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Abstract. With the Internet designed to provide best-effort packet transmission,
applications are expected to adapt dynamically to the operating conditions ob-
served in the network. For this purpose, congestion control mechanisms have
been devised for various transport and (partly) application protocols, and appli-
cation programs may present, e.g., data rate information to the user. While these
mechanisms work well for elastic applications (such as file transfer), the per-
ceived performance of real-time applications may degrade quickly if a minimum
required quality of service cannot be achieved. We argue that the current inter-
pretation of adaptation specifically of real-time applications is too narrow and
present a framework for expanding the scope of end-to-end adaptation, using
the case study of voice communications. Our approach is general in nature, but
should especially support communication in mobile environments.

1 Introduction

The Internet Protocol inherently offers a best-effort datagram delivery service, allowing
for arbitrary delay, reordering, loss, and duplication of packets. While reordering and
duplication occur but are not (yet) commonplace, delays and losses are inherent prop-
erties used in the operation of many Internet protocols, as they serve as a measure for
congestion. Transport and application protocols (should) monitor these values and are
supposed to dynamically adapt their behavior to the changing network conditions.

While transport protocols may be designed to adapt as needed (see section 2), two
related assumptions are implied for the applications involved: A1) They are capable
of adapting across a wide range of transmission characteristics. In practice, however,
the only truly adaptive applications appear to be file transfer, be it as a simple client-
server system or a more sophisticated peer-to-peer sharing application, and other ones
operating in the background without being time critical. Instead, most applications have
a limited operational range of network characteristics acceptable to the user, leading to:
A2) The best effort service achieved will be sufficient for the application needs. If it is
not, users will notice and react and typically stop using the applications. This applies to
(semi-)interactive TCP-based applications (such as web access, HTTP streaming, and
SSH) and even more so to UDP-based real-time applications such as VoIP.

We use the term elastic applications for those that are capable of adapting as de-
scribed above (at least within very broad limits), and inelastic applications to denote
those that are limited to a narrower range of operating conditions: due to their very



nature (e.g., real-time monitoring) or because of (present) user expectations (e.g., con-
versational voice).

In this paper, we broaden the scope of application adaptivity in two ways using voice
communication as a case study: a) We capture a broader range across which to adapt,
specifically extending to high delays and temporary disconnections so that networking
conditions are less critical for a voice conversation. b) To support this broader range,
we include more of the application semantics into the considerations of the adaptation
process: In our specific case, we embrace asynchronous voice messaging and semi-
synchronous (two-way alternate) walkie-talkie-style communications and make these
become an integral part of a voice conversation as we will discuss below.

Our goal is to conceptually capture those cases in which the above assumption A2)
no longer holds and to devise exemplary mechanisms to fulfill assumption A1) nev-
ertheless. After a short review of related work on adaptive communication (focusing
on congestion control) in section 2, we describe mobile communication environments
as one case in which assumptions A1) easily fails in section 3. We present the case
study for voice communications in section 4, using two examples of our prior work ad-
dressing how to maintain A2), from which we then develop a more general adaptation
mechanism. We conclude with a brief discussion in section 5.

2 Background and Related Work

At the transport layer, the notion of congestion control has been introduced to TCP
[Jac88] (with countless variants developed since) to share network resources fairly (at
the flow level), a concept incorporated in recent protocols such as SCTP [Ste07] and
DCCP [KHF06a,KHF06b]. Transport protocols also perform timeout adaptation (e.g.,
TCP’s RTO) to cope with varying delays across different networks, which may span
more than six orders of magnitude between a local Ethernet link and a loaded GPRS
network. Path MTU discovery [MD90] is used to determine an appropriate packet size
(e.g., TCP’s segment size) in order to avoid fragmentation, although today often 1460
bytes are assumed to be safe.

All these mechanisms are hidden inside the transport layer and thus invisible to the
applications (figure 1 (left)). The underlying assumption is that applications using such
transport protocols are sufficiently elastic, i.e., can deal well with changing transmis-
sion rates and delays. This abstraction was criticized in the past (e.g., [MBL+04]), as
TCP would retransmit potentially outdated information and an application is not able
to determine the detailed status of the send buffer. The channel concept of SCTP and
its unreliable mode, developments such as Structured Streams [For07], and more direct
resource control [MBL+04] would allow for some more flexibility. Irrespective of these
limitations, several applications use TCP to carry real-time data (e.g., skype uses TCP
as a fallback) to simplify/enable NAT traversal, with some adaptation realized on top
[GKLW02,BBRS08].

