
The ONE Simulator for DTN Protocol Evaluation

Ari Keränen, Jörg Ott, Teemu Kärkkäinen
Helsinki University of Technology (TKK)

Department of Communications and Networking
{akeranen,jo,teemuk}@netlab.tkk.fi

ABSTRACT
Delay-tolerant Networking (DTN) enables communication in sparse
mobile ad-hoc networks and other challenged environments where
traditional networking fails and new routing and application pro-
tocols are required. Past experience with DTN routing and appli-
cation protocols has shown that their performance is highly depen-
dent on the underlying mobility and node characteristics. Evalu-
ating DTN protocols across many scenarios requires suitable sim-
ulation tools. This paper presents the Opportunistic Networking
Environment (ONE) simulator specifically designed for evaluat-
ing DTN routing and application protocols. It allows users to cre-
ate scenarios based upon different synthetic movement models and
real-world traces and offers a framework for implementing routing
and application protocols (already including six well-known rout-
ing protocols). Interactive visualization and post-processing tools
support evaluating experiments and an emulation mode allows the
ONE simulator to become part of a real-world DTN testbed. We
show sample simulations to demonstrate the simulator’s flexible
support for DTN protocol evaluation.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Proto-
cols; I.6.7 [Simulation and Modeling]: Simulation Support Sys-
tems

General Terms
Performance, Experimentation

Keywords
Delay-tolerant Networking, Simulations, Routing

1. INTRODUCTION
Personal communication devices, such as cellular phones, have

enabled voice and data communications to mobile users, achieving
global connectivity via infrastructure networks (cellular, WLAN).
Local connectivity among the devices may additionally be obtained

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2009, Rome, Italy.
Copyright 2009 ICST ISBN 978-963-9799-45-5.

by forming ad-hoc networks since the mobile devices are virtually
always turned on and have the necessary radio interfaces, process-
ing power, storage capacity, and battery lifetime to act as routers.
However, such usually sparse ad-hoc networks generally cannot
support the type of end-to-end connectivity required by the classic
TCP/IP-based communications due to frequent topology changes,
disruptions, and network partitions caused by the node movement.
Instead, asynchronous message passing (also referred to as store-
carry-forward networking) has been suggested to enable commu-
nication over the space-time paths that exist in these types of net-
works (e.g., Delay-tolerant Networking, DTN [10], Haggle [24]).

The performance of such opportunistic networks may vary sig-
nificantly, depending on how the mobile nodes move, how dense
the node population is, and how far apart the sender and the receiver
are. Delivery latency may vary from a few minutes to hours or days,
and a significant fraction of the messages may not be delivered at
all. The key factors are the routing and forwarding algorithms used
and how well their design assumptions match the actual mobility
patterns. No ideal routing scheme has been found so far.

Simulations play an important role in analyzing the behavior of
DTN routing and application protocols. With typically sparsely
distributed nodes, DTN simulations abstract from the details of the
wireless link characteristics and simply assume that two nodes can
communicate when they are in range of one another. This allows
focusing on the evaluation of the DTN protocols—an approach we
follow in this paper. Instead of fully modeling the lower layers
we make simplifying assumptions about the data rates, the radio
ranges, and thus the resulting transfer volumes.

In sparse node populations, the space-time paths, which are ex-
ploited by the store-carry-forward communications, are composed
of the encounters between the nodes. The frequency, duration, and
other characteristics of these encounters are largely dependent on
the underlying mobility patterns. Evaluations of DTN protocols
have used a large variety of synthetic mobility models as well as
real-world mobility traces (which we review in section 2). While
synthetically generated node mobility allows for fine-tuning in many
respects, this usually covers only limited mobility characteristics.
In contrast, real-world traces often have only coarse temporal (e.g.,
scanning intervals in the order of several minutes) or spatial reso-
lution (e.g., location determined from WLAN access point attach-
ment) and coverage (e.g., only covering a campus area) and may
exhibit biases due to the user group chosen for sampling.

All these approaches may provide complementary data points
when assessing the performance of DTN protocols. What is im-
portant is that protocols are evaluated under different settings and
that these settings can be fine-tuned to match the intended applica-
tion scenario(s) as closely as possible. In this paper, we present the
Opportunistic Networking Environment (ONE) simulator, a Java-

based tool offering a broad set of DTN protocol simulation capa-
bilities in a single framework, designed based upon our experience
from analyzing numerous DTN routing and application protocols.1

Our contributions are twofold: 1) The ONE simulator offers an ex-
tensible simulation framework itself supporting mobility and event
generation, message exchange, DTN routing and application proto-
cols, a basic notion of energy consumption, visualization and anal-
ysis, interfaces for importing and exporting mobility traces, events,
and entire messages. 2) Using this framework, we implemented
an extensive set of ready-to-use modules: six synthetic mobility
models that can be parameterized and combined to approximate
real-world mobility scenarios, six configurable well-known DTN
routing schemes, a set of base primitives to design application pro-
tocols, a basic battery and energy consumption model, several in-
put/output filters for interacting with other simulators, and a mech-
anism for the integration with real-world testbeds. The ONE simu-
lator is designed in a modular fashion, allowing extensions of virtu-
ally all functions to be implemented using well-defined interfaces.

This paper is structured as follows: In section 2, we review re-
lated work on DTNs and (related) simulations for mobility. We
introduce the architecture and different features of the ONE simu-
lator in depth in section 3 and describe how ONE is used in emu-
lation setups in section 4. We show example simulation results and
comment on the simulator’s performance in section 5. Section 6
concludes this paper with a summary and points out future work.

2. RELATED WORK
In this paper, we focus on communication performance in delay-

tolerant ad-hoc networks comprising mobile nodes. Delay-tolerant
Networking [10] is increasingly applied to enable communication
in challenging networking environments, including sparse sensor-
nets and opportunistic mobile ad-hoc networks. The DTNRG ar-
chitecture [5] proposes a bundle layer as an overlay to bridge dif-
ferent (inter)networks. Nodes communicate via asynchronous mes-
sages of arbitrary size that are exchanged using the store-carry-and-
forward paradigm. Messages have a finite TTL and are discarded
when the TTL expires. They may also get dropped by a node due
to congestion, yielding a best-effort service. Application protocols
need to tolerate the delays resulting from the challenged environ-
ment and the risk that messages are not delivered in time or not
at all. Typical performance metrics for evaluating DTN protocol
performance are hence message delivery probability and latency.

Numerous routing and forwarding schemes have been proposed
over the past years (refer to [32] and [21] for overviews). Different
mechanisms are usually applied depending on whether the network
is primarily of mobile ad-hoc nature (e.g., mobile devices carried
by humans) or is based upon a (fixed or mobile) infrastructure (e.g.,
space networks, bus networks). Obviously, mixed networks exist as
well (e.g., mobile users supported by infrastructure nodes).

