
Using Buffer Space Advertisements to Avoid Congestion
in Mobile Opportunistic DTNs

Jani Lakkakorpi, Mikko Pitkänen, Jörg Ott
Email: {jani.lakkakorpi, mikko.pitkanen, jorg.ott}@aalto.fi

Aalto University, Department of Communications and Networking†

Abstract. This paper investigates congestion control in opportunistic networks
that use delay-tolerant networking (DTN) as a basis for communication. We pro-
pose a mechanism that advertises buffer occupancy information to adjacent nodes
and avoids forwarding through nodes with high buffer occupancy. The nodes then
achieve global congestion avoidance simply based on locally available informa-
tion. The proposed mechanism works independent of the routing protocol and is
thus applicable to wide array of scenarios. Extensive simulations, with different
node mobility models and radio modeling, indicate that the proposed mechanism
improves message delivery ratio and decreases end-to-end delay.

Keywords: DTN, congestion control, ns-2, opportunistic network

1 Introduction

Opportunistic wireless networks dynamically created between mobile nodes are able to
function without supporting infrastructure (such as base stations and the core network).
While traditional Mobile Ad-hoc Networks (MANETs) use packet-based routing to es-
tablish end-to-end paths between communicating nodes, opportunistic networks allow
for store-(carry-)and-forward operation based upon hop-by-hop message exchanges.
Relaxing the need for an end-to-end path following the ideas of Delay-tolerant Net-
working (DTN) allows nodes to communicate in challenged networking environments,
characterized, e.g., by sparse node population, high mobility, high delays, or unstable
(short-lived) links. However, this advantage comes at a cost: Lacking an end-to-end path
makes it difficult for the originator of a message to get feedback on the transmission
progress of a message and thus to protect against congestion in the nodes that the mes-
sages traverse on their way towards the destination. In this paper we explore a simple
local scheme for congestion control for mobile opportunistic networks. While conges-
tion control in connected packet networks usually provides feedback to the sender to
(instantaneously) throttle communication, we cannot rely on such feedback and hence
seek to a) distribute and b) limit resource consumption within the network.

DTN routing protocols often attempt to protect communication against unreliable
network conditions by creating multiple copies of message to deliver at least a single
instance to its destination [1, 2]. Multiple copies can lead to congestion in networks that
† P.O. Box 13000, FI-00076 AALTO, FINLAND



are typically characterized by scarce resources. To avoid harmful effects of congestion,
such as message drops and retransmissions, message copies can be removed once a copy
has reached its destination [3]. Without feedback mechanisms it is difficult to adjust the
number of messages copies while the message is still in its way towards the destination.

This paper introduces a simple mechanism to avoid congestion in opportunistic net-
works that operates proactively before congestion-induced message drops occur. The
proposed mechanism locally advertises a node’s buffer occupancy to adjacent nodes
based upon which the latter can take local decisions and avoid sending messages to
nodes whose buffers are nearly full. The proposed congestion control mechanism en-
ables to maximize resource utilization when resources are available. When resources
are scarce, however, the mechanism prevents congestion from occurring by postpon-
ing message transfers until sufficient resources are available. As our congestion control
mechanism performs load reallocation inside the network, there is no need to return
explicit feedback to the message source. Implicitly, any source will learn the degree of
congestion inside a (region of a) network based upon the buffer state notifications it
receives from its neighbors.

To evaluate the congestion control mechanisms we conduct extensive simulations.
The model is novel in compared to different previous DTN routing algorithms since
it models also the effect of congestion in physical radio layer, which is often omitted
in DTN simulations. The simulations model the proposed usage scenarios closely and
provide results with both synthetic and real life mobility traces.

This paper is organized as follows. Section 2 begins with an overview of congestion
control (starting with IP networks), explains the IRTF DTN architecture and protocol,
and covers related work. Section 3 introduces the proposed congestion control mecha-
nism for mobile DTNs. Section 4 describes the models and parameters used in our sim-
ulations. Section 5 presents variety of simulation results. Finally, Section 6 concludes
the paper with a summary and a brief discussion.

