and store-me
bits for each source, and clears any excess store-me bits that the
sender might try to send. Because the policer would reset the bits
from more or less random packets leading to reduced caching effi-
ciency, the sender has the incentive to remain within the allocated
2We assume that server farms can be organized such they share
load information.

quota of outgoing store-me bits, and retain the control over which
pieces of data are more important to store, e.g., based on popularity.

A possible underlying business scheme would be that an ISP
agrees with an application service provider a basic rate of store-
me bits, possibly with the option of getting more at an extra cost
once they exceed a threshold.

3.4 Receiver-based Transport Protocol
We have discussed how the buffering node can identify and write

the re-usable bytes to the stream buffer. Accessing such a stream
buffer below the application layer, nevertheless, needs re-visiting
the underlying transport protocol logic. We have mentioned that
this requires the stream identifier (label) and offset to be carried in-
side the transport header as well as the store-me bits and feedback
about resource usage. However, a more fundamental issue regard-
ing accessing the stream buffers is that the source-driven logic of
the transport protocols such as TCP does not match the receiver
driven pattern of accessing a cache or in this case byte stream
buffer. We outline a strawman of such a receiver-driven transport
protocol in the next section.

4. A STRAWMAN PROTOCOL: CTP
One of the design goals of stream buffers is that they should be

able to operate at high-speed with minimal operational logic with
low number of instructions per processed packet. For such effi-
cient operation the currently used extensible text-based protocols,
particularly HTTP, is not a good fit. Therefore in the following,
we outline a strawman proposal for a receiver-driven transport pro-
tocol optimized to interact with stream buffers in a stateless man-
ner: Content Transport Protocol (CTP). In our outline, we focus on
those elements of the protocol relevant for interacting with stream
buffers, be it at the server or a buffering node, and leave other as-
pects aside for now.

An alternative to specifying a new protocol could be to extend
TCP to support stream buffering [12]. That approach would al-
low easier deployment but it comes with additional challenges, not
least related to the limited extensibility of TCP. CTP has, however,
some commonalities with TCP: it transfers an opaque reliable byte
streams, and is connection-oriented. Applications that transfer con-
tent using TCP should find it convenient to use CTP for transmit-
ting the same content. However, there are some major differences:
CTP is receiver-controlled and does not multiplex flows between
two end hosts based on port numbers. Rather, the main identifica-
tion method is the content-based stream identifiers for the payload.
Similar to TCP, CTP runs on top of IP, whose forwarding and rout-
ing operations work as usual. The differences come with nodes that
support shared buffering of CTP packets, and with sharing data be-
tween different destinations. The CTP header does not have any
dependencies on the underlying layers, allowing replication of en-
tire CTP packet for different destinations. This design is also NAT-
friendly: as long as a NAT device does not make assumptions on the
transport header structure, changing the IP address does not change
the semantics of the CTP message.

CTP also has some commonalities with the approach taken in
information-centric networks ([10, 8] among many others): The
packets are identified based on content-based labels instead of tra-
ditional four-tuple of IP addresses and port numbers. However,
CTP still runs on top of normal IP network with its traditional rout-
ing infrastructure, and operates on sessions between one sender and
one receiver.

In CTP mode of operation, the receiver can request a window
of bytes identified with the content-based stream identifier and the
byte range. This is done using the REQUEST packet. Any stream

buffering node on the route between the server and the client can
interpret this request and reply to it without having to consult the
application layer. Only the server would do the latter to, e.g., fetch
the required data from the source (e.g., a file). Data is carried in
DATA packets. If intermediate nodes are able to supply part of the
data on behalf of the sender, they update the offset and byte range
in the REQUEST packet accordingly.

Packets with the same content identifier and byte range are inter-
changeable, regardless of the application that has triggered them.
Due to the stream buffering nature, also overlapping fractions of
packets with partially intersecting byte ranges may be stored. This
leads to the following pieces of information carried in a CTP header
of a DATA packet:

• Stream Label. A 20-byte statistically unique content-based
stream label. This could be constructed, e.g., from a hash
over HTTP URI and other meta-data necessary for identify-
ing a particular version of content, from a BitTorrent piece
identifier, or a hash calculated over the content itself. Al-
though the stream buffer operation is agnostic to application-
layer data units, applications can use stream labels to dif-
ferentiate between different application data units to enforce
consistent handling of different packets of the same applica-
tion data unit.