The primary difference between various DTN routing protocols
is the amount of information they have available to make forward-
ing decisions [13]. Ad-hoc DTNs usually apply variants of reactive
protocols. Flooding protocols such as epidemic routing [30] do not
use any information. Predictive protocols such as PRoPHET [19]
use past encounters of nodes to predict their future suitability to
deliver messages to a certain target whereas other protocols also
exploit further (explicitly configured) schedule and context infor-
mation per node [18]. Furthermore, they differ in their replication
strategies, i.e., how many copies of a message they create which,
in turn, has a direct impact on the load incurred on the network.
Some protocols generate just a single copy [27] (e.g., First Contact

1This paper is based upon and extends our technical report [17].

[13], Direct Transmission/Delivery [27]), others a fixed number
limited by the sender [28] [26] while epidemic [30] and probabilis-
tic [19] routing potentially create an “infinite” number of messages.
Scheduling strategies govern in which order messages are passed
when a communication opportunity occurs between two nodes. Fi-
nally, queue management strategies define when and which mes-
sages are deleted, e.g., if congestion occurs.

For evaluating the performance of DTN routing protocols, man-
ifold settings have been used, mostly including some type of node
mobility. Mobility has been created (a) from synthetic mobility
models, (b) taken from traces obtained from real-world measure-
ments, and (c) by evaluating code in the real-world. While a few
testbeds for (c) exist (such as DieselNet [3]) their flexibility is usu-
ally limited, large-scale operation “expensive”, and their use is typ-
ically limited to those running the testbed. Such testbeds may also
be used to obtain real-world traces (b) which can then be made
available to other researchers.

Various projects have collected traces of contacts (peers, times,
durations, and possibly positions) between Bluetooth devices [11],
between users and/or wireless access points [8], among others. The
CRAWDAD project2 provides a repository where numerous real-
world traces are available.3 These traces offer insights into real-
world interactions between mobile users from different angles and
constitute a valuable data source for validating the mobility and
connectivity characteristics obtained from synthetic models.

But also real-world traces have their limitations as—so far—the
population analyzed in these traces is naturally very limited and
may thus bias the results. Furthermore, the time granularity is of-
ten limited in order not to drain mobile device batteries too quickly:
e.g., the Haggle iMotes uses sensing intervals of 5 min so that many
contact opportunities may easily go undetected and contact dura-
tions can only be assessed equally coarsely. While this can be seen
to reflect energy constraints, the scanning interval cannot be ad-
justed afterwards. Finally, the results cannot be arbitrarily scaled,
thus limiting what can be evaluated.

The only option for flexible and scalable simulations is thus (a)
model-based synthetic mobility generation.4 Mobility models range
from simple entity models such as Random Waypoint to complex
ones such as Random Trip [2] to group mobility to community
models with major points of interest [4] to vehicular ones taking
street maps into account (e.g., [6]). Node velocity and pause times
may be adjusted to match pedestrians, vehicles, or other node types
and smooth turns, acceleration and deceleration may be added to
obtain more realistic behavior [1]. Specific models for vehicular
networking furthermore consider additional constraints from sim-
ple road setups to real-world maps on one hand and simple non-
interfering vehicles to vehicular interaction (distance, speed) based
upon traffic flow models on the other. Approximations for foot-
path construction in and around buildings are used to make motion
more realistic and transmission range and performance is adapted
to model walls between mobile nodes [14].

In other areas (e.g., for epidemic spreading studies or traffic plan-
ning), more complex simulation models have been created mimick-
ing the behavior of the population of an entire city [20]. Depending
on the precise setting, the latter may not have the proper focus for
evaluating ad-hoc interpersonal communications: TRANSIMS, for
example, allows modeling a population and their interaction at cer-
tain locations or in vehicles, but does not include details on the way
between such locations, which limits the suitability of the generated

2http://crawdad.cs.dartmouth.edu/
3The DieselNet traces are available at http://traces.cs.umass.edu.
4For an overview, see, e.g., [1, 4, 9] and the references therein.

mobility data of pedestrians. In the case of TRANSIMS, detailed
vehicle information could be made available and has been used for
investigating MANET protocols [20].

Mobility generators for simple models are available for ns-2 and
ns-3, as part of their respective toolsets or as specific extensions
(e.g., [2]); both ns-2 and ns-3 accept suitably converted traces as
input.5 The latter also holds for various openly available DTN sim-
ulators (dtnsim [13] and dtnsim26) and numerous ones tailored to
specific research needs, based upon OMNet++, OPNET, or entirely
newly developed7, all of which have rather limited support for DTN
routing protocols readily available. While ns-2 (and now ns-3)
and OMNet++ offer sound generic open simulation platforms for
packet-based communications and tools such as JANE [7] provide
specific support for MANETs, generic support for DTN simulation
is overall fairly limited. The ONE simulator contributes an environ-
ment for DTN protocol evaluation, embedding internal and external
mobility models, different DTN routing schemes, and interactive
inspection (similar to nsnam for ns-2) as well as post-processing.

3. THE ONE SIMULATOR
At its core, ONE is an agent-based discrete event simulation en-

gine. At each simulation step the engine updates a number of mod-
ules that implement the main simulation functions.

The main functions of the ONE simulator are the modeling of
node movement, inter-node contacts, routing and message han-
dling. Result collection and analysis are done through visualiza-
tion, reports and post-processing tools. The elements and their
interactions are shown in figure 1. A detailed description of the
simulator is available in [16] and the ONE simulator project page
[29] where the source code is also available.

Node movement is implemented by movement models. These
are either synthetic models or existing movement traces. Connec-
tivity between the nodes is based on their location, communication
range and the bit-rate. The routing function is implemented by rout-
ing modules that decide which messages to forward over existing
contacts. Finally, the messages themselves are generated through
event generators. The messages are always unicast, having a single
source and destination host inside the simulation world.

Simulation results are collected primarily through reports gener-
ated by report modules during the simulation run. Report modules
receive events (e.g., message or connectivity events) from the sim-
ulation engine and generate results based on them. The results gen-
erated may be logs of events that are then further processed by the
external post-processing tools, or they may be aggregate statistics
calculated in the simulator. Secondarily, the graphical user inter-
face (GUI) displays a visualization of the simulation state showing
the locations, active contacts and messages carried by the nodes.

3.1 Node Capabilities
The basic agents in the simulator are called nodes. A node mod-

els a mobile endpoint capable of acting as a store-carry-forward
router (e.g., a pedestrian, car or tram with the required hardware).
Simulation scenarios are built from groups of nodes in a simulation
world. Each group is configured with different capabilities.

Each node has a set of basic capabilities that are modeled. These
are radio interface, persistent storage, movement, energy consump-
tion and message routing. Node capabilities such as the radio in-
terface and persistent storage that involve only simple modeling are

5http://www.nsnam.org
6http://watwire.uwaterloo.ca/DTN/sim/
7E.g., Pydtn at http://www.umiacs.umd.edu/˜mmarsh/pydtn/ and
http://www-net.cs.umass.edu/˜ellenz/software.html.

routing

visualization and results

simulation

engine

connectivity

data

external DTN

routing sim

internal routing

logic

routing

data

visualization,

reports, etc.

post processors

(e.g. graphviz)

graphs,

charts,

 etc.

event generators

External events file

Message event generator

etc.

movement models

Random waypoint

External trace

Map-based movement

etc.