2 Background and Related Work

The foundations of congestion control in the Internet date back to 1988 when suitable
mechanisms were devised for TCP [4]. In TCP, sender controls rate based on acknowl-
edgments from the receiver that can be used to deduce that some packets are lost or
delayed too much, and rate can be accordingly decreased at sender. To avoid synchro-
nized buffer overflows in the network, Floyd and Jacobson [5] introduced random early
detection (RED) in 1993. RED is applied to router queues and drops IP packets in a ran-
domized fashion already before the buffers are full, thereby implicitly providing early
feedback to senders. RED can lead to lower packet delays and increased TCP good-
put; yet, despite being well-known and widely implemented in routers, it is not broadly
deployed in the Internet. In another approach, called explicit congestion notification
(ECN) [6], routers mark packets when congestion is imminent and thereby signal to the
endpoints that they reduce their sending rate.



2.1 DTNs and Congestion Control

The DTN [7] architecture introduces a bundle protocol [8], which offers transport ser-
vices for applications. The bundles are often significantly larger than IP packets in order
to allow creation of self-contained messages that enable complete application interac-
tions with a single message exchange. The architecture is designed for networks where
an end-to-end path may not exist, thus the bundles are transmitted based only on hop-
by-hop reliability. Any suitable convergence layer (such as TCP, UDP or LTP [9]) can
be used for transferring a bundle over a single hop. Bundle spreading is limited by its
lifetime, also known as time-to-live (TTL), after which the bundle expires and is re-
moved from the network. Bundle retransmission can take place either at the originating
node or at an intermediate node.

Numerous routing protocols have been proposed for DTNs. Most of them create
multiple copies of the bundle in order to increase the probability of reaching the des-
tination. Epidemic routing [1] creates unlimited number of messages by copying the
message to all nodes that do not yet have a copy. The large number of message copies
created by epidemic routing has been shown to cause congestion, which decreases mes-
sage delivery probability. Spray and wait routing [2] explicitly limits the number of
bundle copies to a fixed value. MaxProp uses explicit acknowledgments to remove de-
livered messages from intermediaries [10] .

Independent of the DTN routing protocol, the destination node may generate a re-
turn receipt to the source node when the bundle is received. The return receipts can
also act as antipackets like in VACCINE antipacket mechanism [3], which deletes the
bundles and gives immunity to nodes upon seeing a return receipt. Whatever the bundle
routing scheme, antipackets are always sent using epidemic routing [11]. Antipackets
will eventually expire, just like the bundles. Seligman et al. [12, 13] propose a solution
to congestion for DTN custody transfer, in which a node is not allowed to drop a mes-
sage to make room if it has accepted custody for this message. They suggest resolving
congestion in individual nodes by moving bundles temporarily to other non-congested
nodes and taking them back again later (somewhat similar to swapping in operating sys-
tems). However, their approach relies on nodes being able to reach non-congested nodes
predictably (for both “swapping” messages out and back in) and cannot be applied to
an opportunistic network with unpredictable contact patterns.

Burleigh et al. [14] implement DTN congestion control by propagating buffer uti-
lization stress back to the bundle sources. This is accomplished by declining to take
custody of bundles, forcing the source to retain the bundles and thereby increasing
source node’s demand for buffer space, forcing it in turn to refuse custody of bundles.
A financial model of buffer space management is suggested. Zhang et al. [15] propose
a rather similar approach.

2.2 Congestion Avoidance in Opportunistic Networks

Krifa et al. [16] present different bundle buffer management policies for DTNs show-
ing that traditional buffer management policies, such as drop tail, are sub-optimal. An
optimal buffer management policy, based on global knowledge about the network, is
proposed using the theory of encounter-based message dissemination. The proposed



policy can be tuned either to minimize the average delay or to maximize the average
delivery ratio. Moreover, they propose a distributed algorithm that uses statistical learn-
ing to approximate the global knowledge.

