
Searching for Content in Mobile DTNs
Mikko Pitkänen1, Teemu Kärkkäinen2, Janico Greifenberg3, and Jörg Ott2

1Helsinki Institute of Physics, Technology Programme <mikko.pitkanen@hip.fi>
2Helsinki University of Technology, Department of Communications and Networking

3Dampsoft GmbH

Abstract—Delay-tolerant Networking (DTN) provides a plat-
form for applications in environments where end-to-end paths
may be highly unreliable or do not exist at all. In many
applications such as distributed wikis or photo sharing, users
need to be able to find content even when they do not know an
unambiguous identifier. In order do bring these applications to
the domain of DTNs, a search scheme is required that works
despite the unreliable network conditions. In this paper, we
introduce a search scheme that makes no assumptions about the
underlying routing protocols and the format of search requests.
We evaluate different algorithms for forwarding and terminating
search queries, using simulations with different classes of DTN
routing protocols for different mobility scenarios.

I. INTRODUCTION

Retrieving information from the Web has become part of our
daily lives. Users often have an idea what content they want
to retrieve, but do not know a priori an exact identifier (or
locator) to feed into an application for the resource retrieval.
A search engine helps by mapping search queries to resource
locators that are likely to point to content including the
sought information. However, there are scenarios in which
communicating with a search engine is not an appealing or
even suitable option. Such situations occur, for example, when
the desired information may be available from the vicinity
via a local wireless (ad-hoc) network and a connection to the
search engine is unavailable or not reliable. In this case, a
search mechanism is desirable that allows directly querying
other nodes in an unreliable networking environment.

The traditional approach to map search queries to resources
is implemented by maintaining an index about the resources.
The index contains keywords and maps them to sets of
related resources. This can be used to map a query consisting
of several keywords to a list of suggested search results.
Examples of centralized search engines using such indices are
Google, MSN, and Yahoo. The problem with such centralized
services is that it is expensive to keep the index up-to-
date and the assumption is made that the clients can reach
both the index and the locations where the contents reside.
There are approaches for managing decentralized indexes in
peer-to-peer environments, but these models often assume
good connectivity among the nodes. Otherwise, unreliable
connections may lead to a high maintenance cost of the index.

Furthermore, not all contents of interest resides on servers
connected to the infrastructure network: mobile users are not
just consumers, but also prime producers of contents and often
eager to share their impressions with others. Particularly in dis-
connected environments, this “mobile” contents cannot easily

be indexed by centralized search engines unless uploaded to a
some server. Yet, such contents may be especially interesting
to other mobile users in proximity, which could access it by
means of ad-hoc networking.

In this paper, we investigate how to support searching and
retrieval of contents in unstructured delay-tolerant mobile ad-
hoc networks. We choose delay-tolerant networks as traditional
ad-hoc networking places tight demands on connectedness of
the nodes, which appears infeasible in our scenario. This paper
extends our earlier work on opportunistic content caching and
retrieval using resource identifiers [17] [18] and complements
related work on using DTNs for active content dissemination
to interested users [16] [14]. We introduce a simple notion
of content queries based upon which we present how nodes
should process and forward queries and respond to them
returning matching locally available contents. Nodes carry
(possibly self-produced) content items (in the context of the
web also referred to as resources) which can be matched by
a local search function against incoming queries generated by
other nodes. They may respond to and/or forward the query
to one or more other nodes. When responding, a node may
choose to return all or a subset of the matching local contents.
We restrict our considerations to searching the mobile ad-hoc
environment and do not discuss interaction with infrastructure
networks.

After reviewing related work on search from various fields
in section II, we discuss the search problem for DTNs in
section III where we also present different search strategies.
We introduce metrics for search performance and evaluate the
different search strategies in section IV. We finally present
considerations on our prototype implementation in section V
and conclude this paper with a brief assessment of our results
and hints at future work in section VI .

II. RELATED WORK

Searching for information is an area of active research in the
computer science community with a wide range of publication
with specializations from algorithms and operations of large
scale databases to search in various application scenarios. As
this paper is focused on distributing search requests and results
in challenged networks rather than the process of actually
finding the results, we limit the discussion of related work
to efforts similar to ours that perform search in opportunistic
networks and to studies about user behavior which give us
insights about requirements.

A. Search in Unstructured and Ad-hoc Networks

There are two basic approaches for searching in unstruc-
tured networks: flooding and random walk. Most proposed
flooding-based schemes use a TTL-based limit to control the
spread of the queries, e.g. as described in [6]. In contrast,
search-schemes based on random walks [2], [20], avoid the
massive spreading of messages that flooding creates and still
achieve a degree of reliability by using probabilistic paths to
reach responders.

BubbleStorm [24] is a probabilistic search strategy in peer-
to-peer networks. It is based on a combination of replication
and probabilistic distribution of queries. As BubbleStorm
depends on a network that is a random multigraph with a fixed
degree distribution, the system is not applicable for DTNs, as
nodes cannot control the number of neighbors to peer with as
peer-to-peer systems working over the Internet can.

Adamic et al. [1] present search strategies that exploit
power-law degree distributions. Their method passes a search
request from one node to another, choosing the neighbor with
the highest degree. After the node with the maximum degree
has been reached, it will be avoided, thus the search descends
in the degree sequence.

Yang and Hurson [26] present probabilistic schemes for
locating content in wireless ad-hoc networks. Based on knowl-
edge about the query history, they use heuristics and Bayesian
probability calculations guide the dissemination of queries.