• Sequence Number. A 64-bit value indicating the relative
offset to the beginning of stream indicated by label. Unlike
TCP, the sequence number is not initialized randomly by an
end host, because the data needs to be sharable between mul-
tiple hosts.

• Checksum. A cumulative checksum over the payload. To
offer additional (although not very strong) security, cumula-
tive checksum does not only cover the packet itself, but is
added on top of the data from the beginning of the stream.
Before the first byte of the stream is transmitted, the cumula-
tive checksum is initialized to a random value (shared by all
receivers of the same content (stream)), and the checksum of
a new packet is added on top of the sum from the earlier data.

REQUEST packets also include the number of bytes requested
(which is adjusted by the receiver based upon a congestion control
algorithm) and they do not carry a checksum. As noted in the pre-
vious section, the header will also include the store-me bits and the
overload information for the load control feedback loop.

Application Interaction
Because CTP is a receiver-based protocol, it needs a different API
than the traditional sockets, even though they start out similarly. A
server application creates a listening “socket” by binding to an IP
address and CTP service name to support demultiplexing different
application classes.3

The receiving (client) application initiates the socket state by
calling Get (server address, stream identifier, meta-data buffer).
After this the receiving application reads bytes from the socket sim-
ilarly to the normal read() call semantics with TCP. A single read
call stores a number of bytes to an indicated buffer and may need to
be repeated multiple times before a full content object is received.

The write semantics are a little different because parts of the
stream may have been served by buffering nodes so that the server
may not need to write continuous byte sequences nor start at the
3Modeling at least partly hierarchical names could serve a similar
purpose and then the application would use wildcards to register its
responsibility for a certain set of names.

Get(fd,
 "http",
 "address.com",
 "content.html")

REQUEST("http", "content.html", 0,<HTTP headers>)

DATA("http", "content.html", 0

<label>, <HTTP headers>)

Request("http") --> ("content.html", 0)
Write({<label>, <HTTP headers>})

Get(fd,
 "http",
 "address.com",
 <label>)

REQUEST("http", <label>, 0-1460)
Request("http") --> (<label>, 0-1460)
Write(<data at 0-1460>)

Read(fd,
 {<label>,
 <HTTP hdrs>})

DATA("http", <label>, 0

<data>)

Read(fd,
 <data>) REQUEST("http", <label>, 1460-5840)

DATA("http", <label>, 1460

<data>)

Request("http") --> (<label>, 1460-5840)
Write(<data at 1460-5840>)

DATA("http", <label>, 2920

<data>)

Read(fd,
 <data>)

Client ServerClient API Server APICommunication

. . .

Figure 2: Protocol exchange scenario and application interac-
tions.

beginning of the stream. Hence, the write operation works as a call-
back: when a REQUEST message is received, the system indicates
to the application which stream label and sequence number range
is requested. This is shown as “Request” callback in the example
in Figure 2. Then, the application writes the data in question to the
socket. With system calls such as sendfile(), the entire interaction
on the server side could be delegated to the kernel.

With many operating system implementations, it may be difficult
to introduce new API calls between the kernel and applications.
However, using the standard socket API is entirely possible with
CTP. In client side, the connect() call would replace the Get call,
with a new kind of address structure that would indicate the stream
label. On the server side, the Request callback could be replaced
by accept() call, with similar update on the address structure, that
is originally returned with the client’s address information. With
CTP this structure includes the stream label and sequence number
range for the data that the server is expected to send.

Example scenario
Figure 2 illustrates a CTP protocol exchange scenario in the case
of a HTTP session, and the related API interactions at both client
and the server. In the example, communication is divided into two
phases: in the beginning the client does not yet know the actual
stream label to be used. Therefore it simply uses the HTTP URL
(or its hash) in place of the label, to ask the server for the actual
stream label. The request can contain HTTP headers from client as
its payload, and the DATA response, along with the correct stream
label, may also contain HTTP headers from the server. This data is
never marked for caching, so it is always sent by the server.

After the initial message exchange, the client opens a new CTP
connection, but now requesting the stream label received from the
server. This data could potentially be stored at stream buffers, and
therefore the DATA packets may have been transmitted by the in-
termediate network nodes instead of server.

Each REQUEST packet contains the range of bytes that can be
sent in response to the packet. If an intermediate stream buffer
sends the requested data or portion of it in response to the RE-
QUEST, it modifies the byte range in REQUEST headers accord-
ingly, so that the upstream nodes do not send the same data again.