Radenkovic and Grundy [17] propose a congestion approach for social opportunistic
networks. They suggest a combination of routing and congestion avoidance that uses
heuristics to infer shorter paths to destinations from social information and use buffer
information to avoid areas of the network that are congested. Pujol et al. [18] introduce a
routing algorithm for delay tolerant networks, where messages are preferably forwarded
to users that have a stronger social relation with the target of the message. The aim of
the approach is to balance the message load in the network.

Ryu et al. [19] present a back-pressure routing and rate control algorithm for in-
termittently connected networks. In back-pressure routing, per-destination queues are
maintained at each node. A message for destination d can be forwarded to a neigh-
bor node only if the backlog for destination d is smaller at the neighbor node. In the
modified back-pressure routing algorithm, the queue lengths are advertised to other
nodes and advertised gateway node queue lengths are scaled down first. They consider
applying the approach so that periodic and predictable mobile movement patterns are
exploited in order to obtain throughput-optimal performance. However, this is not ap-
plicable in many opportunistic scenarios where replication-based algorithms are used
to secure against unpredictable events in the network.

Thompson et al. [20] propose a congestion control algorithm for intermittently con-
nected networks (later used for performance comparison in Section 5). In their scheme,
message replication is dynamically limited based on local information. In order to de-
termine congestion level in the network, the nodes exchange information about mes-
sage drops and message replications upon encountering other nodes. This information
is then used in calculating the replication limit. Similarly to our approach, they use local
information in order to prevent congestion. However, their approach seems more prone
to message drops, since the individual reception capacity of the next hop node is not
known.

3 Using Buffer Space Advertisements to Avoid Congestion

With long message lifetime in DTNs, an effective congestion control mechanism should
not be based on network conditions at the message creation time, but it should instead
make congestion control decisions adaptively during the message lifetime in the tra-
versed nodes. Thus, we propose a congestion control mechanism, where a message can
be transferred only to such intermediate nodes who advertise sufficient available buffer
capacity at the time of message forwarding. The proposed mechanism spreads buffer
occupancy information in Hello packets that nodes periodically broadcast to each other
(nodes use the same packets to discover each other). Nodes forwarding messages use
the advertise buffer availability to infer how much data the the next hop node accepts
for forwarding.

Our congestion control mechanism works with heterogeneous buffer and message
sizes. The mechanism can be used with any DTN routing scheme and does not rely on
specific routing information, support for custody transfer [14, 15], or antipackets [3].



Hello 

Ba 

BO 

BS 

Ba 

safety margin 

Fig. 1: Adaptive node model for congestion avoidance.

Figure 1 illustrates the variables in our model. The advertised buffer size Ba is
simply calculated from total buffer size Bs by multiplying it by a congestion threshold
TC (safety margin) and subtracting the current buffer occupancy Bo as follows:

Ba = TC × Bs − Bo. (1)

The key benefit of using the above formula to advertise the available buffer space is
that each node can locally define safety margin for amount of data they want to receive.
When congestion is likely to occur, e.g., the node has larger probability to experience
message drop, the safety margin can be increased to accommodate larger number of
unexpected message arrivals. In sparse network conditions, and when message drops
have not occurred recently, the node can advertise available capacity with small safety
margin. Without safety margin any concurrent transmissions from adjacent nodes could
lead to message drops.

Algorithm 1 Adapt buffer space advertisement Ba

if D = 0 AND TC < TCmax then
set TC ⇐ TC + ai

else
if D > 0 AND TC > TCmin then

set TC ⇐ TC × md
end if
set D ⇐ 0

end if
set Ba ⇐ TC × Bs − Bo

To adapt the advertised value to varying network conditions, we propose to adjust
the advertised buffer capacity based on message drops D according to Algorithm 1.
It uses the additive increase and multiplicative decrease (AIMD) approach to adapt
the congestion threshold TC based on message drops. If there are message drops be-
tween two consecutive Hello messages (interval of 100 ms), the congestion threshold
is reduced. Otherwise, the congestion threshold is increased. This leads to an adap-
tive approach that backs off exponentially when congestion occurs, and conservatively



increases when more capacity appears available. We apply the following default pa-
rameters that we determined experimentally: ai = 0.01 and md = 0.8. Variable TC

is initialized with a value of 0.8. The minimum and maximum values for TC are 0.5
and 0.9, correspondingly. After having calculated Ba, node appends the value to Hello
messages that it sends to its immediate neighbors as shown in Figure 1.

