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ABSTRACT
Numerous routing protocols have been proposed for Delay Toler-
ant Networking. One class of routing protocols aims at optimizing
the delivery performance by using knowledge of previous encoun-
ters for forecasting the future contacts to determine suitable next
hops for a given packet. Protocols pursuing such an approach face
a fundamental challenge of choosing the right protocol parameters
and the right time scale for estimation. These, in turn, depend on
the mobility characteristics of the mobile nodes which are likely
to vary within one scenario and across different ones. We char-
acterise this issue, which has been overlooked in this field so far,
using PROPHET and MaxPROP as two representative routing pro-
tocols and derive mechanisms to dynamically and independently
determine routing parameters in mobile nodes.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Proto-
cols

General Terms
Algorithms, Design, Performance

Keywords
Delay-tolerant Networking; DTN; Routing; Mobile Ad-hoc Net-
working; MANET

1. INTRODUCTION
Epidemic routing [9], PROPHET [8] and MaxPROP [1] are ex-

amples of routing protocols that are specialized in networks that
consist only of sporadic moments of connectivity. When the nodes
meet, they interchange messages that they have in their buffers, and
then part again to meet other nodes.

The principle of Epidemic routing is to spread copies of data
items to buffer memories of mobile devices, so that eventually some
copy of the data reaches the intended destination device. This
scheme allows messages to be transmitted without end-to-end con-
nectivity. The drawback of the approach is the amount of buffer
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memory required in the devices, and possibly short contact dura-
tions with other nodes, limiting the data flow. To overcome these
limitations, approaches that use past knowledge of encounters to
optimize the spreading of data have been proposed. Such proposals
include the PROPHET and the MaxPROP protocols. They estimate
a “delivery predictability” or a “delivery likelihood” value, which
in turn is used to decide whether a copy of the data item is for-
warded to an encountered node.

The idea of estimating a predictability value for future encoun-
ters is appealing, but actually only transforms the problem of buffer-
ing and connection time limitations to the problem of finding reli-
able estimates for the predictability values. So far, this problem has
been under-researched. Both PROPHET and MaxPROP present
a scheme for estimating these, but some other proposals, such as
MobySpace [7] have defined the estimation problem out of scope.

This paper shows that the estimation process can have an effect
on the routing protocol behaviour. We use PROPHET and Max-
PROP as examples of typical, fundamentally similar, delay-tolerant
routing protocols of this class, and present a simple generalization
of the MaxPROP protocol. Our main thesis is that when defining a
routing protocol based on delivery predictability estimation, or sim-
ulating it, the underlying characteristics of mobility and application
timescales need to be defined, in order of this type of protocol to
work.

The paper is organized as follows. Section 2 describes the pa-
rameters of PROPHET, and how they affect the operation of the
protocol. Section 3 discusses the MaxPROP protocol mechanism
similarly, presenting a simple generalization to the protocol. We
describe the approach of defining protocol parameters starting from
the desired timescale for the protocol to work in Section 4. Sec-
tion 5 shows first simulation results for PROPHET using different
parameter settings. Finally, Section 6 concludes the paper.

2. PROPHET
PROPHET [8] is a DTN routing protocol aiming at using knowl-

edge obtained from past encounters with other nodes to optimize
the packet delivery. Each node keeps a vector of delivery pre-
dictability estimates, and uses it to decide whether an encountered
node were a better carrier for a DTN packet.

The predictability estimates are increased every time a node en-
counters another node, and they are decayed exponentially. This
process is treated in more detail in the following subsections. The
PROPHET protocol also includes a “transitivity” mechanism (con-
trolled by a parameter β) for dealing with the case where two nodes
rarely meet, but there is another node that frequently meets both of
these nodes. The updating mechanism of the transitivity property
is not needed for the purpose of this paper, so it is left for future
work. I.e. assume β = 0.



2.1 Predictability estimation parameters
The PROPHET specification defines two aging parameters: γ ∈

(0,1) as the aging constant, and time unit, u, defined based on the
application. These constants are actually dependent, and there is
only one free parameter.