Inelastic applications, in contrast, have often avoided TCP and realized the nec-
essary protocol mechanisms on top of UDP, leaving full control to the application as
shown in figure 1 (right). This applies to performing semantic fragmentation of appli-
cation data units and their mapping onto packets [CT90] as is common for real-time
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Fig. 1. Extreme cases for adaptivity in today’s protocol stacks

media transmissions using RTP [SCFJ03,HP99]. Real-time applications are also sup-
posed to adapt to network congestion and packet losses by means of rate adaptation and
error repair and concealment techniques. Rate adaptation can be performed, e.g., by
switching codecs [BVG96], changing codec parameters as for multi-rate codecs such
as AMR [SWB01], and by adjusting packet sizes. Error control may involve interleav-
ing [PHH98], dynamically applying FEC [PKH+97,Li07,BFPT99] or retransmissions
[RLM+06,KH04,ÁHI08]. Several of the above mechanisms may also be combined
(e.g., [MPLJ03]).

The necessary feedback loops for observing network conditions to allow a sender
to dynamically adapt its transmission behavior may be based upon RTCP reporting
[SCFJ03,OWS+06,Gar07]. Such feedback loops may also use information of transport
protocols such as DCCP [Per07,BENB07] (or SCTP), in which case the solutions are
in-between the two extremes shown in figure 1.

Overall, the key consideration for adaptivity in interactive real-time communica-
tions remains the perceivably acceptable delay when trading off delay, loss, and data
rate in rate control, interleaving, FEC, and retransmission schemes. According to ITU-
T G.114 [Int], the one-way delay for interactive voice communication should not exceed
150 ms, 150–400 ms are potentially tolerable, and delays above 400 ms are not accept-
able. This limits the range of network conditions across which these applications can
operate if the notion of interactive voice shall be preserved.

3 The (Mobile) Internet Today: When Best Effort Is Not Enough

With wireless and mobile Internet becoming increasingly dominant, the connectiv-
ity characteristics for mobile users deserve explicit consideration in protocol design
[Ott06]. It is well known that wireless and mobile connectivity characteristics may dif-
fer significantly from what is observed in the fixed Internet. Specifically, wireless links



are susceptible to attenuation, interference, etc. as well as varying load due to shared
channels and may yield highly variable delays (jitter) due to link layer retransmissions
and queuing. Worse, the physical layer phenomena and also coverage gaps may lead to
temporary loss of connectivity: from fractions of a second to minutes or hours.

In effect, loss, delay, and throughput of wireless links may vary more heavily and
more abruptly than in fixed networks, making adaptation more demanding. While con-
gestion in fixed networks often builds up gradually and thus makes rate, loss, and delay
estimation somewhat predictable (unless routing changes), sudden interference, han-
dovers to networks with (much) lower performance, or coverage gaps may impact (and
possibly stall) communication instantaneously; similarly, conditions may improve sud-
denly and capacity becoming available again may not be fully exploited.1 To cope with
short disconnections (specifically during handovers), network operators often perform
significant queuing for their mobile data networks; however, this leads to delay being
accumulated, negatively impacting TCP and interactive application protocols. On the
other hand, if no or little queuing takes place, more losses occur. Longer disconnec-
tions will lead to packet losses in either case. Overall, the outcome from an application
perspective is delay [Ott08].

Interactive voice applications suffer from high delays and jitter as discussed above.
Jitter requires playout buffering and thus may incur additional delays (if adapted too
conservatively); when delays exceed the predictions for playout buffering so that pack-
ets miss their playout deadline, these packets are discarded, increasing loss.

In contrast, VoIP can adapt quite well to the available bit rate. Since a range of
codecs exists nowadays (some of them support variable data rates), audio communi-
cation can be adapted between some 4 kbit/s (Speex, AMR-NB) and 64 kbit/s (G.711),
providing a flexible operating range to cope with congestion. If the short-term average
data rate drops below the lower bound, transmitting speech is no longer possible in
real-time and additional delay is introduced—or packet losses occur. However, delay
and round-trip time (RTT) impact the reactivity of the rate adaptation mechanisms and
late adaptation may increase queuing delays and/or cause losses.

Occasional packet losses (due to congestion or bit errors) are tolerable for voice
applications and can be handled by receiver-side error concealment techniques. More
substantial loss rates or loss bursts lead to unintelligible speech and therefore require
applying error control mechanisms, all of which increase the overall delay. As it was
found for skype users that delay has a less significant impact on perceived speech quality
than losses [CHHL06], some flexibility for packet repair exists beyond the guidelines
of G.114 [Int], so that loss bursts and short-term outages might be concealed.2

1 From an endpoint’s perspective it is close to irrelevant whether communication is inhibited by
congestion or due to mobility (and it may be impossible to find out); hence, a protocol instance
at an endpoint should not (need to) care.