Algorithm 2 Forward message to intermediate node
select message from message storage
if routing protocol allows then

get Ba(i)
if Ba(i) > Ms then

forward message
set Ba(i) ⇐ Ba(i) − MS

end if
end if

Upon sending messages to another intermediate node for forwarding, each node ex-
ecutes Algorithm 2. If the advertised buffer space Ba at the neighbor node (or message
creator node) is less than message size (Ms), the message cannot be forwarded to this
particular neighbor (or created). This approach maintains two properties that are typical
to DTN routing protocols. First, if a node receives a message that is destined for it, full
buffers do not matter. Second, the message is not sent to a node that already holds a
copy of it.

The congestion control mechanism is executed immediately after node encounter
occurs, i.e., prior to forwarding to next hop node. Thus, the approach is interoperable
with any mechanism used by the known DTN routing protocol making it applicable to
wide variety networks. For example, with spray and wait, when the node runs out of
message tokens, the approach allows forwarding the message only to final destination.

Our congestion control algorithm requires only minimal state because it uses only
information about the neighbors per current contact. The approach is somewhat similar
to back-pressure mechanisms, since information about full buffers is propagated, albeit
not explicitly beyond a single hop into the direction of the message originator. The
mechanism operates clearly using only a local scope, with the information it requires
and the interactions it performs restricted to nodes in its local proximity. However, in
Section 5 we show that it is effective across the network.

4 Simulation Model

Our simulations use several extensions to the ns2 simulator that allow us to study DTN
routing together with accurate models for radio links. Our simulations build on top of
synthetically generated random waypoint (RWP) model, more realistic yet synthetic
pedestrian mobility model, and real-world vehicular traces.



4.1 Traffic and Mobility Models

We apply a relatively simple traffic model in which each node sends a (fixed or vari-
able size) message at a random time with 200 second intervals [t, t + 200s] to another,
randomly selected, node. Before sending to MAC layer, the bundles are fragmented
into 1500-byte datagrams. A retransmission mechanism, providing reliable delivery of
datagrams is implemented, so that messages will not be lost due to transmission errors.

Random waypoint is our first mobility model since this model is well understood
and it is easy to generate scenarios with different network densities and node velocities.
We generate random waypoint node mobility using the setdest program, which is part
of the ns-allinone package [21]. We have 40 mobile nodes that select a random direction
and a random (uniformly distributed) speed at random times. Maximum speed is 20 m/s
and pause length is two seconds. We always pause before choosing a new direction and
a new speed. In our RWP scenarios, area size ranges from 10 m times 10 m to 2000 m
times 2000 m, and the simulation time is always 5000 seconds.

In both of our trace-based mobility models the number of mobile nodes is 116 and
the simulation time is 3600 seconds. In the first mobility trace, the San Francisco taxi
cab trace [22], the area size is 5700 m times 6600 m. The whole data set contains GPS
coordinates of approximately 500 taxis collected over 30 days in the San Francisco Bay
area. We choose to use this trace due to its high resolution, node positions are recorded
frequently enough to provide location information for the used radio models.

The second mobility trace was obtained in a synthetic fashion: the map of Helsinki
city center (area dimensions: 4500 m times 3400 m) is used as input for the ONE sim-
ulator [23] and the nodes are configured to move between selected points of interest.
Node velocity is uniformly distributed between 0.7 m/s and 1.4 m/s and pause length
between 0 and 120 s. This model provides a more dense network scenario in comparison
to the aforementioned taxi cab scenario, which is relatively sparse.