Figure 1: Overview of the ONE simulation environment

configured through parametrization (e.g., communication range, bit-
rate, peer scanning interval and storage capacity). More complex
capabilities such as movement and routing are configured through
specialized modules that implement a particular behavior for the
capability (e.g., different mobility models).

Modules in each node have access to the node’s basic simula-
tion parameters and state, including the position, current movement
path, and current neighbors. This allows implementing, e.g., geo-
graphic routing and other context-specific algorithms. In addition,
modules can make any of their parameters available for other mod-
ules in the same node through an intermodule communication bus.
This way, for example, a movement module can change its behav-
ior depending on the router module’s state or a router module can
adjust the radio parameters based on the node intercontact times.

The focus of the simulator is on modeling the behavior of store-
carry-forward networking, and hence we deliberately refrain from
detailed modeling of the lower layer mechanisms such as signal at-
tenuation and congestion of the physical medium. Instead, the radio
link is abstracted to a communication range and bit-rate. These are
statically configured and typically assumed to remain constant over
the simulation. However, the context awareness and dynamic link
configuration mechanisms can be used to adjust both range and bit-
rate depending on the surroundings, the distance between peers and
the number of (active) nodes nearby as suggested, e.g., in [14].

The node energy consumption model is based on an energy bud-
get approach. Each node is given an energy budget which is spent
by energy consuming activities such as transmission or scanning
and can be filled by charging in certain locations (e.g., at home).
An inquiry mechanism allows other modules to obtain energy level
readings and adjust their actions (e.g., scanning frequency as in
[31], forwarding activity, or transmission power) accordingly.

Node movement capabilities are explained below in section 3.2
and the message routing capabilities in section 3.3.

3.2 Mobility Modeling
Node movement capabilities are implemented through mobility

models. Mobility models define the algorithms and rules that gen-
erate the node movement paths. Three types of synthetic movement
models are included: 1) random movement, 2) map-constrained
random movement, and 3) human behavior based movement.

The simulator includes a framework for creating movement mod-
els as well as interfaces for loading external movement data (see
3.5). Implementations of popular Random Walk (RW) and Random
Waypoint (RWP) are included. While these models are popular due
to their simplicity, they have various known shortcomings [4].

To better model real-world mobility, map-based mobility con-

strains node movement to predefined paths and routes derived from
real map data. Further realism is added by the Working Day Move-
ment (WDM) model [9] that attempts to model typical human move-
ment patters during working weeks.

3.2.1 Map-Based Mobility
Map-based movement models constrain the node movement to

paths defined in map data. The ONE simulator release includes
three map-based movement models: 1) Random Map-Based Move-
ment (MBM), 2) Shortest Path Map-Based Movement (SPMBM),
and 3) Routed Map-Based Movement (RMBM). Furthermore, the
release contains map data of the Helsinki downtown area (roads
and pedestrian walkways) that the map-based movement models
can use. However, the movement models understand arbitrary map
data defined in (a subset of) Well Known Text (WKT). Such data
is typically converted from real-world map data or created manu-
ally using Geographic Information System (GIS) programs such as
OpenJUMP.8

In the simplest map-based model, MBM, nodes move randomly
but always follow the paths defined by the map data. This results
in a random walk of the network defined by the map data and thus
may not be a very accurate approximation of real human mobility.
A more realistic model is the SPMBM where, instead of a com-
pletely random walk, the nodes choose a random point on the map
and then follow the shortest route to that point from their current lo-
cation. The points may be chosen completely randomly or from a
list of Points of Interest (POI). These POIs may be chosen to match
popular real-world destinations such as tourist attractions, shops
or restaurants. Finally, nodes may have pre-determined routes that
they follow, resulting in the RMBM model. Such routes may be
constructed to match, e.g., bus, tram or train routes.

3.2.2 Working Day Movement Model (WDM)
While high-level movement models such as RWP, MBM, and

SPMBM are simple to understand and efficient to use in simula-
tions they do not generate inter-contact time and contact time dis-
tributions that match real-world traces, especially when the number
of nodes in the simulation is small. In order to increase the reality
of (human) node mobility, we have developed the Working Day
Movement (WDM) model [9] for ONE.

The WDM model brings more reality to the node movement by
modeling three major activities typically performed by humans dur-
ing a working week: 1) sleeping at home, 2) working at the office,
and 3) going out with friends in the evening. These three activi-
ties are divided into corresponding sub-models between which the
simulated nodes transition depending on the time of the day.

Beyond the activities themselves, the WDM model includes three
different transport models. The nodes can move alone or in groups
by walking, driving or riding a bus. The ability to move alone or in
groups at different speeds increases the heterogeneity of movement
which has impact on the performance of, e.g., routing protocols.

Finally, WDM introduces communities and social relationships
which are not captured by simpler models such as RWP. The com-
munities are composed from nodes which work in the same office,
spend time in the same evening activity spots or live together.

We have shown that the inter-contact time and contact time dis-
tributions generated by the WDM model follow closely the ones
found in the traces from real-world measurements [9].

3.3 Routing
The message routing capability is implemented similarly to the

movement capability: the simulator includes a framework for defin-
8http://openjump.org

ing the algorithms and rules used in routing and comes with ready
implementations of well known DTN routing protocols.

There are six included routing protocols: 1) Direct Delivery (DD),
2) First Contact (FC), 3) Spray-and-Wait, 4) PRoPHET, 5) Max-
Prop, and 6) Epidemic. This selection covers the most impor-
tant classes of DTN routing protocols: single-copy, n-copy and
unlimited-copy protocols, as well as estimation based protocols.

Direct Delivery and First Contact are single-copy routing proto-
cols where only one copy of each message exists in the network. In
Direct Delivery, the node carries messages until it meets their final
destination. In First Contact routing the nodes forward messages
to the first node they encounter, which results in a “random walk”
search for the destination node.

Spray-and-Wait [28] is an n-copy routing protocol that limits the
number of message copies created to a configurable maximum and
distributes (“sprays”) these copies to contacts until the number of
copies is exhausted. Both variants of Spray-and-Wait suggested by
its authors are included: in normal mode, a node gives one copy to
a contact, in binary mode half of the copies are forwarded. Once
only a single copy is left, it is forwarded only to the final recipient.

Three routing protocols perform variants of flooding. Epidemic
[30] replicates messages to all encountered peers, while PRoPHET
[19] tries to estimate which node has the highest “likelihood” of
being able to deliver a message to the final destination based on
node encounter history. MaxProp [3] floods the messages but ex-
plicitly clears them once a copy gets delivered to the destination. In
addition, MaxProp sends messages to other hosts in specific order
that takes into account message hop counts and message delivery
probabilities based on previous encounters.