Let t denote the elapsed time since the aging process started (i.e.
after the last delivery predictability calculation). Let Porig denote
the predictability at the time the aging started. Define a continuous
function

Pt = Porige
−bt ,

where b is a constant. Equation (2) in [8] defines aging as

P(a,b) = Porigγk,

where k is the number of time units since the last aging update.

Assuming that at the discrete moments of time t = ku, Pt
def= P(a,b).

Then,

Porige
−bt = Porigγk

e−bt = γk |Porig �= 0(
e−b

)t
=

(
γ

1
u

)t
=

(
e

1
u lnγ

)t

e−b = e
1
u lnγ |t �= 0

b = −1
u

lnγ. (1)

Since there is in practice only one aging parameter, b, the choice
of the time unit can be arbitrary, and be based on technical con-
siderations, such as how to measure time in a specific device. The
parameter γ can then be used to achieve the desired b.

PROPHET formulates the update of the predictability, ignoring
transitivity definition, as

P(a,b) = P(a,b)old +(1−P(a,b)old)Pinit. (2)

Define P′ as 1−P(a,b). Then,

P′
new = P′ −P′Pinit = (1−Pinit)P′.

In case a node pair meets with constant intervals, then after n meet-
ing times,

P′
n = (1−Pinit)nP′.

We see that the formulation follows the same exponential form as
for the decay of the predictability. Let us write (2) using ζ = 1−
Pinit:

P(a,b) = 1−ζn
(

1−P(a,b)original

)
.

Rewriting the equation in continuous time, as for the decay,

P(a,b) = 1−e−ct
(

1−P(a,b)original

)
.

Here,

c = − 1
u′

lnζ = − 1
u′

ln (1−Pinit) , (3)

where u′ can be interpreted as a time unit for increasing predictabil-
ity. We see that Pinit is actually a constant defining the rate of
increase for predictability. For reducing confusion, we use ζ =
1−Pinit in the following sections.

This formulation also reveals a natural way of extending the de-
livery predictability calculation of PROPHET. If the contact lengths
are considered to also matter for delivery predictability, so that
nodes that tend to have long contact times with each other have

bigger delivery predictability, PROPHET can be changed so that
delivery predictability is updated by e−ct during a contact, instead
of ζ for each contact. To convert between ζ and c, set u′ to the mean
contact duration.

2.2 Operation of the predictability estimator
In order to get an idea of what parameter values can be used, and

how the protocol works, first consider a system consisting only of
two nodes. The system oscillates between two states: First, the pre-
dictability value is increased, as the nodes meet each other. Then,
the predictability value is decreased during a period of length B,
until the next encounter. The system starts from a value P0 at time
T = 0. To relate these parameters to the “real world” protocol op-
eration, set B to the sum of average contact and intercontact-time,
or the average time between encounters of node pairs. We call this
interencounter time. In the beginning of the cycle, an encounter
happens, and the predictability value reaches the maximum:

PT=0+ = Pmax = 1−ζ(1−P0). (4)

And at time T = B, the predictability value reaches its minimum
again:

PT=B = Pmaxe−bB

= (1−ζ(1−P0))e−bB.

When the cycle repeats, the predictability estimate changes, peri-
odically increasing and decreasing. Consider the points Pn, which
denote the predictability value in the end of cycle n. First,

Pn = (1−ζ(1−Pn−1))e−bB

= e−bB (1−ζ)︸ ︷︷ ︸
def=C

+Pn−1ζe−bB

= C+Pn−1ζe−bB

= C+
(
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)
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= C
(

1+ζe−bB
)

+Pn−2

(
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)2
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∑
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(
ζe−bB
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+P0

(
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)n

=
1−ζ

ebB −ζ

[
1−

(
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]
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(
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)n
(5)

In this kind of a periodic system, the predictability value stabi-
lizes to oscillate around the same values, and limn→∞Pn = Pstable. It
is sufficient for the predictability to stabilize, when bB > 0⇒ γ< 1,
since ζ < 1. Then, the system converges to

lim
n→∞

Pn =
1−ζ

ebB −ζ

⎡
⎢⎢⎣1−

(
ζe−bB

)n−1

︸ ︷︷ ︸
→0

⎤
⎥⎥⎦+P0

(
ζe−bB

)n

︸ ︷︷ ︸
→0

=
1−ζ

ebB −ζ
= Pstable.