4.2 DTN Model

In the simulator, DTN nodes advertise their buffer content to each other every 100 ms
by sending Hello messages. In our simulations, this message has enough room for the
identifiers of buffered bundles and return receipts. A bundle can be generated only if
the node has sufficient buffer space available. When the bundle lifetime expires, all
copies of that bundle are deleted. If the sender does not receive a return receipt within
retransmission timeout, it will retransmit the bundle. Return receipts may also serve
as antipackets; their lifetime is the minimum of retransmission timeout (1000 seconds)
less bundle forwarding time and bundle lifetime (750 seconds). Antipackets and Hello
messages are small in size. The selected routing protocol is either epidemic routing or
binary spray and wait, the latter if uses 16 message copies.

Return receipts are forwarded first. When the head-of-line receipt has been for-
warded to all current neighbors, one by one, we put that receipt to the tail of the receipt
queue and dequeue the next receipt. Then, we forward regular bundles to their desti-
nations, in a similar manner as return receipts. After this, the bundles are re-ordered
so that the least forwarded bundles are put to the head of the queue. Finally, regular
bundles are forwarded to neighboring, non-destination nodes.



4.3 Wireless Channel Model

We use a realistic wireless channel model from the dei80211mr library [24], which
is now a part of the ns-allinone package. There is support for different transmission
rates, modulation methods and coding schemes that are defined in the IEEE802.11b/g
standards.

A signal-to-interference-and-noise ratio (SINR)1 based packet level error model is
introduced that is calculated using pre-determined curves of packet error rate (PER) vs.
SINR and packet size. The reception threshold (RXThresh ) variable, which has been
used in the default ns2 802.11 implementation, has been removed. SINR, in turn, is cal-
culated using received signal strength, noise, and interference. Interference is calculated
using a Gaussian model to account for all transmissions that happen simultaneously to
the one which is considered for reception. Noise strength is fixed in all simulations. The
IEEE 802.11g simulation parameters are the same as in [25].

The capture model, that is, the determination of whether a packet can be received
when there are other concurrent transmissions, is embedded in the interference model.

5 Simulation Results

5.1 Random Waypoint Mobility

Figure 2 compares routing performance in the random waypoint scenario, showing
plain epidemic, spray and wait, and epidemic routing enhanced with congestion control
(CC). For each protocol, performance figures are also provided with the antipacket (AP)
mechanism. Node buffer sizes are randomly chosen to be 250 KB or 2 MB so that both
occur with equal probability. The size of the individual bundles is uniformly distributed
between 1 Byte and 20 KB, and the (static) congestion threshold (TC) is 0.8.

An initial (expected) observation is that reducing congestion by means of antipack-
ets improves message delivery probability with all routing protocols. A significant im-
provement is also gained by applying congestion control or explicitly limiting the num-
ber of copies per message. Combining both we find that antipackets dominate the per-
formance gain, irrespective of congestion control. But for sparse scenarios (1000 m and
above), congestion controlled epidemic routing does as well as antipackets.

The message delivery delay plot shows that the antipacket mechanism is very effi-
cient in reducing the message delivery delay. This is expected behavior since removing
copies of delivered messages from buffers prevents them from blocking the undelivered
ones. Explicitly limiting number of message copies (spray and wait) yields the smallest
delivery delays, since the other approaches do not minimize queuing in intermediaries,
but rather only avoid increasing it too much. With antipackets, congestion control adds
a marginal improvement and only for sparse scenarios. Without antipackets there is no-
table gain but the main advantage is clearly on the delivery ratio—which is expected
because our congestion control algorithm delays forwarding.

1 Noise is set according to Pn = kTB, where k = 1.38e-23 J/K, T = 290 K, and B =2.437
GHz. With the selected parameters, the node transmission range will be 66-130 m, depending
on the modulation and coding scheme (MCS). The better the MCS, the higher the transmission
rate (and smaller the transmission range).