Routing capabilities of simulators such as ns-2 or dtnsim2 can
also be used in conjunction with ONE. Report modules can export
mobility and connectivity data to other programs (modules for ns-
2 and dtnsim2 are included) and external scripts are then used to
import the results of routing simulation back into ONE (script for
dtnsim2 is included).

If the external routing simulation was run with a contact sched-
ule created by the ONE simulator, as described in section 3.6, the
whole process from node movement to external simulator’s routing
decisions can be visualized and inspected using ONE.

Adding Routing Protocols
To evaluate new routing protocols in the ONE simulator, a new
routing module needs to be created for the respective protocol. All
routing modules inherit basic functionality, such as simple buffer
management and callbacks for various message-related events, from
the MessageRouter module. These callbacks are invoked by the
simulator engine for all kinds of events, e.g., when a new message
is created or a message is sent to the node. A router module needs
to handle these events and also define actions to be carried out at
every time step and the behavior when a new node comes into or
leaves the node’s radio range.

The basic functionality for all these events is common for the all
currently implemented routing modules with internal routing logic.
It is simply re-used for new routing protocols by extending the Ac-
tiveRouter module. This module provides functions for checking
if any of the currently buffered messages are destined to a neigh-
boring node, offering sets of messages to neighboring nodes, and
dealing with successfully transferred and aborted message trans-
fers, and it implements FIFO and random-ordering buffer manage-
ment. For Epidemic, DD and FC routers no functionality beyond
this is needed, making their implementations straightforward.

More advanced routing modules may need to track node con-
tacts and therefore implement the node discovery callback; e.g.,

PRoPHET and MaxProp perform their own book-keeping on past
encounters. State may also be attached to messages using a tagging
mechanism and thereby routing information may be forwarded across
the network. For example, the Spray-and-Wait router uses this
mechanism to include a copy count in every message.

When a simulation is run with the new routing module, the report
modules gather the same performance data of the routing process
as they do with the existing modules, so that comparing the perfor-
mance of the new module to the existing ones is straightforward.

3.4 Application Support
The ONE simulator provides two ways to generate application

messages inside the simulation: 1) message generators, and 2) ex-
ternal event files. Messages may be unidirectional or generate replies
when they are received, approximating a request-response type ap-
plication. Furthermore, the messages may include application spe-
cific information through generic (name, value) pairs attached to
them.

The built-in message generator creates messages with a random
or fixed source, destination, size, and interval. A separate tool for
generating message event files is also included. Any number of
such message event sources may be used concurrently in simula-
tions. Messages are either unidirectional or tagged to expect a re-
sponse, with separate control of the response size.

Application-specific headers and payloads may be attached to
the messages and nodes may be extended to support inspecting
message headers and contents along the way so that application-
aware forwarding can be realized, e.g., for content distribution.

3.5 Interfaces
An important feature of ONE is its ability to interact with other

programs and data sources. The simulator has interfaces, e.g., for
node movement, connectivity and message routing traces.

It is possible to generate node movement using an external pro-
gram, such as TRANSIMS or BonnMotion9, or from a real-world
GPS trace such as the ones available from CRAWDAD. Such a
trace file needs to be converted to a suitable form for the Exter-
nal Movement module. The distribution package contains a simple
script that can convert TRANSIMS output to this format.

Instead of node locations, many real-world traces contain only
information about connections between nodes. This kind of traces
can also be imported to ONE and used for routing simulations. For
this purpose we have created conversion scripts, e.g., for the Diesel-
Net traces.10 We have also generated connectivity traces from the
real-time location data of trams in the Helsinki area.11

Like node movement and connection traces, also message traces
can be imported to ONE. These may include message creation and
deletion events, and starting and cancellation of message transfers.
This functionality is especially useful if ONE is used for analyz-
ing traces generated by other DTN routing simulators or even real-
world traces.

In addition to reading output of other programs, ONE can also
generate input traces for them. It has report modules whose output
is compatible with dtnsim and dtnsim2 connectivity trace input. In
a similar fashion, it is also possible to create mobility traces using a
mobility report module. If properly formatted, these traces are us-
able in, e.g., ns-2. This way ONE can function as a general purpose
mobility simulator.

While report files are an easy way to interact with other pro-
grams, a report module can also communicate in real time with
9www.cs.uni-bonn.de/IV/BonnMotion

10http:// traces.cs.umass.edu/index.php/Network/Network
11http://netlab.hut.fi/tutkimus/dtn/theone/trace_1week_30m.txt.zip

them. This approach was used with real world DTN integration,
described in section 4.

3.6 Reporting and Visualization
ONE is able to visualize results of the simulation in two ways:

via an interactive Graphical User Interface (GUI) and by generating
images from the information gathered during the simulation.

Figure 2 shows the GUI displaying the simulation in real-time.
Node locations, current paths, connections between nodes, number
of messages carried by a node, etc. are all visualized in the main
window. If a map-based movement model is used, also all the map
paths are shown. An additional background image (e.g., a raster
map or a satellite image of the simulation area) is shown below the
map paths if available. The view allows zooming and interactive
adjusting of the simulation speed.

Figure 2: Screenshot of the ONE simulator’s GUI

The GUI produces a filtered log of simulation events, such as
contacts and message transfers. Filters are used to show only inter-
esting events, or to pause the simulation when a particular type of
event occurs. Selecting a node from a list or a log message opens
it for closer inspection. This allows retrieving further information
about the messages a node is carrying and about the routing mod-
ule’s state.

While the GUI is good for getting an intuitive overall picture of
what is happening during the simulation, more rigorous ways to vi-
sualize node relations, message paths and performance summaries
are provided by post processed report files.

ONE includes report modules that can create Graphviz12 com-
patible graph files. Figure 3 shows how these graphs visualize node
connections and the paths that the messages have traveled in the
network. Likewise, for visualizing how messages are spread in the
network as a function of time, a message location report module
can provide this data and an animator script will turn the data into
a GIF animation.

The simulator includes a message statistics report module that
gathers statistics of overall performance (amount of created mes-
sages, message delivery ratio, how long messages stay in node
buffers, etc.). A post processing script that plots the report mod-
ule’s output is also included.

12http:// www.graphviz.org/

p1

p2

t35

p0

w26

w22

c11

c13
w29

t32

c16 t34 t33 t31

p7 p5 p9 c10 p8

Figure 3: Example message paths from node p1 to p2

3.7 Creating Simulation Scenarios
Simulation scenarios are built by defining the simulated nodes

and their capabilities. This includes defining the basic parameters
such as storage capacity, transmit range and bit-rates, as well as
selecting and parameterizing the specific movement and routing
models to use. Some simulation settings such as simulation du-
ration and time granularity also need to be defined.