Hui et al. have presented a search mechanism for pocket
switched networks (PSN) called Osmosis that derives from
analogy to its biological counterpart [9]. In Osmosis, the
queries in the network are spread based on epidemic forward-
ing, and the results are routed back based on the traces that
queries left while traveling between requesting node and the
responding node. In our work, in contrast, we limit the system
resources used to spread and evaluate searches and rely on
different existing routing mechanisms to deliver responses.

Balasubramanian [3] et al. have presented a system called
Thedu to enable efficient web search from a city bus. Thedu
acts as a web proxy and collects search queries from a
mobile user at the time of disconnections. Thedu differs from
our work by assuming that nodes can eventually establish a
connection to the Internet where a centralized search engine
can be accessed. Our proposal, on the other hand, allows
search in completely disconnected networks, where all content
is distributed among the nodes.

Several studies exists on how to fetch resources in DTNs
identified by a previously known unique resource identifier
(URI). Earlier work by the authors has investigated web re-
source retrieval in mobile DTNs via Internet gateways [17] and
shown how caching improves efficiency with shared interest on
resources [18], using well-known DTN routing mechanisms.

B. Search Usage Studies

There are a number of studies analyzing the use of web
search. Based on the logs of the Excite search engine for
one day (in March 1997) Jansen et al. [11] found that the
majority of web searches consist of only few terms, and that

the frequencies of occurrences of search terms exhibit a highly
skewed distribution with 44% of the search terms occurring
only once. Search sessions—i.e. a series of queries by a single
user within a short period of time—were also found to be
short.

A similar study by Silverstein et al. [21] based on AltaVista
query logs from 1998 supports the results of [11]. A later study
[12] using Altavista data from 2002 showed a slightly higher
number of terms per search and the diversity of search terms
was found to be larger than in previous studies with the most
frequently used term accounting for only 0.6% of all queries.

Kamvar and Baluja [13] analyze wireless search behavior
based on Google’s mobile search logs gathered during one
month. Their results are in line with the general properties
observed in the studies cited above whose data is mostly about
searches from desktop computers: short queries and sessions
and a high variation of the search terms. However, there is an
observable difference between the types of devices. Searches
from cellphones are slightly shorter than those from PDAs.
The distribution of the used search terms is more biased for
cellphones where the top 1000 queries account for 22% of all
queries than for PDAs where the top 1000 represent only 6%
of all queries.

Church et al. [7] present an extensive study of mobile
information access conducted in 2005 based on logs from
mobile a provider which include both search and browsing
patterns. Their results are in line with the findings of the
analysis based on Google mobile logs, and they predict that
the diversity of search interests will grow for mobile search
as it did for web search in general.

In summary, we see that searches are in fact repetitive,
especially in the mobile space, but the variety of topics is
very large, so that the top searches constitute only a fraction
of the total search traffic. As a consequence, optimizing based
on the most popular searches will have only a limited effect
on the overall user experience. Unfortunately, none of these
studies provides insight on the similarity of the search results.
With the available numbers, we can only infer that different
queries also matched different results, although we cannot tell
to what extent this is true.

III. SEARCHING IN DELAY-TOLERANT NETWORKS

In this section we analyze the problem of search in delay-
tolerant networks and describe alternative solutions which are
evaluated in section IV. As stated in the introduction, we
focus on mobile opportunistic networking scenarios where the
nodes communicate using the DTN bundle protocol [5], [19].
Some devices in the network store content which they are
willing to share with others. All nodes are willing to cooperate
and supply a limited amount of their local system resources
(bandwidth, storage, processing power) to assist other nodes.1

Our goal is to allow users to issue queries for content that is
stored on other nodes anywhere in the network and assess the

1We defer considerations of fairness and defense against malicious or selfish
nodes to future work.

chances of such a node to obtain the sought information. To
facilitate searching, we assume that nodes are able to perform
searches on their local storage and find the relevant results for
a given query.

We define N as the set of nodes, C as the set of all content
items that are available in the network, and Q as the set of
queries issued over the lifetime of the network. To identify
on which nodes a given content item is stored, we define the
function cl that maps a content item to a set of nodes: cl(c) ⊆
N , for c ∈ C. The mapping from a node to its stored content
items is defined by s(n) ⊆ C, for n ∈ N . We also define the
function m that maps queries to the content items they match:
m(q) ⊆ C, for q ∈ Q. size(c) ∈ N yields the size in bytes of
c ∈ C. Finally, we define rsplocal(q, n) = m(q)

⋂
s(n) to be

the response generated by a node n when replying to query q
and the function rsp that yields the responses for a query seen
by a given node: rsp(q, n) ⊆ m(q), for q ∈ Q and n ∈ N .
This includes the locally generated responses.

Conceptually, we divide the processing of a query into three
phases: (A) During local matching phase nodes execute the
query searching for content in their local storage and generate
a set of all matching resources, from which the selection
function picks a subset to return. Partly as a function of
whether or not results were found, (B) the node runs a query
processing function that decides about forwarding the query
or about search termination, as well as modifying the query.
Finally, (C) response forwarding is responsible for routing
and forwarding locally generated responses and those received
from other nodes.