When the system has reached its stable state, the average predictabil-
ity P is

P =
1
B

Z B

0
Pmaxe

−btdt

=
1−e−bB

bB
(1−ζ(1−Pstable)) .



There are two main choices for the PROPHET parametrization,
illustrated in Figures 1 and 2. The first choice of parameters aims
at estimating the predictability as a longer time average, while the
second aims at a short term effect. The time that is needed for
reaching a steady state needs to be taken into account also in the
simulations, especially with the first approach. Considering the pa-
rameters in Figure 1, for example, a suitable warm-up period is in
the order of 30 cycles, meaning the node pair has time to meet 30
times before the predictability value is on approximately the right
level. If the values are interpreted as seconds, i.e. nodes encounter
each other on average every 2010 seconds for 10 seconds, a bit over
half an hour between each encounter, the simulation warmup time
should be around 17 hours of simulation time. Or, in a real-life
scenario, it would take the corresponding time before the protocol
starts to work as intended.
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Figure 1: PROPHET reaching the steady state. B = 2000, ζ =
0.9704, b = 4 · 10−5 . Resulting Pstable = 0.2622, P = 0.273 and
Pmax = 0.284.
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Figure 2: Predictability with the default settings for PROPHET
routing in the ONE simulator. B = 5274, ζ= 0.2737, b = 6.7333 ·
10−4. Resulting Pstable = 0.021, P = 0.2002 and Pmax = 0.7320.

Figure 2 shows the behaviour of PROPHET with the default pa-
rameters of the ONE simulator [6], but with transitivity turned off
(β = 0). This shows the second possible mode of the PROPHET
algorithm, where a single encounter is able to set the predictability
to a high value, which is then quickly reduced. Using this mode
assumes that it is most probable to meet again the nodes that the

node just met. The longer it has passed after an encounter, the
more unlikely it is that the nodes meet again. Using this approach,
there is no cumulative evidence of nodes having met several times
before. This mode of operation is based on the assumption that
the intercontact time distribution is heavy tailed—the longer it has
taken from the last encounter, the longer it will take until the next
encounter. There have been such results available [2, 5], so both
of these modes of PROPHET usage are possible, depending on the
scenario. As regards to the warmup period of the protocol with this
mode of operation, one cycle of contact time and intercontact time
is enough.

3. MAXPROP
MaxPROP [1] is another protocol using knowledge from previ-

ous encounters for making delivery optimization in DTN. The idea
is that each node keeps a vector called delivery likelihood, which is
obtained using incremental averaging. When two nodes meet, they
exchange these vectors, and so each node can calculate the shortest
path to the destination.

The algorithm is based on calculating the likelihood of connect-
ing next to node j. Each node has a vector Fi = ( f i

0 . . . f i
J−1), nor-

malized so that the sum of the elements is 1. When a node encoun-
ters another node, the element of the vector corresponding to the
node encountered is incremented by 1, and then all vector elements
are divided by 2. This way, the vector is kept normalized all the
time.

When calculating these values in practice, the node that was met
last has always the highest value, and the node met before that a
value approximately half of that value, and so on. This way, the
likelihood vector can be seen as an ordering of the nodes. When-
ever the node meets the next node, the newly encountered node is
put on the start of this order. This definition of likelihood is ex-
tremely volatile. The shortest path mechanism uses these volatile
likelihood vectors for path cost calculations. This is a problem,
since the earlier exchanged likelihood vectors are already obsolete
when the calculations are done.

In this sense, MaxPROP resembles a bit the PROPHET rout-
ing algorithm in the second mode, where the last encounter is con-
sidered most important, and history of past encounters is consid-
ered less significant. The difference is in the aging process; while
PROPHET uses time to age the predictability values, in MaxPROP,
a node forgets past encounters when encountering new nodes.

We generalize MaxPROP so that the averaging increment α > 0
can be arbitrarily chosen, instead of the default α= 1. The protocol
can then use the history of past encounters as additional evidence
when calculating delivery likelihood. This leads to a kind of a slid-
ing average of the frequency of meetings of other nodes, resem-
bling the first mode of PROPHET algorithm. Selecting the correct
value of α depends on what is the desired time scale for forgetting
about older contacts, and depends on the movement model and the
application.