10 250 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Area dimensions (x,y) [m]

De
liv

er
y 

ra
tio

Delivery Ratio

Epidemic Routing
Binary Spray and Wait
Epidemic Routing + CC
Epidemic Routing, No AP
Binary Spray and Wait, No AP
Epidemic Routing + CC, No AP

10 250 500 1000 1500 2000

10!1

100

101

102

103
Average Delay

De
la

y 
[s

]

Area dimensions (x,y) [m]
10 250 500 1000 1500 2000

10!1

100

101

102

103

95th Percentile Delay

De
la

y 
[s

]

Area dimensions (x,y) [m]

Fig. 2: Heterogeneous nodes, RWP mobility.

Further simulations (graphs omitted) with homogeneous buffer size (400 KB) and
uniform bundle size (10 KB) show largely similar results.

5.2 Trace-based Mobility

Figure 3 illustrates the performance evaluation with more realistic conditions. The top
row shows performance with vehicular mobility derived from the San Francisco cab
trace and the bottom row with pedestrian mobility created using the Helsinki City Sce-
nario. In both cases, the message size is uniformly distributed and varies between 10 KB
and 100 KB with 10 KB granularity. In the San Francisco case, the node buffer size is
either 1.375 MB or 11 MB (both occur with 50% probability) whereas in the Helsinki
case the node buffer size is always 6 MB.

The results of the two simulation scenarios are quite similar. With both mobility
models, using congestion control leads to better delivery ratios. However, in the (more
dense) Helsinki city scenario, this gain is marginal and it seems that bandwidth is a bot-
tleneck, too, so that spray and wait outperforms epidemic routing. Larger hop counts
indicate that using congestion control allows (partly forces) messages to travel further
through the network. This is a positive observation, since using congestion control pre-
vents the message replication (also towards destination) in the intermediary nodes under
heavy traffic.

The delay plot indicates largely similar behavior across all routing approaches. With
congestion control, on the one hand, queues are kept a shorter by means of the threshold
value, as also indicated by the maximum queue sizes. On the other hand, messages may
take longer routes (leading to larger delay) because well-connected (“central”) nodes,
which would enable shorter paths, may have already full buffers and thus cannot be
chosen as next hops. A reduction of the (maximum) delivery delay is achievable in
some scenarios (as visible for the taxi trace), but not in others. In the RWP scenario
above and in the HCS scenario, node mobility and frequent but shorter contacts lead to
higher buffer fill ratio and thus more queuing. Overall, the performance gain for delay
is scenario-dependent and improved delivery rate may or may not come with reduced
delay.

The right side of figure 3 shows the buffer occupancy of the nodes. To some extent,
this reflects the operation of the congestion control algorithm. For the sparser taxi sce-



Delivery ratio Hop count / 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Delivery Ratio and Hop Count

Binary SnW
Binary SnW + CC, TC = 0.8

Epidemic
Epidemic + CC, TC = 0.7
Epidemic + CC, TC = 0.8
Epidemic + CC, TC = 0.9
Epidemic + CC, Adaptive TC
Epidemic + CC, RR

Average 95th Percentile
0

500

1000

1500

2000

2500
Delay

De
la

y 
[s

]

Average Maximum
0

2

4

6

8

10

12 x 106 Buffer Occupancy

Bu
ffe

r o
cc

up
an

cy
 [b

yt
es

]

Delivery ratio Hop count / 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Delivery Ratio and Hop Count

Binary SnW
Binary SnW + CC, TC = 0.8

Epidemic
Epidemic + CC, TC = 0.7
Epidemic + CC, TC = 0.8
Epidemic + CC, TC = 0.9
Epidemic + CC, Adaptive TC
Epidemic + CC, RR

Average 95th Percentile
0

500

1000

1500

2000

2500
Delay

De
la

y 
[s

]

Average Maximum
0

1

2

3

4

5

6

7 x 106 Buffer Occupancy

Bu
ffe

r o
cc

up
an

cy
 [b

yt
es

]

Fig. 3: Real (top) and synthetic mobility trace (bottom).

nario, the maximum and mean buffer levels are correlated with the respectively chosen
threshold (see below) whereas, for the denser HCS scenario, the fill levels are roughly
equal and above the threshold. We attribute this to the dense nature: frequent contacts
and parallel transfers lead to the congestion control algorithm making active use of its
safety margin. Overall, this shows that, despite explicitly limiting message replication,
our congestion control is able to make use of forwarding capacity in the network.