Fig. 1. Processing flow for an incoming query

Figure 1 illustrates the node’s query processing flow. When
a query arrives at a node, the matching logic retrieves all
content items by executing the search on the local content
database. The matching resources along with the original
query are passed to the selection logic which selects a subset
of the content items to return. This decision can take into
account information carried by the query, such as the number
of resources returned by other nodes. Finally, the resources
and the query are passed to the query termination logic
which chooses to terminate or forward the query. The original

query may be modified by appending information, such as
the number of returned resources, before being passed to the
bundle layer for forwarding.

The simplest strategy for distributing both queries and
responses is flooding. However, due to resource limitations,
flooding is often too wasteful so that we need to consider
methods to limit the system resources spent on a search.
Ideally, a query should only be forwarded to neighbors that
hold matching contents or are on the path to other nodes
which do and different nodes should return non-overlapping
responses to the searcher. As global knowledge or active
coordination is not an option in our scenario, each node can
only select next hops for queries in such a way that the system
resources used on a search are balanced against the probability
that it yields useful results. Similar limitations apply to local
content selection and routing responses.

In the following subsections, we discuss effective control-
ling of response matching and selection, query forwarding
and termination, and response forwarding. In this paper our
emphasis is on the query forwarding and termination part
and we will address the other two only briefly. We focus on
strategies for limiting the number of copies of a query that
are distributed and the number of responses to be returned. It
is concievable, however, to specify the limits in greater detail.
Instead of just limiting the number of copies to be distributed
for a query, the sender could specify how many CPU cycles are
to be used to evaluate the search and how many bytes of results
are to be returned. This can help to delimit both the consumed
storage space and the required bandwidth. Analyzing these
kinds of limits further is beyond the scope of this paper.

A. Local Matching and Selection

A wide variety of systems to formulate search queries
exist, most of which depend on assumptions about the format
of the content to be searched. While it is desirable for a
general protocol to support many different types of queries
and contents, for the purpose of this work, we abstract from
the actual matching process to focus on what is transmitted
over the network. In our evaluation, we use a simple keyword
matching to substitute for the actual execution of queries.

When a node has found the set of matching content in its
local storage, it may wish to respond with only a subset of
the results. This can be done to limit the amount of resources
used both locally and globally for transmitting and storing the
responses, or to weed out potential duplicates.

The originator may assign a boundary for either the number
of responses or the volume of response-data that should be
generated. This limit gets encoded in the query and each node
then subtracts the number of results found in its local storage
and never returns more than the allowed number of responses.
Before forwarding, the respective field in the query message
is adapted accordingly.

If the local matches exceed the reply limit, the node needs
to select which ones to forward. When the matching process
yields a score for the relevance of the results (in our simple
case, e.g., the number of matching attributes), we can use this

to choose the elements of the selection set. If this is insufficient
(e.g., if only a single attribute was used in the query), the
resources to be returned are chosen at random so that the
chance for the searcher receiving only duplicates is minimized.

B. Query Processing

For the query distribution phase, we examine four alter-
natives for limiting the spreading of queries: a hop-count
limit, a limited time-to-live (TTL), a simple first matching
response drop, and a termination based on global response
count estimate with information recorded along the path of the
query message. The first two approaches can be implemented
completely at the bundle layer without any input from the
application layer. First response drop and global response
count estimates require application layer logic but the former is
based on explicitly known information while the latter requires
estimation of a number of parameters.

When using a hop-count limit, the query is discarded once it
has been forwarded L times. The limit L can be chosen by the
originator of the query or it can be selected by the network,
even by a node specific policy in which case the hop-count
limit on different paths may vary. Denoting the number of
hops a query has traveled as hc(q), the forwarding condition
for query q in node n with a hop-count limit can be formalized
as:

forward(q, n) =
{

true if hc(q) < L
false otherwise

The time-to-live limit ttl(q) of a query q is a similar
approach in which the query is forwarded for a period of
time specified by the originator, independent of the number
of nodes visited. Under this scheme the spread of queries is
likely to differ significantly depending on the node density of
the scenario. With tnow as the current time and tcreation(q)
being the time when the query q was created, we define the
following forwarding condition:

forward(q, n) =
{

true if (tnow − tcreation(q)) < ttl(q)
false otherwise

When using a single-copy routing scheme such as first
contact, the spread of queries with both hop-count and TTL
limits is essentially a random-walk, where the next-steps are
determined by the motion of the nodes and the rules of the
routing scheme. When used with replication-based routing,
the queries are distributed in the form of controlled flooding
(based upon which expanding ring searches could be realized).

The first response drop scheme forwards the query if no
local match was found and terminates the search otherwise;
i.e., a dependency on the local contents is introduced which
impacts DTN routing.

forward(q, n) =
{

true if (rsplocal(q, n) = ∅)
false otherwise

Finally, we formulate a search termination function that
takes into account further information recorded along the path
of the query message. While two-way coordination between
nodes is not feasible in our scenarios, it is possible to pass

information one-way along with the query message. The
bundle layer is assumed to pass hop-count and transit time
information to the application layer, while the response count
can only be recorded at the application layer.

The goal of this search termination mechanism is to limit
the spread of the query as the number of responses grows. In
other words we assume that the marginal value of returning
additional responses to the originator of the query decreases
when the total number of responses increases. This can be
justified by at least two arguments: 1) the likelihood of addi-
tional responses being unique decreases (due to the birthday
paradox), and 2) the value of additional unique responses
decreases (the user might have already received an acceptable
response).