3.1 MaxPROP behaviour
Figure 3 shows an example of the default behaviour of the Max-

PROP delivery likelihood estimate. The node meets other (non-
interesting) nodes every 20 time units, and one node every 100 time
units. The delivery likelihood of the latter is shown in the figure.
Figure 4 shows the same scenario but with a modified MaxPROP,
with α = 0.1 used as the increment for incremental averaging. As
a result, the likelihood sets after an initial transient to a level indi-
cating the relative frequency of encounters. As a penalty, it takes
some time in the beginning (in this case, approximately 5 cycles)
before the likelihood level is reached.
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Figure 3: MaxPROP likelihood behaviour with default likeli-
hood update.
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Figure 4: Modified MaxPROP likelihood behaviour with α =
0.1.

To be more precise, we define that the delivery likelihood is up-
dated as follows. Whenever an encounter with node j happens,

f i
j,n+1 =

f i
j,n +α
1+α

,

and when a node encounters a node different than j,

f i
j,n+1 =

f i
j,n

1+α
.

Consider a cycle, where a node encounters L other nodes in be-
tween each encounter with node j. The cycle starts with f ij = f0.

After the cycle, f i
j is

f1 =
f0+α
1+α

(1+α)L
=

f0 +α
(1+α)L+1 .

Assuming the same cycle repeats, fn is then

fn =
α

(1+α)L+1 −1

[
1− (1−α)−n(L+1)

]
+

f0

(1+α)n(L+1) .

Note that this equation is of the same form as (5). The second term
diminishes as cycles repeat. When α > 0, the first term converges,

as (1+α)−(L+1) < 1. The process stabilizes at

lim
n→∞

fn = f∞ =
α

(1+α)L+1 −1
. (6)

Filling in the parameters of the scenarios for Figures 3 and 4, for
α = 1, f∞ ≈ 0.0129 and for α = 0.1, f∞ ≈ 0.130.

4. DEFINING PROTOCOL PARAMETERS
BASED ON TIME SCALES

So far we have seen that protocol behaviour can change drasti-
cally, depending on how the protocol parameters are chosen. The
obvious question is then: How should the protocol parameters be
chosen?

We claim that the correct way to define protocol parameters is
starting with the scenario and applications. The expected contact
and intercontact times, and numbers of encounters typically de-
pend on the day and time of day. In some applications, where
the DTN messages age quickly, only short term behaviour is in-
teresting. Then, choosing parameters that cause the algorithms to
stabilize quickly are chosen. For other applications, longer term
adaptation can be appropriate. Consider for example email, where
delivery the next day is good enough — the predictability or deliv-
ery likelihood values need to reflect the daily occurring encounters,
instead of the last minutes, in order to benefit from daily routines.

Thus, the essential question is the time scale. Time scale is de-
fined here as the time it takes for the system’s predictability or like-
lihood values to adapt to a different mobility pattern. For example,
a time scale of 1 hour means that when a change in mobility pat-
terns occurs, it takes approximately one hour for the predictability
or delivery likelihood values to reach the new level.

To turn this idea into practice, we use the models prepared in
the previous sections to find parameters for both PROPHET and
MaxPROP to be used in more realistic scenarios.

4.1 PROPHET parametrization
Let T denote the desired time scale, and B the mean interen-

counter time. Then, the number of cycles ntarget corresponding to
this target time scale,

ntarget =
⌈

T
B

⌉
, (7)

can be used to get an idea whether the chosen PROPHET parame-
ters b and ζ are meaningful. For this, choose b and ζ so that for all
P0 they create the maximum error smaller than or equal to ε,∣∣Pntarget −Pstable

∣∣ ≤ ε, (8)

where the error ε is a chosen suitably small constant, for example
0.1. We note that even fixing the time scale, and knowing the mean
interencounter time, there are two parameters that can be chosen.
Setting the average predictability value to an arbitrary constant,
such as P = 0.2, can be used to fix both of the parameters. This
lets the predictability values some space to fluctuate depending on
the actual number of encounters for node pairs.