The simulator is configured using simple text-based configura-
tion files that contain the simulation, user interface, event genera-
tion, and reporting parameters. All modules have their high-level
behavior defined by their Java code implementation, but their the
details of their behavior is adjustable using the configuration sub-
system. Many of the simulation parameters are configurable sepa-
rately for each node group but groups can also share a set of param-
eters and only alter the parameters that are specific for the group.
The configuration system also allows defining of an array of val-
ues for each parameter hence enabling easy sensitivity analysis: in
batch runs, a different value is chosen for each run so that large
amounts of permutations are explored.

If configuring existing implementations of different modules is
insufficient for creating a specific scenario, ONE can also be ex-
tended with new code. We have introduced several hooks for ex-
tensions without a need for any changes in other parts of the simu-
lator code. This allows sharing new modules as plugins and using
them with different versions without needing to patch rest of the
simulator. Routing modules, movement models, event generators
and report modules are all dynamically loaded when the simulator
is started. Hence, when creating a new module, user only needs to
create and compile a new class, define its name in the configuration
file, and the simulator automatically loads it when the scenario is
started. All these modules can also have any number of settings
defined in the configuration files and these settings are accessible
to the module when it is loaded.

4. REAL-WORLD DTN INTEGRATION
The ONE simulator has been designed to be used in conjunction

with DTN213 in order to provide a realistic environment for testing
and evaluating real-world DTN applications. The DTN2 bundle
router (dtnd) is the reference implementation of the DTNRG bun-
dle protocol [25]. DTN2 implements convergence layers such as
TCP, UDP and Bluetooth, routing algorithms such as epidemic and
PRoPHET, and neighborhood discovery mechanisms such as Bon-
jour. Applications can use the DTN2 API to take advantage of the
bundle delivery services provided by the bundle router.

There are two interaction models between ONE and the DTN2
reference implementation: 1) Controlling dtnds through their con-
sole interface based upon connectivity data exported by the ONE
simulator, and 2) real-time integration using the simulator to emu-

13http://www.dtnrg.org/wiki/Code

late all or parts of a DTN. In the first approach, ONE is only used
for providing realistic, mobility model based connectivity charac-
teristics to a network of DTN2 nodes. In the second approach, ONE
is used to emulate all aspects of a DTN network including mobil-
ity, routing, radio link characteristics and node storage constraints
while DTN2 is used mainly for providing the application interface.

4.1 DTN Controller
Traces generated by ONE’s connectivity report modules are suit-

able to control the link status between dtnd instances. This requires
an external DTN Controller that reads the contact trace files pro-
duced by the ONE simulator and controls the dtnds through their
console interfaces. The connectivity traces report each event of a
link between two nodes going up or down and the time instance
when it occurred. The controller reads these events sequentially
and instructs the corresponding dtnd instances to open or close the
specified link. Real-time operation is achieved by scheduling issu-
ing the control commands according to the trace file’s timestamps.

This approach allows the network of bundle routers to run in-
dependently if the ONE simulator instance. This is practical for
creating long lived, robust testbeds. We have experimented with
a DTN Controller (not part of the ONE release) to create a testbed
network that simulates buses running between Ruoholahti in down-
town Helsinki and the Helsinki University of Technology in Espoo
roughly eight kilometers away. This was done by generating a sim-
ulation scenario for ONE which modeled buses traveling between
the two locations over a 24 hour period and then running a simu-
lation to produce the connectivity trace. Our DTN2 controller uses
the trace to open and close links between dtnd instances resulting
in a connectivity pattern that resembles having real bundle routers
in the buses. The testbed is used for experimenting with various ap-
plications, such as a DTN camera application that takes and returns
pictures upon receiving a corresponding request.

4.2 DTN Emulation Support
In order to take advantage of all of the ONE simulator’s features

when creating an emulated environment for real DTN applications,
real-time integration with the DTN2 reference implementation is
required. For this purpose ONE implements the External Conver-
gence Layer Interface of DTN2. This allows the simulator to con-
nect to dtnd instances as an external convergence layer adapter, ap-
pearing as a link in the DTN2 link table. Any bundles passed onto
this link by DTN2 will appear as new messages in ONE. The sim-
ulator also controls dtnds via the console interface to automatically
set up the routing to pass bundles to and from the link.

It is possible to connect any number of DTN2 instances at the
same time. Each instance is configured to match a specific node
inside the simulation with a mapping from the Endpoint Identi-
fiers (EIDs) used in the bundle protocol to the node IDs used by
the ONE simulator. The EID mapping uses regular expressions al-
lowing one node to have any number of matching EIDs as well as
allowing one EID to match any number of nodes. When a bun-
dle arrives from dtnd ONE matches the destination EID against the
configured EID to node ID mappings and generates a bundle mes-
sage to each matching destination. After this the bundle messages
are treated identically to all other messages inside the simulation.
Once a bundle message reaches its destination inside the simula-
tion it is delivered to the dtnd instance connected to the destination
node.

The DTN Emulation Support has been used to provide a realistic
scenario for demonstrating an implementation of mail over DTN
[12]. A simple scenario for the ONE simulator was constructed
that mimicked the layout of an exhibition hall with a number of

DTN-capable nodes moving around the area. Multiple devices,
such as Internet tablets, running dtnd and DTN email applications
were connected to the simulator. As messages were sent from these
devices they appeared in the ONE simulation, traveled around until
they found their destination, and then appeared in the real device
they were destined to. ONE was run in the GUI mode showing in
real-time the messages as they traveled between the nodes.

5. SAMPLE SIMULATIONS
We have carried out specific simulations to assess the impact

of selected aspects of mobility modeling on the simulation results.
These simulations are exemplary in nature to demonstrate the capa-
bilities of the ONE simulator and not intended to compare or oth-
erwise assess the performance of different protocols for the given
scenario. They complement the findings from our technical report
[17] which we refer to as appropriate to limit our scope here.

For our simulations, we assume interpersonal communication
between mobile users in a city using modern mobile phones or sim-
ilar devices, using Bluetooth at 2 Mbit/s net data rate with 10 m ra-
dio range. We observed that WLAN radios with 100 m radio range
have only a minor impact and do not change the elementary inter-
action characteristics [17] so that we limit our discussion here to
the Bluetooth case. The mobile devices have up to 100 MB of free
buffer space for storing and forwarding messages (flash memory
may mostly be occupied by music or photos.)

We have 544 and 1029 mobile nodes (humans, cars and trams)—
referred to as small and large scenario, respectively—which move
in a terrain of 8300×7300 m. The area is either an open space (for
simple mobility models) or a part of the Helsinki city area as de-
picted in figure 4 (for map-based movement). In addition to normal
roads, we have added several tram routes to the map. We choose
three different scanning intervals: 0 s which means that nodes are
always on, 60 s and 300 s which mean that a node sleeps for the
respective interval after losing contact with other nodes. We use
three mobility models from section 3.2:

RWP. As a baseline, we use the Random Waypoint Model with
all nodes modeled as pedestrians moving at random speeds of 0.5–
1.5 m/s with pause times of 0–120 s (both uniformly distributed)
in an open space. With RWP, the space is slightly larger than for
the other models because the rectangular shape includes those map
sections which are covered by the Baltic Sea.