As each node has only a limited view of the network, it
needs to estimate the number of responses that the query orig-
inator has already received. In order to make this estimation
the node can guess the number of nodes that have seen this
query globally and the number of responses each of those
nodes has generated. For this, we define the function uest(q, n)
that is directly proportional the number of responses generated
globally to the query q based on knowledge at the node n.

Once we have constructed uest(q, n) we can use it to
terminate the query when its value exceeds some threshold
value T . This can be stated as:

forward(q, n) =
{

true if uest(q, n) > T
false otherwise

In order to construct uest(q, n), we need to estimate the
number of nodes that have received the query. We use a hop
count hc recorded in the query which is initialized to 0 at the
querying node and incremented at each hop to determine the
number of nodes a query has already traversed. From this, the
number of nodes nodesest(q, n) potentially having received
a copy of the query after up to hc hops can be estimated as
a function of the routing protocol. For single-copy routing
protocols, nodesest(q, n) = hc(n). For multi-copy routing
protocols with a fixed number of copies K, nodesest(q, n) =
K − K(q), with K(q) indicating the number of copies the
received message represents. For epidemic routing protocols,
every node on the path records its own node degree estimate
(degree(n)), which it calculates as a moving average of the
number of contacts it had during the last ttl(q) seconds. This
represents the possible replication factor at this node for the
query, yielding a local approximation of the number of nodes
reached by the query can be defined as:

nodesest(q, n) = degree(n)hc(q)

We can further estimate the number of responses generated
per node by recording in the query message the total number of
responses, rsptot(q), generated by nodes along the path. If no
responses have been generated along the path, a static estimate
C can be used instead. This estimate can be either pre-
configured or calculated as an average from past queries. Using
the above, we approximate the global number of responses as:

uest(q, n) =
{

nodesest(q, n) · rsptot

hc(q) if rsptot(q) > 0
nodesest(q, n) · C otherwise

There are a number of assumptions in the above approach
that should be considered. First, it is assumed that the global
node degree distribution has an existing mean and that the
node’s measurement of its own degree is a good estimate for
the average degree in the network. Should the node degrees
be, e.g., power-law-distributed, the nodes that have very large
node degrees will drastically overestimate the number of nodes
that the query has been distributed to and are therefore less
likely to forward the query. Second, since nodeest(q, n) is
dependent on the routing protocol the application layer must
be aware of the underlying routing and the routing must be
uniform across the whole network. Nevertheless, we consider
the above to be a fair estimate based on the limited knowledge
available to the nodes.

C. Response Forwarding

When a node has found matches for a search request, it
needs to transfer the results to the searching node. We do
not define any search-specific functionality here but, instead,
simply rely on the underlying routing protocol to deliver the
reply messages to the originator of the query. This may lead
to two types of duplicate responses:

1) When using multi-copy routing protocols, even replies
from a single responder may get duplicated and reach the
querying node via different paths (even though such routing
protocols typically suppress forwarding duplicates in every
single node). This is inherent to the nature of the routing
protocol (and a perfect one would not generate any dupli-
cates in the first place), so that further optimizations would
need to further improve the routing protocols themselves—in
conjunction with or independent of searching.

2) Identical or partly overlapping replies from multiple
responders may reach the searching node. The above re-
sponse selection mechanism attempts to reduce such duplicates
heuristically and the search termination mechanisms helps by
limiting spreading the query. However, we cannot prevent
identical or overlapping responses from being generated by
different responding nodes. This duplication occurs at the
application layer and only there the message semantics (i.e.,
being identical/overlapping) are known. At the DTN routing
level, messages are typically identified by the pair of originator
and destination address and a locally unique identifier assigned
by the originator so that messages from different responders
appear as different ones to the DTN routing and are hence
not suppressed as duplicates. Extensions are conceivable to
explicitly tag messages specifying their content and the query
they respond to in a way visible to a partly application-
aware routing layer, e.g., in the message’s metadata as partly
suggested in [23], [17]. This could aid application-aware nodes
in suppressing semantically duplicate messages.

We do not consider any such optimizations further in this
paper to avoid too close an interaction with the routing layer

(the detailed analysis of which would be well beyond the scope
of this paper). Also, note that limited numbers of duplicates are
not necessarily negative in DTN routing as they may increase
the delivery probability—which is the reason for pursuing
multi-copy routing in DTNs in the first place.

IV. EVALUATION

For our evaluation, we use the Opportunistic Networking
Environment (ONE) simulator [15]. We run simulations us-
ing four different network scenarios, including an easy to
understand static scenario and different mobility models as
described below. For all figures we plot average result of five
simulation runs. The nodes comprising the network constitute
devices of mobile users which are able to connect to each
other by using bi-directional links at 2 Mbit/s. Communication
between nodes is based on the DTN store-carry-and-forward
networking model; the nodes have unlimited FIFO message
queues for DTN routing. Messages are transmitted in an all
or nothing fashion, i.e., fragmentation is not allowed.

We experiment with the four strategies for limiting the
spread of messages in the network described in section III,
with varying time-to-live and hop count constraints and value
thresholds. While the query forwarding and search termina-
tion algorithms are designed to operate independently of the
routing protocol, the routing protocols may create different
numbers of messages in the network. For our evaluation,
we choose three different routing protocols representative of
different types of message replication. First Contact routing
[10] represents the class of single-copy routing strategies,
the other two use multi-copy behavior: Spray-and-Wait [22]
limits the number of copies to a fixed maximum (we use 10
copies) and epidemic routing [25] performs flooding without
any limitation on message replication.