Different devices will see different types of usage; some devices
might stay at people’s homes most of the time, while some other
devices see many encounters during the day. Since the protocol
behaviour depends on the frequency of encounters, having a single
set of parameters for the devices can be suboptimal.

The desired timescale of the protocol needs to be decided based
on the time to live of the application bundles. For example, a 4 h
and 12 day time-to-live settings required different time scales also
for the application.



To cover the different usage of different devices, an algorithm
can be devised for estimating the mean interencounter times, and
then used for finding the parameters of the PROPHET. In case there
is no trend component in traffic, a simple mean of interencounter
times suffices:

B̂n =
n−1

n
B̂n−1 +

1
n
en,

where en denotes the nth measured interencounter time. These
times need to be estimated over all node pairs separately, but they
are used to calculate a single mean. In the case where there is a
trend, another timescale problem emerges; the estimation needs to
be implemented in a way that gives more weight to the newest mea-
surements in a controlled way.

Given the estimated B̂, and other parameters, e.g. ε = 0.001,
P = 0.2, and the target timescale T , calculating the PROPHET pa-
rameters can be done with two nested iterative steps:

1. The outer loop is for searching ζ:

• If P > Ptarget, increase ζ

• If P < Ptarget(1− ε), decrease ζ

• otherwise: parameters are found

The amount of increase or decrease is reduced when the iter-
ation advances.

2. The inner loop is for finding b for the chosen ζ

• If the error from (8) after the target timescale is big-
ger than ε, increase b (PROPHET does not converge
quickly enough).

• If the error (8) is smaller than ε(1− ε), decrease b (de-
livery predictability converges too quickly).

The amount of increase or decrease is reduced when the iter-
ation advances. If the inner loop is not able to find a suitable
b, increase ζ, and try again.

The algorithm will find the parameters of PROPHET in a reason-
able amount of time. The requirement for this algorithm to work
is that the target timescale is longer than the mean interencounter
time. If it is smaller, PROPHET works in the mode shown in Fig-
ure 2.

We simulated PROPHET delivery predictability with Poisson
distributed encounters with the intensity modulated by a sine wave,
for showing a daily variation of interencounter times. Figure 5
shows the delivery predictability for an application with target time-
scale of 1 hour, in a case where the node pair meets on average
every 16.7 minutes. The node pairs meet only during the day, and
since the application timescale is only one hour, the delivery pre-
dictability diminishes during the night.

Figure 6 shows a simulation with the target timescale of about
30 days, and with mean interencounter time of 8 hours. The results
show that finding the correct average level of delivery predictabil-
ity takes a long time, but on the other hand, the daily variation
in encountering intensity does not affect delivery predictability as
heavily as with a lower timescale. The implementation of the pro-
tocol requires estimation of the mean interencounter time. This
requires storing the time of the last encounter for each node. Each
time a new encounter happens, the interencounter time can then
be calculated easily, and the mean calculated from all node pair’s
interencounter times can be updated.
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Figure 5: PROPHET with parameter estimation. The target
timescale T = 3600 s. Mean interencounter time: 16.7 min.
Top: the encountering intensity, bottom: estimated delivery
predictability.

4.2 MaxPROP parametrization
MaxPROP is defined with the encounters, and thus when para-

metrization starts from the time scale T , the needed parameters are
the mean interencounter time B and the mean number of encounters
between contacts of a specific node pair L.

The number of cycles ntarget is again defined as in (7). Then, the
parameter α for MaxPROP can be defined in a similar way as for
the PROPHET, from maximising the error for all f0:∣∣ fntarget − f∞

∣∣ ≤ ε,

where ε is a suitable error constant. For MaxPROP, the choice of
parameter α also affects the level on which the delivery likelihoods
fluctuate, but there is no way of controlling that level.

