
SCAMPI Application Platform

Teemu Kärkkäinen
Aalto University

teemuk@netlab.tkk.fi

Mikko Pitkänen
Aalto Univeristy

mikko.pitkanen@aalto.fi
Paul Houghton

Futurice
paul.houghton@futurice.com

Jörg Ott
Aalto University

jo@netlab.tkk.fi

ABSTRACT
In this paper we demonstrate an application platform architecture
and implementation that allows developers to easily target oppor-
tunistic networks. The platform includes an opportunistic router,
HTML5 application development framework, and an opportunistic
application market for distributing applications. We demonstrate
the platform and multiple HTML5 applications – including chat,
music and social networking applications – running on Android
devices.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Proto-
cols

General Terms
Algorithms, Design, Experimentation

Keywords
Delay-tolerant Networking; DTN; Opportunistic Networking; HTML5

1. INTRODUCTION
The development and deployment of opportunistic networking

applications on real consumer devices has been slow. This is in
large part due to the lack of suitable frameworks and software stacks
on popular consumer mobile device platforms. Consumer mobile
devices lack this support because they are in the majority of cases
designed to serve as clients seeking to access services in some in-
frastructure network (typically the Internet), and most networking
technologies and software stacks are aimed at implementing this
goal. This leaves support for opportunistic peer-to-peer communi-
cation to be non-existent or at most an afterthought, even when the
underlying hardware is capable of much more.

Most mobile platforms that have come to the market in the past
decade have exposed their own native software development frame-
works, tools, APIs and even programming languages (e.g., Sym-
bian, iOS, Android, webOS). Application portability between these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHANTS’12, August 22, 2012, Istanbul, Turkey.
Copyright 2012 ACM 978-1-4503-1284-4/12/08 ...$15.00.

platforms has been very poor due to the lack of standardization.
However, in the recent years mobile HTML5 [3] application devel-
opment has been gaining in popularity as it provides a standardized
set of APIs that work on all platforms with modern web browser
support. Therefore, creating a set of HTML5 APIs and frame-
works for opportunistic communications would allow application
developers to easily take an advantage of the new communication
opportunities provided by opportunistic networking in platform in-
dependent manner.

After the applications have been developed, they must be dis-
tributed. Different mobile platforms have their own distribution
mechanisms for native applications. Some allow the user to di-
rectly install downloaded software onto their devices, while some
provide centrally controlled application stores. However, all of the
distribution mechanisms are primarily designed for distributing na-
tive applications while providing little support for HTML5 appli-
cations, leading to developers having to wrap their HTML5 appli-
cations in native applications. The SCAMPI Application Platform
solves this problem by allowing direct distribution of HTML5 ap-
plications over the opportunistic network itself. These applications
contain only the HTML5 elements (HTML, CSS, JavaScript) and
no native code for any platform. The HTML5 applications can be
published by and run on any device that supports the SCAMPI plat-
form.

In this paper we describe our solution for an opportunistic ap-
plication development platform with support for both native appli-
cation development and HTML5. The platform includes an op-
portunistic router based on the DTNRG specifications (Section 2),
a framework for developing pure HTML5 applications that take
advantage of the router (Section 3), and an opportunistic applica-
tion distribution system (Section 4). Finally, we will demonstrate
three opportunistic applications (chat, music, and social network-
ing) written in HTML5 for our platform (Section 5).

2. SCAMPI ROUTER
The fundamental enabler for opportunistic communications is a

store-carry-forward router. The router maintains caches of mes-
sages, attempts to discover peers and open contacts with them, and
routes messages over multiple hops. The SCAMPI Platform in-
cludes an opportunistic router based on the DTNRG architecture
and protocols [5][1][7], and our own extensions (bottom in Fig-
ure 1).

The router uses various discovery mechanisms, including IP mul-
ticast/broadcast beaconing, TCP unicast discovery and subnet scan-
ning for known ports. The combination of different discovery mech-
anisms increases the likelihood of successful discovery in the face
of varying policies on, for example, blocking of multicast/broadcast
traffic, as well as allowing the use of known infrastructure nodes

Figure 1: SCAMPI Application Platform architecture.

when possible (unicast discovery). After peers have been discov-
ered, links must be opened between them. The SCAMPI Router
uses TCP Convergence Layer (TCPCL) for all message transmis-
sions between peers in IP-based networks. Adding additional con-
vergence layers is supported for non-TCP/IP-based networks (e.g.,
Bluetooth) or for transports other than TCP (e.g., UDP, LEDBAT [6]).
Each SCAMPI Router instance has a cryptographic identity (cur-
rently RSA-based), which allows messages to be signed and ver-
ified, as well as encrypted. This also enables external identities,
such as Twitter accounts, to be cryptographically bound to the node
identities if the external identity provider supports mechanisms such
as OAuth [2].