The content query messages are sent to a DTN multi-
cast address (all-dtn-search-routers) which yields anycast-
style semantics in our search environment. Every (search-
capable) DTN node joins this multicast address and is thus
notified about an arriving query message. While unicast DTN
messages will be deleted after delivery, in our scheme all nodes
are intended recipients and messages may thus be locally
evaluated by the search engine of multiple nodes, even if only
a single copy is created and passed around. Besides adding
local message delivery, we do not change the forwarding rules
of the routing protocols; i.e., First Contact only uses a single
message and Spray-and-Wait will deliver the message to at
most 10 nodes.

For searches limited by hop count and time-to-live, the
respective search termination leverages our regular DTN rout-
ing implementation without any additions. For first response
filtering and value-based termination, a special extension to
DTN routing is introduced: message forwarding may be
deferred until the respective search application on the node
signals either forwarding consent, possibly updating the query
contents, or deletes the message (termination).

Response messages are addressed to the querying nodes and
sent using the underlying routing scheme without any changes.

First Contact Spray-and-Wait Epidemic
B

as
ic

Sc
en

ar
io

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

R
an

do
m

W
ay

Po
in

t

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
sp

o
n
se

p
ro

b
a
b
ili

ty

resources in network

term(1)
term(0.5)
1st drop

hops=10
hops=5

TTL

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
sp

o
n
se

p
ro

b
a
b
ili

ty

resources in network

term(1)
term(0.5)
1st drop

hops=10
hops=5

TTL

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
sp

o
n
se

p
ro

b
a
b
ili

ty

resources in network

term(1)
term(0.5)
1st drop

hops=10
hops=5

TTL

H
el

si
nk

i
C

ity
Sc

en
.

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

W
or

ki
ng

D
ay

M
vm

t.

 0

 0.2

 0.4

 0.6

 0.8

 1

50 100 150 200 250 300

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

 0

 0.2

 0.4

 0.6

 0.8

 1

50 100 150 200 250 300

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

 0

 0.2

 0.4

 0.6

 0.8

 1

50 100 150 200 250 300

re
s
p

o
n

s
e

p

ro
b

a
b

ili
ty

resources in network

Fig. 2. Response probability for search queries.

In the following simulations we focus on investigating
searching of a single content item from a mobile DTN and
then extend our considerations to searches which can yield
multiple distinct items. We observe searching the network
from the point of view of a single actor. The actor frequently
issues queries to the surrounding nodes, which carry a fixed
and predetermined set of resources. These nodes respond by
sending out contents matching the query in a reply message.
We distribute resources prior to starting simulations so that
a fixed number of nodes are able to provide a response.
We then vary the number of responding nodes (represented
on the x-axis) and plot the observed metrics as a function
of number of potential responses. While typical scenarios
could see many nodes initiating searches simultaneously, we
deliberately constrain ourselves to a single requester as we

want to isolate the performance of the search distribution from
effects due to congestion.

For each query, the network contains a number of distinct,
matching content items. Copies of the content items are
distributed in the nodes’ data stores in such a way that
their popularity follows the Zipf distribution, which properly
models the popularity of web content items [4] and is thus a
reasonable assumption. The total number of copies of content
items is fixed for each simulation run. For the first three
scenarios the number of copies of the most popular content
item is half the total number of copies, for the fourth (which
features more nodes), it is 20% of the total. The size of the
content items is fixed at one megabyte while the size of the
query messages is insignificant in comparison.

A. Simulation Scenarios

Basic Scenario (BS) is a static network topology with a
central node around which other nodes are spread in concentric
circles. The distance between the circles is 100 units, each
circle having six more nodes than the next inner one. With
a node transmission range of 150 units this results in node
degrees between three and six for all the nodes in the network.
We also generated similar simple networks with each node
having the same degree between four and eight. The search
query is always issued at the middle node of the network.

Random Way Point (RWP) presents a well known case for
comparison. Our model contains 125 actors walking in an area
of 100×100 meters, comparable to an outdoor exhibition. The
walking speed varies in range 0, 5− 1m/s.

Helsinki City Scenario (HCS) [15] is based on simulating
80 mobile users moving by foot, 40 by car, and 6 by trams in
the streets in downtown Helsinki. Each node represents a user
moving with realistic speed along the shortest paths between
different points of interest (POIs) and random locations. The
nodes are divided into four different groups having different
POIs and different, pre-determined probabilities to choose a
next group-specific POI or a random place to visit. The trams
follow real tram routes in Helsinki.

Working Day Movement (WDM) is used to simulate a more
realistic scenario whose characteristics such as inter-contact
time distributions come close to those encountered in real-
world traces [8]. We choose the default scenario from section
5 in [8] in which nodes move in the Helsinki city area, but
reduce the number of nodes from 1029 to 544 by shrinking all
the group sizes so that the basic contact characteristics remain.

B. Simulation Observations

Figure 2 shows the probability for retrieving a single specific
content item in response to a search request issued by a node.
We investigate value thresholds of 0.5 and 1 (referred to as
term(0.5) and term(1)), first response drop, hopcount limits
of 5 and 10, and a TTL limit matching the respective scenarios
(BS: 10min, all others 120min). As expected, the success of a
search increases when the number of resources in the network
increases. Both, first contact and spray-and-wait routing show
poor performance when there is only small number of potential
responders in the network. Obviously, the small number of
copies (or short route of a single copy) for a query does
not lead to a high likelihood of reaching a node carrying a
matching resource. Epidemic routing performs well with all
mobility models and is less dependent on the resource density.
This is an expected result when there is no contention and the
query and its responses can reach large number of nodes.