MaxPROP can be tuned in the same way as PROPHET to work
automatically on a specific timescale, but solving the parameter α
for MaxPROP is significantly easier to do than solving the correct
parameters for PROPHET. The nodes need to estimate two parame-
ters in this case, though. First, mean interencounter time B̂ needs to
be estimated, as for PROPHET. Second, the mean number of con-
tacts during an interencounter time L̂ needs to be estimated. The
estimation of L can be done easily by having a counter for encoun-
ters, and storing the counter value of the last encounter for each en-
countered node. When the nodes meet again, it is straightforward
to calculate the number of encounters with other nodes in between,
and thus updating the estimate L̂.

With these estimates, and the target timescale, the MaxPROP
timescale parameter α can be estimated iteratively, in the same way
as the two parameters of PROPHET. In this case, though, only a
single loop is required, instead of the two nested ones in PROPHET.

5. SIMULATIONS AND DISCUSSION

5.1 Idealistic viewpoint
Figure 7 illustrates the expected behaviour of PROPHET as a

function of message TTL. The two curves show message delivery
ratio for two parametrizations, calculated from different time scale
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Figure 7: Qualitative outline of the expected behavior

targets. There are four identifiable ranges shown for curve T1:

a) If the message TTL is less than the mean interencounter time,
the routing and forwarding process is essentially reduced to
random delivery. Any routing protocol behaves badly, as the
nodes do not meet often enough for the message to be able
to reach the destination. In this case, the routing essentially
degenerates to the direct delivery or first contact [4].

b) If the message TTL is larger than the interencounter time
but less than the timescale, history information starts getting
useful. The message may on average not be able to travel
many hops, but could reach the destination. Since the history
information is collected from a significantly longer period
of time than the message TTL, it can contain information of
nodes that encountering less frequently, incurring an error.

c) If the message TTL is in the order of the timescale, history
information can be best used for forwarding—the delivery
predictability values are estimated on the time scale within
a message’s TTL. As an additional note, we expect the per-
formance on this range to be highest when the time scale is
sufficiently larger than the interencounter time, so that there
are more samples used for the estimation.

d) If the TTL is larger than the timescale, the protocol perfor-
mance starts to degrade, as information on node pairs that
meet with longer interencounter times do not get recorded
properly. As a result, suboptimal paths can be chosen, so
that we expect the message delivery ratio to decrease again.

In summary, there are two important aspects: 1) The routing pro-
tocols run by nodes need to get enough time to build up meaning-
ful state for the environment they are operating in. Depending on
the convergence time, the results will be biased before some stable
state is reached. 2) The lifetime of messages sent in a particular
environment needs to match the timescales in the system: i.e., the
right routing needs to be picked.

5.2 Simulated results
We run simulations for both PROPHET and MaxPROP to obtain

a first more realistic validation of our routing protocol parameteri-
zation: We used the Working Day Movement Model [3]. We choose
the default scenario from section 5 in [3] in which nodes move in
the Helsinki city area, but reduce the number of nodes from 1 029 to
544 nodes by shrinking all the group sizes so that the basic contact
characteristics remain. We use half a day of warmup time for the
mobility model so that the nodes can spread before starting trans-
mitting messages.

In our simulations, the nodes transmit messages with the mes-
sage sizes uniformly distributed between 1 KB and 1 MB and each
node has 100 MB of buffer space. For message transmission, the
simulator draws intervals from a uniform distribution. After each
interval a (sender, receiver) node pair is drawn, a message sent, and
a new interval is drawn from the uniform distribution. For the basic
offered load (denoted as “1x”), each of 500 nodes sends one mes-
sage per day on average. We also run simulations with twice (2x),
four (4x) and eight times (8x) the basic load to assess the impact of
different offered loads. The active message generation period is 1
day (86 400 s) to which we add a warmup and cooldown time to ini-
tialize the nodes buffers to a steady state and allow for the delivery
of already sent messages, respectively.

Warmup and cooldown periods are equal to the message TTL,
with a minimal warmup of 100 000 s to allow for some contact his-
tory to build up. We run simulations with different constant mes-
sage TTLs: 10 000 s, 100 000 s, 200 000 s, 300 000 s, and 600 000 s,
to assess the impact of time scales on messages with different appli-
cation requirements. The total simulation times are thus 196 400 s,
286 400 s, 486 400 s, 686 400 s, and 1 286 400 s, respectively.1 We
use the packet delivery ratio as the performance indicator. The mea-
sured values are means over five simulation runs for PROPHET and
over three simulation runs for MaxPROP.