The CTP receiver acts as a client, opening a connection to an
indicated server using the Get() call, giving the requested stream

label and service name as a parameter. Additionally, the client can
specify meta-data to be included as a payload of the REQUEST
packet, such as HTTP headers. The connect call triggers transmis-
sion of the first REQUEST packet, but if the data flow is longer, the
client protocol implementation continues send further REQUESTs
as the client reads the data, at the rate managed by the client-side
flow and congestion control algorithms.

The sending application acts as a server, that manages multiple
short-lived connections for sending the data. There is a master lis-
tening socket for each application or service, such as “http” in this
example. The server waits for incoming REQUEST packets for
specified service, and when one arrives, the Request() callback at
server application is invoked, resulting in a new short-lived child
socket that is used to send the data with the usual write or send
calls. After this, the child socket is automatically closed, and the
next REQUEST is processed in a new Request() call. The main
benefit of this approach is that is allows implementing stateless
server, that gets all required information for sending data as part
of the Request() call. This way, delegating the transmissions to
downstream stream buffers becomes also possible.

5. DISCUSSION
The combination of stream buffering, store-me bits with the load

control mechanisms, and CTP covers the principles mentioned in
section 2. Our application and network independent design allows
for alleviating the server and network load under sudden traffic
surges and benefiting from in-network storage in a partly end-to-
end-controlled manner.

We have done some back of the envelope estimation to check
the storage requirements and affectivity of this model for the most
expected situations. In our estimations we have used numbers that
represent some flash crowd cases [13, 15] as a good representative
of sudden spikes of traffic. Based on these numbers, most of the
flash crowd events have at least around 1000 requests per minute
from more than 100 ASes. The session length usually does not
exceed a few 100 seconds. Very often flash crowd traffic caused
by one content item triggers further request crowds for 4–5 other
correlated content items [13, 15].

Based on these numbers, a shared stream buffer should be able
to replicate the first (1–10) minutes of at least 4 or 5 files that might
occur in the form of flash crowd at approximately same time. As-
suming videos at a rate of 1 Mbit/s yields 7.5–75 MB per video
and expected storage capacity of some 250 MB, with a target life
time of 100 min. Since sudden spikes of traffic are not that com-
mon not much more than this memory space would be needed to
handle most of traffic surges effectively, without worrying about
details such as different access rates and inter-arrival gap between
different requests. Advanced algorithms for managing the stream
buffer and its overload signaling are subject of future work.

We also ran initial simulations using ns-3, for a simple topology
with 6 traffic sources and 1000 receivers routed through a com-
mon shared buffer. Between the sources and the shared buffer there
also is a policer that monitors the rate of store-me bits per source
against the overload signals, and eliminates excess store-me bits
based on this information. The senders have 100 files that have
zipf popularity and are requested according to Poisson distribution
with mean 50. The file sizes follow Pareto (mean:40 KB, shape:
1.5) distribution. When there is no overload, the store-me bit is set
probabilistically for different files, so that the popular files are more
likely to be transmitted with the store-me bits. Overloads results to
no store-me bits from these sources.

In addition to a basic simulation scenario, we will also run a
scenario that has 5 malicious hosts, that send files that are never

0 %

5 %

10 %

15 %

20 %

25 %

30 %

 50 100 150 200 250

H
it

 R
at

io
 [

%
]

Cache size [KB]

No malicious source
Malicious sources, No policer

Malicious sources, With policer

Figure 3: The request hit-rate distribution with 1000 file re-
quests and variable size of shared buffer.

requested but always have the store-me bit set. This may be some-
what artificial scenario, but the purpose of our initial simulation
study is to illustrate the effect of malicious hosts on the request hit
rate at shared buffers, and how a simple load control mechanism
can improve the situation.

For these initial evaluation scenarios we use the reduced hit-rate
to identify the overload in the cache. The more the hit-rate goes
down the more probable it is for the cache to mark the packets
with the overload bits, which are later echoed back to the source.
The policer acts based on the information that it keeps about the
sources and their number of received overload marked packets. The
policer checks and erases the store-me bits for the sources that their
number of marked packets is more than 1. Note that here for every
source the number of marked packets are reduced every time that
the source itself sends new packets with the store-me bits unset.

Figure 3 shows the effect of malicious hosts on the data hit rate
on requests arriving at the shared buffer. The graph shows that the
presence of malicious host significantly hurts the request hit rate at
shared buffer, but how the presence of policer helps to repair the
situation. More thorough simulations on the load dynamics with
various network parameters are currently in progress and more de-
tailed evaluation is provided in a future paper.