The router provides a native Application Programming Inter-
face (API) over TCP that supports the following operations: pub-
lish/subscribe for messages, automatic framing for structured mes-
sages, searching for content-based on message metadata, and peer
discovery of nearby nodes. The TCP API can be used by native ap-
plications written in any language by implementing the client side
of the SCAMPI API protocol (currently only Java client implemen-
tation is provided).

The platform enables application developers to work with enti-
ties called SCAMPIMessages. These are self-contained, semanti-
cally meaningful application layer objects that map to Bundle Pro-
tocol bundles at lower layers. SCAMPIMessages are not opaque
binary blobs unlike the payload of most Bundle Protocols imple-
mentations (e.g., DTN2, IBR), but instead have a map structure
where arbitrary string keys map to binary buffers, strings, numbers
or file pointers. The framing and serialization of this map into a
bundle is handled by the router. This means that the application de-
veloper does not need to define the framing format or (de)serialize
the message data, and also allows all the SCAMPI Routers to un-
derstand the structure of the messages. Understanding of the mes-
sage structure can be exploited to develop mechanisms that operate
on parts of the message, such as versioning or automatic merging,
although these are not currently supported by the platform. Fur-
thermore, each SCAMPIMessage can be tagged with namespaced
metadata that describes the content, for example, if the content of

the message includes a music file, the artist, title, genre, etc. can be
exposed.

These messages can then be published to services identified by
opaque strings. Any node subscribed to the service will receive
copies of the published messages. Since the messages can be tagged
with metadata, search queries can be executed against this metadata
by any SCAMPI Router without the need to understand the content
semantics. It is also possible to limit the spreading of messages
geographically, allowing floating content [4] style distribution.

Implementation of the router is in plain JavaSE, allowing it to be
run on any platform with a Java Virtual Machine, including popular
platforms such as MacOS X, Windows and GNU/Linux. Further,
we have created an Android application that runs the router as a
persistent background process on Android devices and allows other
applications to use the services provided by the router through the
native TCP API.

3. HTML5 APPLICATION FRAMEWORK
While the router provides a TCP-based API that can be used by

native applications, we have also created a framework for develop-
ing applications in HTML5 (top of Figure 1). Unlike native appli-
cations that are tied to a single platform, HTML5 applications can
be written once and run on any platform supported by SCAMPI.

The SCAMPI HTML5 support is realized as a thin shim whose
responsibility is to translate messages between the SCAMPI router
and the HTML5 application framework. In particular, the shim pro-
vides a light-weight native container that can load and run the plat-
form independent HTML5 application packages. The shim further
exposes a JavaScript API that can be used by the HTML5 applica-
tions to communicate with the underlying SCAMPI Router. In par-
ticular, the JavaScript API contains functions to publish/subscribe
SCAMPIMessages and to register callbacks for peer discovery events.
The current implementation of the shim is written as platform de-
pendent Android code, but porting it to other platforms such as
iPhone is straightforward (although this would also require a native
iOS implementation of the SCAMPI Router since iOS does not in-
clude a Java runtime).

The HTML5 application packages contain the entire logic to im-
plement the applications in fully platform independent form. The
application logic in our demonstration applications is implemented
by using JavaScript model-view-controller (MVC) frameworks, which
are a popular way of structuring mobile and web applications. One
of the benefits of the MVC architecture is that the data model can
be separated from the view. The messages from the SCAMPI router
update the data model, and the programming frameworks, for ex-
ample, currently used backbone.js 1, are responsible for rendering
the application view on the user’s device. User actions then up-
date data model and are propagated to the SCAMPI router through
the shim. This allows HTML5 developers to use the same frame-
works and libraries they would normally use while the SCAMPI
JavaScript APIs provide additional capabilities that the developer
can take advantage of for opportunistic networking.

Using the HTML5 framework allows the same application code
to be used for managing both the model and the rendering of the
view independent of which device is used for executing the appli-
cation. This is possible because the modern smartphones provide
rich and uniform support for the HTML rendering and JavaScript.

4. APPLICATION DISTRIBUTION
SCAMPI application developed in HTML5 is packaged into a

self-contained set of HTML, JavaScript, and CSS files. These files
1http://documentcloud.github.com/backbone/

contain the UI views on the users device (HTML and CSS) as well
as data models and control for the application logic (JavaScript li-
braries and custom JavaScript).