We first run the simulator and the movement model in order to
measure the mean interencounter times B and the mean number
of contacts between encounters L in our simulation scenario. Since
the durations for the various simulations differ, so will the observed
interencounter times and contacts between encounters (longer sim-
ulation times allow for larger interencounter times), see Table 1.

We can determine the PROPHET parameters Pinit and γ as well
as α for MaxPROP for different time scales for each simulation
scenario, using the measured B and L. Table 2 shows, as an ex-
ample, the parameter values found for the simulation setup with
TTL=100 000 s. It is apparent that they differ significantly from the
respective default parameters. This holds also for the other message
TTLs.

1The base configuration for the ONE simulator including the
mobility parameters and the message events is available from
http://www.netlab.tkk.fi/tutkimus/dtn/sim/2008-09-timescales.tar.



Table 1: Mean interencounter times B and number of contacts
between encounters L for different simulation durations.

Msg TTL Duration B L
100 000 s 286 400 s 49 051 s 173
200 000 s 486 400 s 82 813 s 251
300 000 s 696 400 s 111 145 s 306
600 000 s 1 286 400 s 197 522 s 445

Table 2: Parameter values for PROPHET and MaxPROP for
simulations with a message TTL=100 000 s: Original and val-
ues determined for different time scales.

Time scale PROPHET MaxPROP
Pinit γ α

Original 0.75 0.98 1.0000
100 000 s 0.2736 0.99997493 0.0089
200 000 s 0.1789 0.99998417 0.0053
300 000 s 0.1324 0.99998851 0.0038

We have implemented two modified versions of each PROPHET
and MaxPROP: one which can be parameterized according to the
common average values shown in Table 2 before starting the sim-
ulations (“predetermined estimation”) and one which performs the
parameter estimation as a continuous process independently in each
node during the simulations, using the algorithms outlined in Sec-
tion 4 (“dynamic estimation”). The dynamic estimation code pre-
sented is sufficiently lightweight and fast that it can be run on mo-
bile nodes once in a while (e.g., per encounter).

For predetermined parameter estimation (not shown), we find
a minor improvement of the message delivery ratio when using
PROPHET routing with β = 0. While only minor (1–5% for the
delivery ratio), we emphasize that we do not use node-specific pa-
rameterization, but only common values for all nodes based upon
the mean calculated across all nodes. Therefore, we care more
about the qualitative observation that intentional parameterization
can enable improvements in the first place.

The impact of dynamic parameter estimation on the message de-
livery ratio of PROPHET routing (again with β = 0) are shown in
Figure 8 comparing the original PROPHET to the modified one for
different timescales and offered loads. We find a similar perfor-
mance for small TTLs and a slight performance decrease for larger
ones compared to the original PROPHET. We attribute this to the
fact that the dynamic parameter estimation has to learn the con-
tact characteristics over time and will have incomplete information
in the beginning, resulting in incorrect estimates. With increasing
message TTL, long interencounter times gain relevance, but these
are naturally observed less frequently, leading to suboptimal esti-
mates. We also observed that the relative performance is largely
independent of the offered load.

These findings may suggest that meaningful default values should
be chosen as long as no sufficiently solid estimate can be provided
from the observed encounters for a given message TTL.

As most parameters can be estimated, the question remains which
message lifetimes a routing protocol should assume: the applica-
tions running on a mobile node may be too different. This calls
for categorizing application messages into TTL classes (similar
to QoS classes in Internet forwarding) and running independently
routing protocol parameterizations for these—and, for very short-
lived messages, possibly even different routing protocols.

While we would also expect a correlation between the observed
performance and the agreement between the message TTL and the
chosen timescale, these do not emerge. We believe that are timescales
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Figure 8: Message delivery ratio and delivery latency as a
function of message TTL for different offered loads: Origi-
nal PROPHET parametrization, and three time scale defined
parametrizations.

are too close and that differences in a order of magnitude or more
are needed to show this effect. This is confirmed by the origi-
nal PROPHET curve showing the same shape as the ones adapted
to time scales, which indicates that the time a message may be
buffered and carried around is still the dominating factor.