Figure 3 also illustrates a performance comparison of different congestion control
schemes. Congestion threshold (TC) is either static (0.7, 0.8, 0.9) or adaptive. We can
see that a congestion threshold of 0.9 leads to best message delivery ratio. However, we
believe that static congestion threshold may not be suitable for all traffic and mobility
scenarios and, therefore, we prefer an adaptive congestion threshold. The first adaptive
case is our own algorithm (adaptive increase, multiplicative decrease of TC) while the
second one (RR) is from Thompson et al. [20]. As described earlier, our minimum and
maximum values for TC are 0.5 and 0.9.

The results show that our adaptive algorithm (congestion threshold fluctuates be-
tween 0.5 and 0.9) gives as good results as the best static case. However, the algorithm
from Thompson et al. does not seem to work as expected. This may be the result of
different mobility and wireless models compared to [20]. We implemented the latter al-
gorithm exactly as described in [20] with the exception that congestion value CV was
updated periodically (every ten seconds) and not every time a given node meets another
node. The latter alternative would (according to [20]) lead to very low delivery ratios;
the time between two contacts could be either very short or very long and thus there
could be no or tens of received/dropped messages between two contacts.



Summarizing we find that the proposed congestion control variants improve deliv-
ery performance with both mobility scenarios while not negatively impacting any of the
other key performance metrics. This suggests that even a very simple congestion control
approach with only minimal knowledge can be effective in opportunistic networks.

6 Conclusion

We have presented a simple congestion control mechanism for mobile opportunistic
networks that operates using only instantly available local information from itself and
its current contacts. The algorithm is independent of the chosen routing protocol. Our
simulation results using the random waypoint model as well as real-life and synthetic
mobility traces show that our simple congestion control enhancement (implemented
for epidemic routing and spray and wait) performs well across our diverse scenarios:
applying this congestion control scheme generally leads to higher message ratios and
may additionally yield lower delivery delays. We did not come across cases in which
our algorithm harms performance. Exploring additional mobility scenarios and studying
the interaction with other routing protocols (especially such using utility functions) are
subject to our ongoing work.

In contrast to well-connected networks, our algorithm focuses on distributing the
load inside the network and provides only indirect backpressure to the sender: a sender
refuses to create new messages if there is not enough buffer space locally available; this
allows the congestion control algorithm to pace message generation. This decision is
taken as a function of the buffer occupancy at the sender (and thus implicitly the im-
mediate surroundings) rather than of the path towards the destination; this assumes that
transitive propagation of congestion information about a region occurs. Moreover, the
feedback may—naturally—arrive with quite some delay and relies on sufficient interac-
tions between the nodes. One interesting avenue of future research is understanding how
congestion signals spread in time and space, how congestion regions can be identified,
and how such knowledge can be exploited for refining congestion control mechanisms.

Finally, the way how feedback is provided causes all applications on a node (in fact
all nodes in a region) being treated equally: if some of them generate a disproportionally
high load all others might suffer, too, so that additional mechanisms for segregating
traffic inside the buffers (e.g., as discussed in [26]) may need to be applied.

Acknowledgments

This work was partly funded by the Academy of Finland in the RESMAN project (grant
no. 134363).

References

1. A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,” tech.
rep., Duke University, April 2000.



2. T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and wait: an efficient routing
scheme for intermittently connected mobile networks,” in ACM SIGCOMM Workshop on
Delay-Tolerant Networking, (Philadelphia, PA, USA), pp. 252–259, August 2005.