We observe that the query forwarding and termination
mechanisms tend to split into two groups: termination mech-
anisms which are based on network level control (TTL, hop-
count) and those which utilize application level information
(local information as first response drop and signaled infor-
mation as value-based). The former consistently yield higher
retrieval success rates. With WDM mobility, the network
level control leads to significant improvements whereas, with

the other approaches, the improvement over local control
(first response drop, marginal valued function uest) is less
pronounced to non-existent. This holds irrespective of the
number of resources spread across the network.

Figure 3 shows the mean number of unique replies per
resource received in response to a query by a single querying
node in the HCS scenario.2 In this case multiple resources
match a query. The resources are distributed randomly, the
number of copies per resource following a Zipf distribution.
In this figure, we show only one value-based termination
(threshold 0.5) and only the TTL as representative for network
level control: TTL and both hopcount limits perform almost
identically and so do both value thresholds, which seems to
indicate that expanding the search coverage by itself does not
increase performance for these scenarios. The results obtained
across all routing protocols reflect the occurrence frequency
of the content items. However, we find that using first contact
or spray-and-wait may not obtain even the most widespread
content item in all cases. In contrast, epidemic routing expect-
edly provides broader coverage with repeated responses for the
most frequent resources. Counting also replicated responses
created by the routing protocol further shows that epidemic
routing adds robustness by returning tenfold number of re-
sponses. With spray-and-wait the replicated responses lead to
twofold increase in number of delivered responses. Limiting
the query forwarding (and thus the resource consumption)
with application layer knowledge is difficult; particularly, first
response drop is not effective. TTL limiting is a workable lim-
iting mechanisms and still allows even less popular resources
to reach the querying node. Overall, we find that queries will
likely be satisfied only for the more popular resources; content
items from the long tail will only be captured occasionally
and most likely from the vicinity of the querying node as our
results for the hop count of the returned responses seem to
indicate. This also means that exhaustive searches for content
items in mobile DTNs are unlikely to succeed (within a limited
time frame) and should be avoided as they may be wasteful.

Figure 4 shows the spread of query messages in the network
with epidemic routing to further assess the effectiveness of the
limitation functions (which is also a metric for the incurred
load on the network).3 We can see how the network level
mechanisms (hopcount, TTL) cause widespread forwarding of
the messages (reflected in the better retrieval performance as
observed above). In the simple scenario, the first response drop
mechanism manages to limit the spread of queries especially
when large number of content items are in the network, and
thus close to the querying node. With the (less realistic)
RWP network level mechanisms limit queries as effectively as
application level mechanism but achieve good response per-
formance. All application level termination mechanism limit
the spread of searches in HCS effectively and still manage to

2Note the threefold difference in range of the Y axis for Epidemic compared
to First Contact and Spray-and-Wait.

3For First Contact (hopcount=10) and Spray-and-Wait (10 copies), the
maximum spread of the messages has a hard limit enforced by the routing
protocol and the graphs are omitted.

First Contact Spray-and-Wait Epidemic
tim

e
to

liv
e

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

n-th most popular resource

5 resources
10 resources
15 resources
20 resources

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

n-th most popular resource

5 resources
10 resources
15 resources
20 resources

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

n-th most popular resource

5 resources
10 resources
15 resources
20 resources

dr
op

on
1s

t
re

sp
on

se

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

n-th most popular resource

5 resources
10 resources
15 resources
20 resources

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

n-th most popular resource

5 resources
10 resources
15 resources
20 resources

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

n-th most popular resource

5 resources
10 resources
15 resources
20 resources

u
e
s
t

fu
nc

tio
n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

n-th most popular resource

5 resources
10 resources
15 resources
20 resources

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

n-th most popular resource

5 resources
10 resources
15 resources
20 resources

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

n-th most popular resource

5 resources
10 resources
15 resources
20 resources

Fig. 3. Simulation results for Helsinki City Scenario.

deliver responses fairly well as can be seen in Figure 2 for
the Helsinki City Scenario with epidemic routing. In WDM
model, all limiting mechanisms stop queries equally well but
the network level mechanisms lead to a better response rate
as observed above.

 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 1 2 3 4 5 6 7 8

Ti
m

e
 (s

)

arrival of n-th response

first contact
spray-and-wait

epidemic

Fig. 5. Latency of n-th arriving unique response - WDM, 300 content items.

Figure 5 shows the latency from a query to arrival of the n-th
unique response in the WDM scenario. In cases where the first
response drop already satisfies the search, the content items are
retrieved from the vicinity of the querying node. This results
in low latencies for the search when first contact routing is
used. Spray-and-wait leads to relatively similar latency profile.
The latency is always highest with epidemic routing, but the
approach yields a good success ratio as discussed above.

V. IMPLEMENTATION CONSIDERATIONS

We have created an experimental implementation of a search
capable node following the outline of Figure 6. This separates
the bundle layer functionality into a Bundle Protocol Agent,
search specific functionality into a DTN-Search client, and
application specific functionality into a separate application
running on top of DTN-Search.