5.3 Transitivity
So far we have omitted the effect of transitivity in the analysis.

PROPHET defines transitivity as

P(a,c) = P(a,c)old
+(1−P(a,c)old

)P(a,b)P(b,c)β.

We notice that with this formulation, the delivery predictability val-
ues are mixed together to form a kind of “path” values, not keep-
ing track of the individual “link” values. Figure 9 shows the ef-
fect of the transitivity parameter β. The default parameter set of
PROPHET works as in Figure 2 — it uses highly volatile values
for delivery predictability. This works well with β = 0, since the
beginning of the interencounter time distribution for the used mo-
bility model follows a power-law. Thus, the time elapsed from the
last encounter with another node can be used to predict the time
left until the next encounter. This does not seem to hold for multi-
hop paths, though: instead, the delivery predictability values for the
next hops add as random noise to the delivery predictability values.
The effect is more pronounced with higher load.

The parametrization based on time scales aims at PROPHET
working in a more stable form, as in Figure 1, and thus the deliv-
ery predictability values approximate the intensity of meeting other
nodes. Summing these values together appears to produce less ran-
dom noise, and thus the protocol performs better with β= 0.25 than
with the default parameters.

Unlike PROPHET, MaxPROP separates link-level delivery like-
lihood values and path costs. The past contacts between nodes are
used to create a virtual topology of the network, and each path
through the network has a cost, calculated as

c(i, i+1, . . . ,d) =
d−1

∑
x=i

[1− f x
x+1].

This approach has a nice appeal, since it is a well-defined shortest
path calculation, but in practice the normalization of the delivery
likelihood values results in all link costs being near 1, thus reduc-
ing the algorithm to a shortest hop count metric. The delivery like-
lihood values are on average 1/δ where δ is the degree of the node.
Consider an example with α= 1. In the extreme case where a node
meets only two nodes ever, the link costs alternate between 1/3
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Figure 9: The effect of β on the PROPHET delivery ratio

and 2/3. For any node with more connections, the link costs are
approximately the values from the series 0.5, 0.75, 0.875, 0.9375,
. . . . This suggests that the choice of cost metric slightly favours
nodes that do not meet many other nodes, but it is unclear if the
effect is significant. Figure 10 confirms that the protocol function
also in practice discards the delivery likelihood values; irrespective
to the parametrization, the results are identical.
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6. CONCLUSIONS
This paper analyzed the impact of timescales on DTN routing

protocols. Our theoretical considerations have used two representa-
tive DTN routing protocols: PROPHET and MaxPROP that update
“predictability” information in a way that timescales matter. We
have shown in simple simulation models that the proper parame-
terization matters and partly confirmed this for a reasonably large-

scale real-world scenario focusing on PROPHET. We also found
that multi-hop paths are unsatisfactorily treated in the protocols:
for PROPHET, using the transitivity parameter reduced packet de-
livery rate, and MaxPROP discarded the delivery likelihood infor-
mation with the path calculation. Thus, the treating of multi-hop
path routing is still an open research issue.

While we have provided a first analysis of the impact of timescales
on DTN routing protocols, there is a wealth of aspects still open for
future research. We have to understand how different mobility char-
acteristics impact the estimation and the resulting performance and
explore using further mobility models. For performance measure-
ments, we have yet to isolate the impact of the interaction between
the buffer space and message TTL. And for generalizing to further
routing schemes, we need to compare single-copy and multi-copy
approaches and investigate the effect of varying the number of mes-
sage copies for the latter.

Since our algorithms for dynamically obtaining routing proto-
col parameters can be run on individual mobile nodes, we need
to understand how these parameters evolve over time and how di-
versity across different nodes affects punctual as well as overall
system performance. Such diversity implies that some common as-
sumptions about the system may no longer hold and thus require
additions to the routing signaling to explicitly communicate the
timescale may be required. We expect this at least, when we intro-
duce multiple TTL classes to routing protocols to match different
application requirements. Finally, besides tailoring routing proto-
cols to different application requirements, we are interested in fur-
ther exploring how to best address the very short-lived messages.
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