3. Z. Haas and T. Small, “A new networking model for biological applications of ad hoc sensor
networks,” IEEE/ACM Trans. Netw., vol. 14, pp. 27–40, February 2006.

4. V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM, (Stanford, CA, USA),
pp. 314–329, August 1988.

5. S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”
IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413, 1993.

6. K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit Congestion Notification
(ECN) to IP,” RFC Standards Track 3168, IETF, September 2001.

7. “Delay Tolerant Networking Research Group.” http://www.dtnrg.org.
8. K. Scott and S. Burleigh, “Bundle Protocol Specification,” RFC Experimental 5050, IETF,

November 2007.
9. M. Ramadas, S. Burleigh, and S. Farrell, “Licklider Transmission Protocol - Specification,”

RFC Experimental 5326, IETF, September 2008.
10. J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “Maxprop: Routing for vehicle-based

disruption-tolerant networks,” in IEEE INFOCOM, (Barcelona, Spain), pp. 1–11, April 2006.
11. B. Walker, J. Glenn, and T. Clancy, “Analysis of simple counting protocols for delay-tolerant

networks,” in CHANTS’07, (Montréal, Québec, Canada), pp. 19–26, September 2007.
12. M. Seligman, K. Fall, and P. Mundur, “Alternative custodians for congestion control in delay

tolerant networks,” in CHANTS’06, (Pisa, Italy), pp. 229–236, September 2006.
13. M. Seligman, K. Fall, and P. Mundur, “Storage routing for DTN congestion control,” Wirel.

Commun. Mob. Comput., vol. 7, no. 10, pp. 1183–1196, 2007.
14. S. Burleigh, E. Jennings, and J. Schoolcraft, “Autonomous congestion control in delay-

tolerant networks,” in SpaceOps, 2006.
15. G. Zhang, J. Wang, and Y. Liu, “Congestion management in delay tolerant networks,” in

WICON’08, (Maui, Hawaii, USA), pp. 1–9, November 2008.
16. A. Krifa, C. Barakat, and T. Spyropoulos, “Optimal buffer management policies for delay

tolerant networks,” in SECON, (San Francisco, CA, USA), pp. 260–268, July 2008.
17. M. Randkovic and A. Grundy, “Congestion aware forwarding in delay tolerant and social

opportunistic networks,” in WONS, (Bardonecchia, Italy), pp. 60–67, January 2011.
18. J. Pujol, A. Toledo, and P. Rodriguez, “Fair routing in delay tolerant networks,” in IEEE

INFOCOM, (Rio de Janeiro, Brazil), pp. 837–845, April 2009.
19. J. Ryu, V. Bhargava, N. Paine, and S. Shakkottai, “Back-pressure routing and rate control for

icns,” in ACM MobiCom, (Chicago, Illinois, USA), pp. 365–376, September 2010.
20. N. Thompson, S. Nelson, M. Bakht, T. Abdelzaher, and R. Kravets, “Retiring replicants:

congestion control for intermittently-connected networks,” in IEEE INFOCOM, (San Diego,
California, USA), pp. 1118–1126, March 2010.

21. UCB/LBNL/VINT, “Network Simulator - ns (version 2).” http://www.isi.edu/
nsnam/ns.

22. “Cabspotting.” http://cabspotting.org.
23. A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN Protocol Evaluation,”

in SIMUTools ’09, (Rome, Italy), March 2009.
24. U. of Padova, “dei80211mr: a new 802.11 implementation for NS-2.” http://www.dei.

unipd.it/wdyn/?IDsezione=5090.
25. J. Lakkakorpi, M. Pitkänen, and J. Ott, “Adaptive routing in mobile opportunistic networks,”

in ACM MSWIM’10, (Bodrum, Turkey), pp. 101–109, October 2010.
26. J. Solis, N. Asokan, K. Kostiainen, P. Ginzboorg, and J. Ott, “Controlling resource hogs in

mobile delay-tolerant networks,” Comput. Commun., vol. 33, no. 1, pp. 2–10, 2010.