A key benefit of the approach is that the applications contain only
code that does not need to be compiled for any specific execution
platform, but requires only support for functionality provided by
any modern web browser.

These packaged applications are then sent as SCAMPIMessages
similarly to all other messages. This allows all SCAMPI mecha-
nisms to be applied to the applications themselves, including metadata-
based search and the security features such as message signing to
verify the originator of the application.

The distribution system itself is created as a SCAMPI HTML5
application, which publishes, receives, validates and installs bun-
dled HTML5 applications.

Distributing the applications in an opportunistic manner in self
contained messages avoids the need to publish applications through
centralized authority that controls the market place. Together with
easy-to-develop web programming approach this makes the SCAMPI
design a compelling way to share information when sporadic inter-
ests, for example festivals or street protestations, take place.

5. APPLICATIONS
We have developed several HTML5 applications to demonstrate

the proposed approach. These include a chat application, SCAMPI
Tunes music sharing application, and a NearbyPeople social net-
working application.

The simplest of our demonstrator applications, chat, simply al-
lows users to post and read messages in a shared chat room. The
messages posted by the participants are distributed opportunisti-
cally, and flood to all reachable devices in the vicinity without the
need for a centralized chat room server (e.g., Internet Relay Chat).

Instead of only distributing short text messages, the platform can
also distribute larger content items. We demonstrate this with the
SCAMPI Tunes music sharing application that allows users to pub-
lish MP3s from the their devices so that other users around them
can find and listen to them. The published music files are picked
up and displayed by the surrounding clients, but they are not per-
manently stored. This means that the available music changes dy-
namically depending on the environment (and the music taste of
surrounding people).

Finally, our most complex application is an opportunistic so-
cial networking application, NearbyPeople. This application allows
users to input their profiles, including status information, contact
information, interests and a profile picture. Surrounding nodes can
view the profiles of nearby people, find profiles with matching in-
terests, send messages between users and schedule ad-hoc social
events. This allows popular social networking interactions with-
out relying on infrastructure, without uploading personal data to a
centralized repository, and without spreading personal information
beyond the nearby physical environment.

All of the demonstrated applications are written in HTML5 and
distributed through the SCAMPI HTML5 app distribution mecha-
nism.

6. CONCLUSION
In this paper we have described the architecture and implementa-

tion of and application development platform that enables develop-
ers to easily take advantage of opportunistic networking, including
a number of HTML5 example applications that run on top of the
framework.

In the future, more functionality can be added to the underlying

router, such as shared content authoring (e.g., forums and discus-
sion boards) and exposed to the applications through the platform
independent HTML5 APIs. All while also enabling direct applica-
tion deployment and distribution through the opportunistic network
itself.

We believe approach provides application developers a low-effort
means to take advantage of opportunistic networking, potentially
leading to wider scale adoption of these techniques in real, produc-
tion applications.

Acknowledgements
This work received funding from the Academy of Finland in the
RESMAN project (grant no. 134363) and from the European Com-
munity’s Seventh Framework Programme under grant agreement
no. 258414 (SCAMPI).

7. REFERENCES
[1] Mike Demmer and Jörg Ott. Delay Tolerant Networking TCP

Convergence Layer Protocol. Internet Draft
draft-irtf-dtnrg-tcp-clayer-01.txt, Work in Progress, February
2007.

[2] E. Hammer-Lahav (Ed.). The OAuth 1.0 Protocol. RFC 5849,
April 2010.

[3] Ian Hickson (Ed.). HTML5 - A vocabulary and associated
APIs for HTML and XHTML. W3C Working Draft, March
2012.

[4] Esa Hyytiä, Jorma Virtamo, Pasi Lassila, Jussi Kangasharju,
and Jörg Ott. When does content float? characterizing
availability of anchored information in opportunistic content
sharing. In IEEE Infocom, Shanghai, China, April 2011.

[5] Keith Scott and Scott Burleigh. Bundle Protocol Specification.
RFC 5050, November 2007.

[6] Stanislav Shalunov, Greg Hazel, Janardhan Iyengar, and
Mirja Kuehlewind and. Low Extra Delay Background
Transport (LEDBAT). Internet Draft draft-ietf-ledbat-
congestion-09.txt, Work in progress, October 2011.

[7] Susan Symington. Delay-Tolerant Networking Metadata
Extension Block. Internet Draft
draft-irtf-dtnrg-bundle-metadata-block-00, Work in progress,
September 2008.