HCS. A simple map-based movement model is the Helsinki City
Scenario described above: we use six trams following predefined
routes; two thirds of the remaining nodes are pedestrians and one
third are cars. Cars run at 10–50 km/h and trams at 25–36 km/h with
pause times of of 10–120 s and 10–30 s, respectively (all uniformly
distributed). The pedestrians and cars choose random destinations
in their reach on the map and move there following the shortest
path. As our earlier results [17] showed that varying the numbers
of trams and cars has some impact but does not change the basic
communication characteristics, we stick to a single scenario.

WDM. To approach realistic movement, we use the Working Day
Movement model with the settings from [9] for the large and from
[15] for the small scenario. Both follow the default scenario from
section 5 in [9]. The reduced number of nodes is achieved by
shrinking all the group sizes proportionally leaving the basic con-
tact characteristics unchanged.

5.1 Mobility and Connectivity
Since WDM models daily routines of working days, we choose a

simulation duration of five days plus one day for mobility warmup
and one day for routing/messaging warmup and use this across all
mobility scenarios. For each of the three mobility scenarios in-

Figure 4: Helsinki simulation area (map data provided by
Maanmittauslaitos, 2007)

troduced above, we conducted ten simulation runs using different
random seeds and present the mean values as results.

To characterize the impact of the mobility models, we have ana-
lyzed the inter-contact times and the contact durations, and the to-
tal connectivity time between any two nodes. We observe that the
node density does not fundamentally affect the connectivity distri-
bution: when doubling the number of nodes, the contact frequency
increases expectedly (leading to slightly reduced inter-contact times)
as does the contact duration.

The differences between the three scenarios are more interesting:
We plot the complementary cumulative distribution (CCDF) of the
inter-contact times and the contact durations in figures 5a–f) for all
mobility models and scanning intervals. The different shapes of
the curves show the impact of the mobility models on connectiv-
ity: RWP leads to shorter contact durations (a–c) because nodes
move into arbitrary directions rather than along roads (as in HCS
and WDM); they do not meet in offices either. The more realis-
tic mobility becomes, the longer the contact durations get. HCS
and even more so WDM have “bumps” in their contact durations
around 10 s, coinciding with two people move into opposite direc-
tions at a mean walking speed of 1 m/s and a connectivity range of
10 m. With increasing reality, inter-contact times (d–f) get shorter
and follow a distribution found from real-world traces [9]. Scan-
ning intervals significantly influence the frequency of contact and
thus the overall connectivity (see next subsection), which is also
reflected in figure 5: since the radio remains active while in con-
tact and nodes may miss many opportunities while sleeping, the
relative duration per contact is shifted towards longer periods and
relative inter-contact times get shorter. For RWP, the unrestricted
motion paired with scanning intervals of 60 s or 300 s does not yield
reportable inter-contact times as nodes rarely find each other (d).

Figures 5g–i) show the energy level of individual nodes based
upon a 450 mAh battery, using the energy consumption for Blue-
tooth as derived in [31] and the motion of one day with messages
generated every 20–30 min as an example (see next subsection).
While RWP exhibits a fairly uniform energy usage over the simu-
lation time, HCS and WDM show an increasing stress on a subset
of nodes: those which are more central or exhibit the most social
interactions with others. Note that this includes buses and trams
which would not run on battery power.

Figure 6 shows the differences in the total contact durations.
RWP yields a significantly lower total contact duration than HCS
and WDM. WDM and HCS are in the same order of magnitude;

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

1-
P[

X
 <

=
 x

]

Time (s)

a) RWP: CCDF of Contact Durations

small, 0s
small, 60s

small, 300s
large, 0s

large, 60s
large, 300s

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

1-
P[

X
 <

=
 x

]

Time (s)

b) HCS: CCDF of Contact Durations

small, 0s
small ,60s

small, 300s
large, 0s

large, 60s
large, 300s

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

1-
P[

X
 <

=
 x

]

Time (s)

c) WDM: CCDF of Contact Durations

small, 0s
small, 60s

small, 300s
large, 0s

large, 60s
large, 300s

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

1-
P[

X
 <

=
 x

]

Time (s)

d) RWP: CCDF of Inter-contact Times

small, 0s
large, 0s

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

1-
P[

X
 <

=
 x

]

Time (s)

e) HCS: CCDF of Inter-contact Times

small, 0s
small, 60

small, 300s
large, 0s

large, 60s
large, 300s

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

1-
P[

X
 <

=
 x

]

Time (s)

f) WDM: CCDF of Inter-contact Times

small, 0s
small, 60

small, 300s
large, 0s

large, 60s
large, 300s

 434
 436
 438
 440
 442
 444
 446
 448
 450

 400

 410

 420

 430

 440

 450

Energy (mAh)

g) RWP: energy consumption (small)

Simulation time
Nodes

Energy (mAh)

 415
 420
 425
 430
 435
 440
 445
 450

 400

 410

 420

 430

 440

 450

Energy (mAh)

h) HCS: energy consumption (small)

Simulation time
Nodes

Energy (mAh)

 410
 415
 420
 425
 430
 435
 440
 445
 450

 400

 410

 420

 430

 440

 450

Energy (mAh)

i) WDM: energy consumption (small)

Simulation time
Nodes

Energy (mAh)

Figure 5: Mobile node contact characteristics as a function of the mobility model

note, however, that WDM nodes sleep at night while nodes in HCS
move permanently. WDM is less susceptible to scanning intervals
as nodes exhibit more continuous co-location so that a) they may
remain in contact while in the office for longer periods and b) oc-
casional scans are less likely to miss other nodes when they are
around all the time. Comparing the total contact times between the
small and the large scenarios, the total contact duration grows by a
factor of roughly two for the two map-based movement models and
by about 1.3 for RWP, irrespective of the scanning interval settings.

5.2 DTN Messaging
In this subsection, we provide an example for DTN messaging

simulations. For the DTN messaging simulations, we use a shorter
simulation interval as we are not interested in the longer-term con-
tact characteristics, but rather in the opportunities to exchange mes-
sages during a single day. We assume that all users have Internet
access at home or hotel so that messages would get delivered over
night. We define a day to last for 18 hours (from 6:00 to 24:00) and
are interested in message delivery during such a day. Hence, we
choose a message lifetime (TTL) of 16 hours.

We use all routing protocols implemented in the ONE simula-
tor: FirstContact (FC), DirectDelivery (DD), Epidemic, PRoPHET
(with β = 0.25), Binary Spray and Wait (SnW) with 6 message
copies, and MaxProp.14 We use the node configuration of the small
scenario (544 nodes) defined above. Random source nodes gener-

14We limit the parameter settings for PRoPHET and Spray and Wait
based upon our earlier experience [17].