We have left various protocol details, such as MTU discovery,
unspecified in this paper. We believe that the request-response
cycle of CTP allows ways for implementing MTU discovery and
the required feedback, and plan to investigate MTU discovery and
other specific protocol details in more detail as future work.

Finally, one issue not discussed in this paper is security. Authen-
tication is one of the main issues in traditional caching systems.
Problems such as content cache pollution due to lack of content
authentication also exist in our model, and since we operate on ar-
bitrary segments, authentication becomes even trickier. As a first
step, our design provides the possibility of having a cumulative
checksum over the whole or a window of bytes in a byte stream
so that at least name clashes can be detected. Stronger authentica-
tion could be added on top. In addition, our strawman protocol has
no setup phase in which a server could enforce a handshake with a
client to protect against DoS attacks (cf. TCP SYN cookies). Such
a phase could be introduced for the first REQUEST packet hitting
the server. Our receiver oriented design results to less serious dam-
age to the server in such scenarios compared to any source-driven
transport protocol. However, more elaborated work is needed to
address this issue.

6. CONCLUSIONS
In this work, we have proposed a content replication model with

a focus on reducing the effect of sudden traffic spikes. Our proposal
is not meant to replace the existing content replication methods but
its goal is to cover a gap that exist between current solutions and
the need for alleviating the sudden traffic surges in short periods
of time. To reach this goal, we have introduced a network-based
stream-buffering model and a content-based transport protocol that
could assist in reducing the server workload and, as a secondary ef-
fect, redundant network traffic. To make shared buffering effective,
servers may indicate to the network which byte streams to buffer
while feedback loops and accounting countermeasures are used to
ensure that servers don’t misuse this capability. An initial assess-
ment suggests that such buffering would be feasible at least in terms
of memory requirements to deal with rare flash crowds. Detailed
evaluation of our design is subject to future studies.

Acknowledgments
This research was partially funded by the EU FP7 PURSUIT project
(FP7-INFSO-ICT-257217). We would also like to thank the anony-
mous CSWS’12 reviewers for their valuable feedback.

7. REFERENCES
[1] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,

C. Muthukrishnan, R. Ramjee, and G. Varghese. EndRE: an
end-system redundancy elimination service for enterprises. In Proc.
NSDI, 2010.

[2] R. Alimi, A. Rahman, D. Kutscher, and Y. Yang. DECADE
Architecture. Internet Draft draft-ietf-decade-arch-07.

[3] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet
caches on routers: the implications of universal redundant traffic
elimination. In SIGCOMM ’08, 2008.

[4] S. Arianfar, P. Nikander, and J. Ott. On content-centric router design
and implications. ReARCH, 2010.

[5] R. Briscoe. Re-feedback: Freedom with Accountability for Causing
Congestion in a Connectionless Internetwork. PhD thesis, UCL,
2009.

[6] P. B. Danzig, R. S. Hall, and M. F. Schwartz. A case for caching file
objects inside internetworks. SIGCOMM Comput. Commun. Rev.,
23(4):239–248, 1993.

[7] S. Ihm and V. S. Pai. Towards understanding modern web traffic.
SIGMETRICS Perform. Eval. Rev., 39(1):335–336, June 2011.

[8] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard. Networking Named Content. In Proc.
ACM CoNEXT, 2009.

[9] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive.
Technical report, CMU, 2012.

[10] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica. A data-oriented (and beyond) network
architecture. In ACM SIGCOMM ’07, 2007.

[11] C. Labovitz, D. McPherson, S. Iekel-Johnson, J. Oberheide,
F. Jahanian, and M. Karir. Internet Observatory Report. Proc.
NANOG-47, 2009.

[12] P. Sarolahti, J. Ott, K. Budigere, and C. Perkins. Poor man’s content
centric networking (with TCP). Technical Report Publication series
SCIENCE + TECHNOLOGY, 5/2011, Aalto University, 2011.

[13] P. Wendell and M. J. Freedman. Going viral: flash crowds in an open
CDN. In Proc. IMC, 2011.

[14] R. Wetzel. CDN Business Models - Not All Cast from the Same
Mold . http://www.netforecast.com/Articles/
CDNArticleSameMold.pdf, 2003.

[15] H. Yin, X. Liu, F. Qiu, N. Xia, C. Lin, H. Zhang, V. Sekar, and
G. Min. Inside the bird’s nest: measurements of large-scale live VoD
from the 2008 olympics. In Proc. IMC, pages 442–455, New York,
NY, USA, 2009. ACM.