The Bundle Protocol Agent sends and receives bundles
over the network, makes routing decisions, and provides
persistent storage to facilitate store-carry-and-forward opera-
tion. Applications can access the BPA functionality through
the Client API to send and receive bundles. This API is
also used by DTN-Search to handle incoming and outgoing
queries and responses. The basic API is capable of supporting
search mechanisms that do not require interactions beyond
forwarding bundles. This is enough to implement TTL and
hop-count based search termination mechanisms which can
be implemented fully in the bundle layer. However, first
response filtering and global response count estimation based
termination mechanisms require the ability for the application
to control the forwarding on the query by: 1) signaling to
the router that the bundle should be dropped form the queue
(terminating the query), and 2) modifying the contents of
the bundle before it is forwarded (attaching the number of

Basic RWP

 0

 20

 40

 60

 80

 100

5 10 15 20 25 30

s
e
a
rc

h
 c

o
v
e
ra

g
e

resources in network

 0

 20

 40

 60

 80

 100

5 10 15 20 25 30

s
e
a
rc

h
 c

o
v
e
ra

g
e

resources in network

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
sp

o
n
se

p
ro

b
a
b
ili

ty

resources in network

term(1)
term(0.5)
1st drop

hops=10
hops=5

TTL

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25 30

re
sp

o
n
se

p
ro

b
a
b
ili

ty

resources in network

term(1)
term(0.5)
1st drop

hops=10
hops=5

TTL

HCS WDM

 0

 20

 40

 60

 80

 100

5 10 15 20 25 30

s
e
a
rc

h
 c

o
v
e
ra

g
e

resources in network

 0

 50

 100

 150

 200

50 100 150 200 250 300

s
e
a
rc

h
 c

o
v
e
ra

g
e

resources in network

Fig. 4. Search coverage with Epidemic routing.

responses generated).4

Search processing takes care of evaluating queries, response
generation, and search termination as described in section
III. The search layer has its own storage for content items
optimized for content retrieval.

The query evaluation process could be done directly on the
contents of the items in the application storage by, e.g., doing
string matching. However, in the general case this approach
has a number of drawbacks: 1) the cost of matching operations
is likely to become significant when the size of the application
storage grows, and 2) the query logic must understand the
structure of the content items (e.g., in order to search based
on ID3 fields of an MP3 file the query logic must be able to
parse the ID3 tags from the content items). Instead we suggest
a generic, metadata based mechanism for query evaluation:
Each content item can have an arbitrary number of attached
metadata key-value pairs with well known value types (e.g.,
strings or numeric values) stored in a structured index. The
metadata needs to be generated only once when the content
item is inserted into the network, but later generation of
additional metadata by other nodes is also possible. Queries
can then be composed of a combination of logical operations
and comparisons of the metadata values. These generic queries
can then be evaluated by any DTN-Search node while the
precise semantics of the metadata fields are only known at the
application layer.

4These two conditions are not met by the DTN2 reference implementation
and its external router interface.

DTN-Search exposes a simple, query-response Search API
that can be used by applications to place search queries and
to asynchronously receive responses as they become available.
The API can also be used by the applications to insert new
content items and associated metadata into the search layer.

Routing Storage

Search
Processing

Application
Storage

Search API

Application

Bundle Protocol Agent

Network

Client API

DTN-Search

Fig. 6. Components of the DTN-Search Implementation

This separation of concerns between the bundle router and
the search logic has several advantages: As the bundle router
itself is not modified, it is fully compatible with nodes that do
not implement search. The search storage can be optimized for
content retrieval while router’s storage is optimized for access
based on routing information such as source, destination, and
lifetime. Furthermore, the routing mechanism can be adapted
to the needs of specific scenarios instead of being fixed on a
generic search routing.

There are also a few disadvantages of this approach com-
pared to a modified bundle router for DTN-Search: The re-
dundant storage may be problematic for resource-constrained
devices. Also, the search processing cannot make routing
decisions which can lead to a suboptimal performance.

VI. CONCLUSIONS

In this paper, we have investigated searching for contents
in mobile DTNs (without internal structure or other content
organization), focusing on controlling the spreading of search
requests in an otherwise unloaded network. Looking at three
different routing protocols and four different mobility scenar-
ios, we have analyzed two network and two application level
mechanisms (with different parameterizations). As expected
with DTNs, content items are often retrieved from the vicinity
and particularly widespread resources are likely to be found
close by. In the scenarios we investigated, node mobility and
the DTN-inherent message delivery delays make attempts for
exhaustive searches unattractive: popular contents will likely
be found, items from the long tail only by chance. This
suggests using content dissemination or exploiting geographic
proximity in conjunction with searching in mobile DTNs.

While the investigations in this paper provide a starting
point in analyzing various properties of a basic search system
in mobile DTNs, numerous directions become apparent which
deserve further attention: We currently consider only statically
distributed resources; however, a node which successfully
retrieved a resource will subsequently also hold a copy and
thus may respond to future queries, too. Similarly, nodes
temporarily holding copies of resources (identified via meta-
data) while forwarding them could copy the reply to third
parties seeking the same information, thus effectively acting
as caches [17]. Such application-routing interaction could
also be leveraged to suppress duplicate replies from different
responders as mentioned earlier. And nodes could continuously
overhear response messages as they forward them to obtain an
estimate of the resource distribution and then use information
from earlier queries and the current one as additional input for
the forwarding/termination and selection phases.

ACKNOWLEDGEMENTS

This work was partly funded by the Academy of Finland in
the DISTANCE project (grant no. 117429) and by Teknolo-
giateollisuus ry in the REDI project.