1  10  100  1000  10000  100000 

RWP, small, 0s 
RWP, small, 60s 
RWP, small, 300s 

RWP, large, 0s 
RWP, large, 60s 
RWP, large, 300s 

HCS, small, 0s 
HCS, small, 60s 

HCS, small, 300s 

HCS, large, 0s 
HCS, large, 60s 
HCS, large, 300s 

WDM, small, 0s 
WDM, small, 60s 

WDM, small, 300s 

WDM, large, 0s 
WDM, large, 60s 

WDM, large, 300s 

Mean total contact duration per node (s)

Figure 6: Mean total contact duration per node

ate messages to a random destination on average once per 20–30
minutes (uniformly distributed). We use message sizes uniformly
distributed between 500 KB and 1 MB. We run the simulations for
the mobility models investigated above using the five different ran-
dom seeds and report the mean one-way message delivery charac-
teristics for a subset of these permutations.

The above observations and particularly the impact of the mo-
bility models on the protocol performance become apparent from

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0s 60s
RWP

300s 0s 60s
HCS

300s 0s 60s
WDM

300s

M
es

sa
ge

 D
el

iv
er

y
Pr

ob
ab

ili
ty

FC
DD
SnW
Epidemic
Prophet
Maxprop

Figure 7: Message delivery probability

figure 7 which shows the message delivery probability within 18
hours.15 We observe significant differences that, again, show the
relevance of the mobility model for protocol performance—and
they show the strong effect of increased scanning intervals.

Without fragmentation, node contacts are not long enough for
RWP for effective message passing, which explains the low deliv-
ery rate for RWP. HCS shows better delivery rates than WDM be-
cause nodes move continuously and across a wider range and have
thus better chances of successful message delivery; note that for the
messages, the choice of source and destination does not follow the
social structure of groups underlying the mobility model.

We also investigated simple application interactions, e.g., request-
response protocols with different message size characteristics, con-
firming that node contact durations are one important factor since
large messages are less likely to be delivered in non-congested sce-
narios [17]. We implemented different fragmentation schemes in
the ONE simulator (not included in the current open source distri-
bution) and studied their impact on message delivery performance
for all routing protocols protocols discussed above. We found that
conservative on-demand fragmentation with pre-defined fragmen-
tation boundaries improves the delivery rate for large messages in
the simulated scenarios (RWP and HCS) [23].

5.3 Performance Observations
The ONE simulator offers a framework for evaluating DTN pro-

tocols and, as such, its performance primarily depends on the evalu-
ated protocols and their computational and memory requirements.
Naturally, the performance depends on the size of the simulation
area, the number of nodes, their communication range, the mobil-
ity model, and the scanning intervals which together govern the
frequency of connection events.

Simulations usually run much faster than real-time, but complex
simulation setups and large state space may cause significant slow-
down. The simulator continuously reports the ratio of simulation
time per second of real-time elapsed, which gives some perfor-
mance indication. For the simulations presented above, we used
three rack-mounted Linux PCs with multi-core Intel x86 CPUs
(2.9–3.7 GHz) and 8–128 GB of RAM (but most simulations also
run on commodity PCs or laptops). For the large scenario, we ob-
served mean simulation speeds ranging from 40:1 to well beyond
1000:1 depending on the PC, the mobility model, and the routing
protocols; only MaxProp was notably slower (as low as 10:1 and
less). The mobility models primarily affect the number of node
encounters and influence simulation speed indirectly so that RWP

15The message delivery latency and the CDF of the fraction of de-
livered messages over time did not yield further insights.

runs faster than WDM which is again faster than HCS; HCS and
particularly WDM also require more computations than RWP. In-
creasing the scanning intervals impacts the number of encounters;
using 60 s reduced the simulation time by up to one fourth in HCS
and WDM. Finally, increasing the radio range leads to more en-
counters and thus generates more events to process, slowing down
simulations depending on the scenario (we observed a factor of 5–
10 when moving from 10 m to 100 m radio range).

The routing protocols influence performance by the number of
message copies they create and thus FC, DD, and SnW run faster
than epidemic and PRoPHET. Sophisticated routing protocols, such
as MaxProp, that require a lot of state information per node and
connection and perform complex processing, may slow down sim-
ulations with a large number of nodes and frequent encounters, also
requiring a lot of RAM for the Java Virtual Machine.

The simulation speed also depends on the simulation time reso-
lution, i.e., the intervals at which the simulation time is advanced.
This interval is adjustable and doubling the interval may often make
the simulation run almost two times faster. We ran the above sim-
ulations with a time resolution of 1.0 s, noting that earlier exper-
iments yielded similar simulation results for 1.0 s and 0.1 s [17].
For scenarios with larger radio ranges and/or slowly moving nodes,
even coarser granularity may be sufficient.

All in all, the present version of the ONE simulator is capable
of supporting sizeable simulation setups of some thousand nodes.
In our experiments, simulation durations ranged from between five
and tens of minutes for the simulations of section 5.2 (except for
MaxProp which took several hours in some cases) to some three
hours for those of section 5.1.

6. CONCLUSION
In this paper, we have presented the ONE simulator, an oppor-

tunistic networking evaluation system that offers a variety of tools
to create complex mobility scenarios that come closer to reality
than many other synthetic mobility models. GPS map data pro-
vides the scenario setting and node groups with numerous different
parameters are used to model a wide variety of independent node
activities and capabilities. The Working Day Movement model al-
lows recreating complex social structures and features such as scan-
ning intervals add further aspects of reality and heterogeneity to the
modeling. All these aspects may matter as our simple examples
have shown. With its flexible input and output interfaces, the ONE
simulator can incorporate real-world traces and feeds from other
mobility generators as well as generate mobility traces for use by
other simulators. Its DTN framework currently includes six pa-
rameterizable DTN routing protocols and two types of application
messaging. Its visualization component is used for instant sanity
checks, deeper inspection, or simply to observe node movements
in real-time—which broadens its applicability beyond DTN stud-
ies. Particularly the integration with the DTN reference implemen-
tation allows creating testbeds and emulations.

The ONE simulator still has numerous limitations and will hardly
ever be complete. Our short-term interest is in better modeling the
node-to-node communication characteristics by learning from real-
world measurements and other simulation models and deriving a
sensible abstraction. Furthermore, message generation activity will
need to take into account group relationships and context infor-
mation. Finally, further refinements to the Working Day Mobil-
ity model are needed to provide better modeling of buildings and
of traffic; we are interested in learning and importing from other
simulation environments.

We are using and continuously advancing the ONE simulator in
our ongoing DTN research, as a mobility generator and as a full

simulator, e.g., for our work on opportunistic content caching in
DTNs [22] and we apply it in our DTN graduate course.16 We
maintain an open source distribution of the simulator; the current
release (1.3.0) includes all the features described in this paper [29].

7. REFERENCES
[1] BETTSTETTER, C. Smooth is better than sharp: A random

mobility model for simulation of wireless networks. In Proc.
of ACM MSWiM (July 2001).