2 It is worthwhile noting that ITU-T recommendation G.114 is from 1993, a time before the
widespread acceptance of mobile telephony (with quite different reliability characteristics)
and VoIP. User expectations are probably changing with the use of different communication
infrastructures and users may be willing to trade off, e.g., the earlier notion of quality for
additional value (mobility, reachability, presence and messaging integration) or lower cost.



Nevertheless, as losses, delays or the frequency of disconnections grow, interactive
voice becomes essentially unusable. At some point, rate and error control mechanisms
may no longer be capable of adapting to the environment and the user has to choose
between less interactivity and reduced intelligibility.

This example shows that wireless and mobile communication may yield a best ef-
fort service that is insufficient for specific applications if the network characteristics are
(temporarily) outside the operational range supported by the respective application (in
our case conversational voice). In the above example, the voice communication appli-
cation is limited in its capability to adapt to a broader range of operational conditions
because of the fairly strict interactivity requirements: the specific application semantics
define what interactive voice means to meet the user expectations.3 Rather than trying
to make all networks match the application needs (e.g., using elaborate QoS mecha-
nisms), we suggest to revisit the application semantics and investigate whether those
can be broadened to allow expanding the application’s operational range.4

For voice communication, this could mean reconsidering the notion of interactiv-
ity: if we are willing to tolerate higher one-way delays well beyond 150–400 ms, we
may be able to employ better error control mechanisms and improve intelligibility of
speech. And we may be able to deal with (short) connectivity disruptions by temporar-
ily buffering speech and relaying it when connectivity becomes available again. Both
would shift voice communications towards less synchronous interactions if the envi-
ronmental conditions so require. In the following section, we will discuss two distinct
extensions to conversational voice applications that explore the aforementioned ideas.
We then develop them further towards a concept of a more adaptive voice application
that has a broader notion of interactive voice.

4 Case Study: Adaptive Voice Communication

Users of mobile phones are well aware of varying network conditions and the resulting
effects ranging from short-term outages to call disconnections. And users of VoIP over
wireless networks (such as WLANs) often experience (short) periods of unintelligible
speech due to losses. In either case, the voice applications are not capable of adapting to
the network conditions and error handling is up to the user: from “manual synchroniza-
tion” by repeating sentences to re-dialing a lost call [OX07]. We have investigated two
different classes of mobile voice communication applications to deal with insufficient
connectivity:

3 For other applications, this holds even if the underlying transport (and session) protocols are
capable of tolerating a broader operational range (see, e.g., the countless extensions on TCP
performance enhancements and disconnection tolerance as discussed in [OSC+09]) and if the
user would be willing to tolerate a lower degree of interactivity, simply because application
operations may time out when disconnections last sufficiently long.

4 Recall that, due to the very nature of wireless communications, QoS cannot always be guaran-
teed, so that the mechanisms discussed here should also be suitable for well-managed wireless
networks.



1. Disconnection-tolerant SIP
We have investigated switching between plain SIP voice calls and voice messag-
ing for IP networks, integrating automatic redial functionality [OX07]. In this ap-
proach, two endpoints constantly monitor the networking conditions by observing
RTP and RTCP reports from their respective peer to detect gaps in connectivity.
These gaps are classified into short (up to several seconds of lost speech, but the
call continues), medium (up to one minute, call disconnected), and large (more
than one minute, call disconnected and could not be re-established). In addition,
each endpoint records the last few seconds of transmitted speech in a local ring
buffer for later auto-recovery.

Short outages are recovered by automatically repeating the last (likely incompletely
received) talk spurt(s) to the peer (which performs duplicate filtering to avoid too
much replay) so that the re-synchronization (“What did you say?”) is not entirely
up to the users. Medium gaps are repaired by automated re-dialing and answering
paired with playback so that the parties can continue talking. Long disconnections
are addressed by redirecting the last bits of the conversation to the peer’s voice mail
so that at least the last statements can be completed and stored for later retrieval.

These mechanisms address those cases in which the interactive conversation is al-
ready disturbed by the environment and provide a means to simplify recovery.