REFERENCES

[1] L. A. Adamic, B. A. Huberman, R. M. Lukose, and A. R. Puniyani.
Search in power law networks. In Physical Review E, volume 64,
October 2001.

[2] Chen Avin and Carlos Brito. Efficient and robust query processing
in dynamic environments using random walk techniques. In IPSN
’04: Proceedings of the third international symposium on Information
processing in sensor networks, pages 277–286, 2004.

[3] Aruna Balasubramanian, Yun Zhou, W. Bruce Croft, Brian Neil Levine,
and Aruna Venkataramani. Web search from a bus. In CHANTS ’07:
Proceedings of the second workshop on Challenged networks CHANTS,
pages 59–66, 2007.

[4] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker.
Web caching and zipf-like distributions: Evidence and implications. In
INFOCOM, pages 126–134, 1999.

[5] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H.Weiss. Delay-Tolerant Network Architecture. RFC4838, 2007.

[6] Nicholas B. Chang and Mingyan Liu. Controlled flooding search in a
large network. IEEE/ACM Trans. Netw., 15(2):436–449, 2007.

[7] Karen Church, Barry Smyth, Paul Cotter, and Keith Bradley. Mobile
information access: A study of emerging search behavior on the mobile
internet. ACM Trans. Web, 1(1):4, 2007.

[8] Frans Ekman, Ari Keranen, Jouni Karvo, and Jörg Ott. Working day
movement model. In Proceedings of the 1st SIGMOBILE Workshop on
Mobility Models for Networking Research, May 2008.

[9] Pan Hui, Jeremie Leguay, Jon Crowcroft, James Scott, Timur Friedman,
and Vania Conan. Osmosis in Pocket Switched Networks. In ChinaCom,
2006.

[10] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in Delay Tolerant
Networks. Proceedings of the ACM SIGCOMM 2004 Conference,
Portland, OR, USA, 2004.

[11] Bernard J. Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic.
Real life information retrieval: a study of user queries on the web. SIGIR
Forum, 32(1):5–17, 1998.

[12] Bernard J. Jansen, Amanda Spink, and Jan Pedersen. A temporal
comparison of altavista web searching: Research articles. J. Am. Soc.
Inf. Sci. Technol., 56(6):559–570, 2005.

[13] Maryam Kamvar and Shumeet Baluja. A large scale study of wireless
search behavior: Google mobile search. In CHI ’06: Proceedings of
the SIGCHI conference on Human Factors in computing systems, pages
701–709, 2006.

[14] Gunnar Karlsson, Vincent Lenders, and Martin May. Delay-tolerant
broadcasting. In Proceedings of ACM SIGCOMM Workshop on Chal-
lenged Networks (CHANTS), pages 197–204, September 2006.

[15] A. Keränen and J. Ott. Increasing Reality for DTN Protocol Simula-
tions. Technical report, Helsinki University of Technology, Networking
Laboratory, 2007.

[16] Jeremie Leguay, Anders Lindgren, James Scott, Timur Friedman, and
Jon Crowcroft. Opportunistic content distribution in an urban setting.
In CHANTS ’06: Proceedings of the 2006 SIGCOMM workshop on
Challenged networks, pages 205–212, 2006.

[17] Jörg Ott and Mikko Pitkänen. DTN-based Content Storage and Retrieval.
In The First IEEE WoWMoM Workshop on Autonomic and Opportunistic
Communications (AOC), June 2007.

[18] Mikko Pitkänen and Jörg Ott. Redundancy and Distributed Caching in
Mobile DTNs. In Proceedings of the 2nd ACM MobiArch Workshop,
August 2007.

[19] Keith L. Scott and Scott C. Burleigh. Bundle Protocol Specification.
RFC5050, November 2007.

[20] Sergio D. Servetto and Guillermo Barrenechea. Constrained random
walks on random graphs: routing algorithms for large scale wireless
sensor networks. In WSNA ’02: Proceedings of the 1st ACM interna-
tional workshop on Wireless sensor networks and applications, pages
12–21, 2002.

[21] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael
Moricz. Analysis of a very large web search engine query log. SIGIR
Forum, 33(1):6–12, 1999.

[22] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S.
Raghavendra. Spray and wait: an efficient routing scheme for inter-
mittently connected mobile networks. In WDTN ’05: Proceeding of the
2005 ACM SIGCOMM workshop on Delay-tolerant networking, pages
252–259, 2005.

[23] Susan Symington. Delay-Tolerant Networking Metadata Extension
Block. Internet Draft draft-irtf-dtnrg-bundle-metadata-block-00, Work
in progress, September 2008.

[24] Wesley W. Terpstra, Jussi Kangasharju, Christof Leng, and Alejandro P.
Buchmann. Bubblestorm: resilient, probabilistic, and exhaustive peer-
to-peer search. In SIGCOMM ’07: Proceedings of the 2007 conference
on Applications, technologies, architectures, and protocols for computer
communications, pages 49–60, 2007.

[25] A. Vahdat and D. Becker. Epidemic routing for partially connected
ad hoc networks. Technical Report CS-200006, Duke University, April
2000.

[26] Bo Yang and Ali R. Hurson. Content-aware search of multimedia
data in ad hoc networks. In MSWiM ’05: Proceedings of the 8th
ACM international symposium on Modeling, analysis and simulation
of wireless and mobile systems, pages 103–110, 2005.