[2] BOUDEC, J.-Y. L., AND VOJNOVIC, M. Perfect Simulation
and Stationarity of a Class of Mobility Models. In Proc. of
IEEE Infocom (2005).

[3] BURGESS, J., GALLAGHER, B., JENSEN, D., AND
LEVINE, B. N. MaxProp: Routing for Vehicle-Based
Disruption-Tolerant Networks. In Proceedings of IEEE
Infocom (April 2006).

[4] CAMP, T., BOLENG, J., AND DAVIES, V. A Survey of
Mobility Models for Ad Hoc Network Research. Wireless
Communications & Mobile Computing (WCMC): Special
issue on Mobile Ad Hoc Networking: Research, Trends and
Applications 2, 5 (2002), 483–502.

[5] CERF, V., BURLEIGH, S., HOOKE, A., TORGERSON, L.,
DURST, R., SCOTT, K., FALL, K., AND H.WEISS.
Delay-Tolerant Network Architecture. RFC 4838, 2007.

[6] CHOFFNES, D. R., AND BUSTAMANTE, F. E. An integrated
mobility and traffic model for vehicular wireless networks.
In Proc. of the 2nd ACM International Workshop on
Vehicular Ad-hoc Networks (2005).

[7] DANIEL GÖRGEN, H. F., AND HIEDELS, C. JANE – The
Java Ad Hoc Network Development Environment. In Proc.
of the 40th Annual Simulation Symposium (ANSS) (2007).

[8] EAGLE, N., AND PENTLAND, A. S. Reality mining:
sensing complex social systems. Personal Ubiquitous
Computing 10, 4 (2006), 255–268.

[9] EKMAN, F., KERÄNEN, A., KARVO, J., AND OTT, J.
Working day movement model. In Proc. 1st
ACM/SIGMOBILE Workshop on Mobility Models for
Networking Research (May 2008).

[10] FALL, K. A Delay-Tolerant Network Architecture for
Challenged Internets. In Proc. of ACM SIGCOMM (2003).

[11] HUI, P., CHAINTREAU, A., SCOTT, J., GASS, R.,
CROWCROFT, J., AND DIOT, C. Pocket Switched Networks
and Human Mobility in Conference Environments. In Prof.
of the ACM SIGCOMM Workshop on Delay-Tolerant
Networking (WDTN) (2005).

[12] HYYRYLÄINEN, T., KÄRKKÄINEN, T., LUO, C.,
JASPERTAS, V., KARVO, J., AND OTT, J. Opportunistic
email distribution and access in challenged heterogeneous
environments (demo. In Proc. of the ACM MobiCom
Workshop on Challenged Networks (CHANTS) (2007).

[13] JAIN, S., FALL, K., AND PATRA, R. Routing in a Delay
Tolerant Network. In Proc. of ACM SIGCOMM (2004).

[14] JARDOSH, A. P., BELDING-ROYER, E. M., ALMEROTH,
K. C., AND SURI, S. Real-world environment models for
mobile network evaluation. IEEE Journal on Selected Areas
in Communications 23, 3 (March 2005), 99–105.

[15] KARVO, J., AND OTT, J. Time scales and delay-tolerant
routing protocols. In Proc.c of the ACM MobiCom Workshop
on Challenged Networks (CHANTS) (2008).

16TKK S-38.3151, https://noppa.tkk.fi/noppa/kurssi/s-38.3151/

[16] KERÄNEN, A. Opportunistic Network Environment
Simulator. Special Assignment report, Helsinki University of
Technology, Department of Communications and
Networking, May 2008.

[17] KERÄNEN, A., AND OTT, J. Increasing Reality for DTN
Protocol Simulations. Tech. rep., Helsinki University of
Technology, Networking Laboratory, July 2007.

[18] LEGUAY, J., FRIEDMAN, T., AND CONAN, V. Evaluating
Mobility Pattern Space Routing for DTNs. In Proc. of IEEE
Infocom (2006).

[19] LINDGREN, A., DORIA, A., AND SCHELEN, O.
Probabilistic routing in intermittently connected networks. In
The First International Workshop on Service Assurance with
Partial and Intermittent Resources (SAPIR) (2004).

[20] MARFIA, G., PAU, G., SENA, E. D., GIORDANO, E., AND
GERLA, M. Evaluating vehicle network strategies for
downtown Portland: opportunistic infrastructure and the
importance of realistic mobility models. In Proc. of the 1st
International MobiSys Workshop on Mobile Opportunistic
Networking (2007).

[21] PELUSI, L., PASSARELLA, A., AND CONTI, M.
Opportunistic networking: Data forwarding in disconnected
mobile ad hoc networks. IEEE Comm. Magazine (Nov 2006).

[22] PITKÄNEN, M., AND OTT, J. Enabling Opportunistic
Storage for Mobile DTNs. Journal on Pervasive and Mobile
Computing 4, 5 (Oct 2008), 579–594.

[23] PITKÄNEN, M. J., KERÄNEN, A., AND OTT, J. Message
Fragmentation in Opportunistic DTNs. In Proc. of the 2nd
WoWMoM Workshop on Autonomic and Opportunistic
Communications (AOC) (2008).

[24] SCOTT, J., HUI, P., CROWCROFT, J., AND DIOT, C.
Haggle: A Networking Architecture Designed Around
Mobile Users. In Proceedings of IFIP WONS (2006).

[25] SCOTT, K., AND BURLEIGH, S. Bundle Protocol
Specification. RFC 5050, November 2007.

[26] SPYROPOULOS, T., PSOUNIS, K., AND RAGHAVENDRA,
C. Efficient Routing in Intermittently Connected Mobile
Networks: The Multiple-copy Case. ACM/IEEE
Transactions on Networking (Feb. 2008).

[27] SPYROPOULOS, T., PSOUNIS, K., AND RAGHAVENDRA,
C. S. Single-copy routing in intermittently connected mobile
networks. In Proc. Sensor and Ad Hoc Communications and
Networks SECON (October 2004), pp. 235–244.

[28] SPYROPOULOS, T., PSOUNIS, K., AND RAGHAVENDRA,
C. S. Spray and Wait: An Efficient Routing Scheme for
Intermittently Connected Mobile Networks. In Proc. of the
ACM SIGCOMM Workshop on Delay-Tolerant Networking
(WDTN) (2005).

[29] TKK/COMNET. Project page of the ONE simulator.
http://www.netlab.tkk.fi/tutkimus/dtn/theone, 2008.

[30] VAHDAT, A., AND BECKER, D. Epidemic routing for
partially connected ad hoc networks. Technical Report
CS-200006, Duke University, April 2000.

[31] WANG, W., SRINIVASAN, V., AND MOTANI, M. Adaptive
contact probing mechanisms for delay tolerant applications.
In Proc. of ACM MobiCom (September 2007).

[32] ZHANG, Z. Routing in intermittently connected mobile ad
hoc networks and delay tolerant networks: Overview and
challenges. IEEE Communications Surveys and Tutorials 8,
4 (January 2006), 24–37.