2. DT-Talkie: Asynchronous Voice Messaging
We have developed an asynchronous voice messaging application running on top
of delay-tolerant networks (DTNs) [Fal03] that allows peer-to-peer voice conversa-
tions for two or more parties, somewhat similar to Push-to-Talk services (PTT), but
without reliance on network or server infrastructure and without the need for a real-
time path [ITK+09,Isl09]. Its use of DTN concepts makes DT-Talkie applicable to
ad-hoc network environments as well as disconnection-prone mobile connectivity.

The DT-Talkie captures and stores voice statements locally and groups these state-
ments into voice messages. The messages are sent asynchronously to the respective
peer, directly or indirectly via intermediate nodes, with each message being trans-
mitted reliably hop-by-hop using the underlying DTN protocol stack. After (com-
plete) reception, the receiver renders the message from local memory; timing is
maintained within but not across statements. Capturing to and rendering from local
memory ensure smooth recording and playback, the use of a hop-by-hop-reliable
transport ensures that no message parts get lost. Together, this decouples the fi-
delity of voice communication (perfect intelligibility) from the underlying network
conditions, at the expense of increasing delay.

This application goes well beyond disconnection-tolerant SIP in assuming non-
connectivity in the first place. Well-connected nodes experience roughly similar
quality as Push-to-talk-over-Cellular (PoC) services, whereas poorly connected ones
are able to communicate better than before.

We can generalize these ideas further and synthesize both approaches if we assume
a more flexible communication substrate allowing for the exchange of small to arbitrar-



ily large packets (or: messages)5, thus creating a continuum of voice-based interactions
as shown in figure 2. At the top of the figure, we indicate today’s disjoint voice appli-
cations from real-time interactive voice on one end of the spectrum to voice mail on the
other. These disjoint applications represent different ways of interactions between users
with different degrees of interactivity and delay tolerance. They could be integrated as
different modes of operation into a single encompassing voice application as described
below.

Real‐&me Interac&ve voice  Voice mail 
... 

Push‐to‐Talk 

Streaming‐based  Messaging‐based 

Delay 
tolerance Packet size 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Reliable transport 

Unreliable 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Fig. 2. Adaptivity of voice applications: Different application classes (top) exhibit different de-
grees of delay tolerance (shown on the axis)—which is related to their packet sizes (shown using
the order notation O(...). The larger the packets are, the more important gets reliable delivery.)

As noted above, a key metric for communications is delay, since packet loss may
be reduced when allowing for more delay, disconnections can be overcome by waiting
sufficiently long, and the data rate of audio codecs appears sufficiently adaptive for most
scenarios; if less instant capacity is available, reverting to non-real-time transmission
will help, at the expense of increased delay. The mode of operation with the lowest delay
are interactive real-time voice conversations, in which we assume minimal mouth-to-
ear-delay (typically < 150ms) for acceptable interactivity. Longer delays are tolerable
if we move towards less synchronous interactions, as known from one-way alternate
communications via walkie-talkies or Push-to-Talk; yet some degree of interactivity is
preserved. Depending on the network conditions, information exchange may be based
upon real-time packet streaming (as in Push-to-talk over Cellular) or reliable exchange
of messages (as in our DT-Talkie). Finally, voice messaging offers a rather asynchronous
style of interaction, more comparable to email.

If we exploit all these different modes of operation and move smoothly between
them (subject to the consent of the user), we can make VoIP applications more elas-
tic and expand their operational range. This is conceptually depicted in figure 3. The

5 This functionality may be realized at the network layer, as in some DTNs or in a future Internet
[Ott08], or at the transport or application layer as an overlay on top of IP.



traditional adaptation for (in this case SIP-based) VoIP systems is shown at the top:
The user has some high-level control to specify preferences (usually via quite flexible
default settings to ensure interoperability) towards the VoIP application. It couples the
media exchange and the signaling functions (call setup and teardown, etc.) and performs
the real-time capturing and rendering functions. Based upon the user preferences, the
codec and transport layers (their mechanisms are often also referred to as source and
channel coding, respectively) perform codec-specific and generic error and rate control.
Assuming, e.g., RTCP to monitor RTT, jitter, loss rate, and (implicitly) connectivity, the
endpoints can adapt their bit rate by choosing different audio codecs and their packet
rate (and header overhead) by varying packet sizes.
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The entire adaptation is vertical, i.e., constrained to the media protocol stack, and
after the initial call setup not further intertwined with call signaling. Similar vertical
adaptation mechanisms exist for other types of voice interaction as shown in the figure at
the bottom: however, no cross-function adaptation is foreseen in today’s applications.6

The above vertical adaptation mechanisms can be leveraged when broadening the
scope of interactive voice communications and smoothly extending it to cover push-to-
talk- and voice-message-style communications as well. This is conceptually shown in
figure 3 at the bottom, denoted as horizontal adaptation. Depending on the observed
network conditions, an adaptive application may move between different modes of op-
erations. Ideally, there are no fixed boundaries as in today’s applications, but rather a
smooth transition would be foreseen.

As shown in figure 2, starting out with a regular voice call, packets are kept small
to achieve a high degree of interactivity, with the above vertical adaptation mechanisms
applied. When network conditions worsen, voice application data units (ADUs) can be
increased further. With increasing ADU sizes, however, delay increases and communi-
cation loses interactivity. While using regular sampling intervals (e.g., 10–100ms) for
smaller packets, an application may decide to identify talk-spurts and send (groups of)
talk-spurts in ADUs to keep such related information together: words of a sentence and
a sequence of sentences of a statement. This ensures that related pieces of each talk-
spurt are either delivered in their entirety and can be played back without interruption
or are not delivered at all. This can be expanded further to gather complete statements
of a user (as with walkie-talkies), e.g., by means of local processing using heuristics,
leading further towards asynchronous communication. If connectivity to a peer is lost
entirely (for some time), one or more local statements may be aggregated and turned
into voice mail. Continuous monitoring of networking conditions should also indicate
when the situation is improving, so that the application can move again towards syn-
chronous operation (or resume communication after disconnection).

With increasing ADU size, the impact of a single lost ADU grows: error conceal-
ment will work less well for 100ms of missing speech than for only 20ms and if en-
tire statements get lost, the peer may wonder why nobody is responding. Hence, larger
ADUs suggest using more reliable transport mechanisms—which are “affordable” since
the acceptable delay also increases, thus e.g. allowing for retransmissions.

5 Discussion and Conclusion

The above example presents a conceptual technically-oriented view on adaptive appli-
cations. We have outlined how broader adaptation could be achieved and sketch how
media transmission, monitoring, and to some extent signaling could interact to realize
this idea. But the details require further investigation and specific protocol and system
designs will need rigorous analytical, simulation, and experimental validation. An inter-
esting technical challenge will be multi-party conversations with the parties connected
to each other under different, varying path conditions.

6 Of course, a call setup request may be directed to a voice mailbox; but this happens at the call
setup time, before the conversation starts, and is thus not related to adaptation.



At least equally important, however, is the non-technical dimension. While it may
be feasible to design such an encompassing adaptive voice application, will the idea of
a smooth transition across a very broad operational range be accepted by human users?
This involves at least two aspects: usability and user expectations. Concerning the for-
mer, a suitable (intuitive, unobtrusive) user interface is required. It has to ensure smooth
motion back and forth between more synchronous and more asynchronous styles of in-
teraction, with right level of reactivity. It should offer embedded cues to the user about
the present degree of interaction for a given conversation, and it should allow a user to
easily control the range of adaptation acceptable for a given conversation. As for the
latter, it appears important to steer user expectations: this kind of more adaptive appli-
cation that is a phone at one instant and turns into a walkie-talkie at the next would
probably not appeal someone expecting a phone that always works. Since we have seen
in the aforementioned examples of mobile phones and skype that users are able to adapt
expectations (including increased delay tolerance) and behavior, we are optimistic that
also the idea of broader adaptation mechanisms could be embraced.

Finally, while we offered some intuition on how more comprehensive considera-
tions could help adaptivity of voice communications, similar considerations may be ap-
plicable to other real-time and non-real-time applications: For example, media stream-
ing applications already perform pre-buffering to deal with varying networking con-
ditions, a concept that has been explored further to deal with temporary disconnec-
tions and could be extended towards broader adaptivity in general, possibly integrating
Podcast-style downloads and real-time streaming. Also, web applications could toggle
more smoothly between online and offline operation [OK06], provided that the appli-
cation protocols are adapted accordingly [Ott06].

One interesting follow-up question is whether commonalities can be identified across
different applications for common support in future transport protocols. Another one
warranting further discussion is what the implications on the present (or a future) net-
working infrastructure are. We have argued that a future Internet should become inher-
ently more delay-tolerant [Ott08] but, as we discussed above, there is a feature inter-
action between queuing/buffering ADUs inside the network and the end-to-end control
loops of the applications. This may call for limited additional interaction between end-
points and network elements—e.g., providing hints for ADU processing—while main-
taining the endpoints independent of the network elements.
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